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Abstract—In this paper, we report the existence of Eckhaus
instability in laser cavities with harmonically swept filters,
of which Fourier Domain Mode Locked (FDML) laser is an
important example. We show that such laser cavities can be
modeled by a real Ginzburg Landau equation with a frequency
shifting term arisen from the cavity dispersion. We analytically
derived a solution of the governing equation and analyzed
its stability. We found that the cavity dispersion introduces a
continuous frequency shift to the laser signal such that it will
be eventually pushed outside the stable region and trigger the
Eckhaus instability. We show that the repeated triggering of the
Eckhaus instability in the laser cavities is the dominant effect that
leads to the high frequency fluctuations in FDML laser output,
which is the unique feature of such laser cavities and intrinsically
limits the signal quality of the FDML lasers with nonzero cavity
dispersion.

Index Terms—Eckhaus instability, Real Ginzburg Landau
equation, Swept laser, Fourier domain mode locking.

I. INTRODUCTION

Optical signals in laser cavities are stabilized by constraints
either in time domain or frequency domain, or their com-
bination. A continuous wave (CW) single frequency laser is
obtained when a narrow bandpass optical filter is introduced
in the cavity if no other physical effects influence the signal in
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the time domain. Whereas, mode-locked lasers that generate
ultrashort pulses are designed by adding temporal light con-
straining elements such as an intensity modulator or nonlinear
loss elements such as a saturable absorber to the laser cavity. In
traditional laser cavities, the constraints in time and frequency
domains are realized by different optical components. In 2005,
a novel type of laser with an intracavity swept filter driven
at a harmonic resonant frequency of the laser cavity, namely
Fourier domain mode locked (FDML) laser, is proposed and
demonstrated experimentally [1], [2]. The FDML laser was
proposed to break the bottleneck of sweep rate caused by
the signal build up time in conventional short cavity swept
laser cavities, to meet the requirement in the fast growing
application of optical coherence tomography (OCT) [3]–[5].
Since the long fiber cavity of FDML lasers could buffer the
entire swept signal in the cavity to avoid the rebuilding of
laser signal, the wavelength sweep rate can be enhanced to
MHz level [6], [7].

The working principle of an FDML laser is radically dif-
ferent from either a single frequency laser or a mode locked
laser. In an FDML laser cavity, the swept filter constrains the
intracavity laser signal in both the time and frequency domains
simultaneously. If we observe the signal within a narrow
bandwidth in the sweep range, the swept filter will introduce
a temporal window function for the specific frequency of
the signal. The duration of the window function is much
shorter than the cavity round trip time. Thus the sweeping
filter provides a periodic and narrow temporal confinement to
any given single wavelength of the signal, but the temporal
positions of the window function are different for different
wavelengths of the signal. On the other side, if we observe the
cavity in a short period of time, the bandpass filter provides a
narrow spectral confinement to the signal, while the central
wavelength of this spectral confinement varies periodically
with time.

Ideally, a laser with a harmonically swept filter should
repeatedly output a chirped signal with continuously varying
carrier frequency and a constant or smoothly varying intensity
profile. But the performance of the realized laser, e.g. an
FDML laser, is far from the ideal output. Although FDML
lasers have been deployed in OCT systems as the swept
sources, the signal quality is limited by its large instanta-
neous linewidth [8]–[10], which manifested as high frequency
fluctuations on the temporal waveforms. A theoretical model
considering dispersion, Kerr nonlinearity, gain saturation and
spectral filtering has been proposed to investigate the signal
dynamics in the FDML laser cavity [11], [12]. Although
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the impact of each individual elements in the cavity was
investigated by numerical simulations, the origin and cause
of the high frequency fluctuations have not been investigated.
The instabilities arising in the FDML laser cavities have been
investigated with a set of delayed differential equations [13]
and the existence of localized coherent structures including
Nozaki-Bekki holes have been discussed [14]. Besides the
theoretical investigation, quasi-stationary solutions with high
coherence have been demonstrated when the cavity dispersion
is compensated to nearly zero [15]. The experimental results
strongly indicate that the cavity dispersion is the dominating
effect that determines the stability of solutions in FDML lasers.

In this paper, we investigate the intrinsic stability of laser
cavities with harmonically swept filters by studying the signal
dynamics with a governing equation after peeling off the aux-
iliary effects which are either minor or optional in such laser
cavities. A quasi-stationary analytical solution is presented for
the first time and the stability of which is also investigated.

II. THEORETICAL FORMALISM

In practical FDML lasers, the swept filter is typically driven
to sweep in a range of several THz with a period of several
microseconds. Because of the large time-bandwidth product
(∼ 107) of the frequency swept signal, it is difficult to model
the signal dynamics in the laboratory frame. By converting the
description of system to a reference frame co-moving with the
swept filter, a theoretical model has been proposed [11], [12]

∂zu =g(u, ωs)(1− iα)u− σu− a(i∂t)u

+ iD2ω
2
s(t)u+ iD3ω

3
s(t)u+ iγ|u|2u− iD2∂

2
t u,

(1)

where u is the complex amplitude in the filter frame defined
as u = A exp(i

∫ t
ωs(t

′)dt′), ωs(t) is the instantaneous
center frequency of the sweeping filter and A is the complex
amplitude of the signal in the laboratory frame. The first
term in RHS describes the saturated gain g and the linewidth
enhancement factor α of a semiconductor optical amplifier
(SOA). Since the fluctuations of FDML laser output is nor-
mally limited in the band of several GHz, the dynamics of α
is not considered [16]. The model also includes the linear loss
σ, second order dispersion D2, third order dispersion D3 and
Kerr nonlinearity γ of the fiber cavity, and the steady filtering
profile a(i∂t) of the sweeping filter. The last term −iD2∂

2
t u

describes the second order dispersion that falls within the filter
bandwidth, i.e. the in-band dispersion.

Equation (1) has been applied in the numerical simulations
of FDML lasers to investigate the signal evolution and quality
[11], [12]. Simulation results show that the signal quality is
degraded by multiple factors. The fiber dispersion breaks down
the synchronization between the filter and the signals because
of the different round trip time of different wavelengths [8],
[11]. The linewidth of the signal is increased by the fiber
nonlinearity and the linewidth enhancement factor of SOA
[12]. Although investigations by turning on and off of specific
physical effects in simulations can provide some intuitive
understanding of the cavity dynamics, they cannot describe
the interaction between different effects and cannot reveal
the nature of the underlying dynamics. For example, high
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Fig. 1. The waveforms of signals in FDML laser cavities modeled by (a)
Eq. (1), with α = 5, (b) Eq. (1), with α = 0, and (c) Eq. (2), respectively.
The blue and red curves are the raw and smoothed waveforms respectively.
The insets show the zoom-in detail of the waveforms in the interval t ∈
[1.7 µs, 1.72 µs].

frequency fluctuations on the signal waveforms were observed
in the numerical simulations of Eq. (1), but the mechanism
to generate these high frequency fluctuations is unknown, let
alone the method to avoid them. In Fig. 1(a), a typical raw
waveform of the signal in an FDML laser cavity modeled
by Eq. (1) is shown as the blue curve. Fig. 1(a) plots a 1
km fiber cavity with a round trip time of 5 µs. The fiber
dispersion coefficients are D2 = −1.0 ps2km−1 and D3 =
0.02 ps3km−1. The nonlinear coefficient γ = 2.0 W−1km−1.
The gain is modeled as a lump element with a power gain
of G = [G0(ωs)/(1 + |u(t)|2/Isat)]1−iα, where the saturation
power Isat = 1 mW, the linewidth enhancement factor α = 5,
and the small signal gain G0(ωs) = 150/(1 + ω2

s/ω
2
g) with

ωg = 40 ps−1. The linear loss coefficient σ = 0.5 km−1

also includes the insertion loss of other elements in the cavity.
The swept filter is modeled by the intensity transfer function
with a Gaussian profile Tf (ω) = exp(−ω2/ω2

f ), where the
filter bandwidth ωf = 0.04 ps−1. The sweeping function
of the filter is modeled by ωs(t) = ωm cos(2πf0t), where
ωm = 40 ps−1 and f0 = 200 kHz. The inset of Fig. 1(a) shows
the zoom-in detail of the waveforms, where the high frequency
fluctuation is clearly shown on the raw waveform. These
fluctuations dominate the signal and hence the waveform is
usually averaged with adjacent signals in a range of several
nanoseconds to obtain a smooth waveform, e.g., the red curve
in Fig. 1(a) [11], [12].

A. Reduction of theoretical model

From the simulation results, it is likely that Eq. (1) has
neither an analytical solution nor a steady state solution. A
likely reason of the presence of the high frequency components
in the signal is the onset of an instability in the cavity dyan-
mics, which severely affects the signal quality. To delineate the
intrinsic reason of the noiselike fluctuations, we simplify the
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cavity model for a systematic analysis to find out the reason
and source of the signal instability.

First, we consider the contribution of the linewidth enhance-
ment factor which plays an important role in the signal quality
of laser cavities with SOAs. Figure 1(b) shows the intracavity
signal modeled by Eq. (1) with the linewidth enhancement
factor α set to zero, i.e. α = 0. We note that the waveform still
exhibits very complex fluctuations although the inset shows a
lower oscillation frequency compared with that of Fig. 1(a). It
is therefore clear that while the linewidth enhancement factor
degrades the signal quality in FDML laser cavities with SOAs,
it is not the intrinsic source of the instability in such cavities.
Thus for simplicity, in the subsequent analysis we drop the
effect of the linewidth enhancement factor from the laser
model of Eq. (1). By using the Wentzel–Kramers–Brillouin
(WKB) analysis [17], we found that the nonlinear phase shift
and in-band dispersion play a minor role and these terms are
therefore neglected in the first order approximation [18]. Thus
Eq. (1) can be reduced to

∂zu = g(u, ωs)u− σu− a(i∂t)u

+ iD2ω
2
s(t)u+ iD3ω

3
s(t)u.

(2)

Fig. 1(c) dispict the simulation results of the simplified
equation (2), which resemble that of Fig. 1(b) which is
obtained with the full equation (1) and α = 0, except minor
differences shown in the insets which are the zoom-in of the
signals.

We then neglect the wavelength dependence of the gain and
assume a Gaussian spectral filter with a bandwidth ωf , Eq. (2)
is then further simplified as

∂zu = gu− σu+ 1
2ω
−2
f ∂2

t u

+ iD2ω
2
s(t)u+ iD3ω

3
s(t)u,

(3)

where g(u) = g0/(1 + |u|2/Isat) is the saturated gain coeffi-
cient. The delayed response of gain [11], [19] is not considered
since it does not dominate the instability. The simulation
results of the simplified model of Eq. (3) capture most of
the signal dynamics of the FDML laser system, especially the
high frequency intensity fluctuations of the waveform.

The gain saturation factor is then expanded in Taylor series
of |u|2. By keeping only the first order term, Eq. (3) is reduced
to

∂zu = (g0 − σ)u− g0I
−1
sat|u|2u+ 1

2ω
−2
f ∂2

t u

+ iD2ω
2
s(t)u+ iD3ω

3
s(t)u.

(4)

Eq. (4) can be normalized to

∂ZU = U − |U |2U + ∂2
TU + iε−1C(εT )U, (5)

by defining normalization of variables as

U = u
√
g0/[2(g0 − σ)Isat] ,

Z = z(g0 − σ),

T = tωf
√

2(g0 − σ),

Ω = ω/[ωf ×
√

2(g0 − σ) ], (6)
C(εT ) = ε

[
S2Ω2

s(T ) + S3Ω3
s(T )

]
,

S2 = D2ω
2
f

√
8(g0 − σ)

3
Isat/g0 ,

S3 = D3ω
3
f4(g0 − σ)

2
√
Isat/g0 ,

where the time scaling factor ε is defined as the inverse of the
normalized time window or round trip time of the laser cavity.

Equation (5) is a real Ginzburg Landau equation (RGLE)
with a chirp phase term C contributed by the dispersion in
the fiber cavity. In a dispersion-less laser cavity, Eq. (5) will
reduce to a standard RGLE as

∂ZU = U − |U |2U + ∂2
TU. (7)

RGLE has been extensively studied in fluid dynamics. More
importantly, stationary solutions are available for the system
governed by the RGLE which are single frequency continuous
waves. The stationary solution for Eq. (7), with normalized
angular frequency Ω is

U =
√

1− Ω2e−iΩT , (8)

which is nontrivial in the frequency region |Ω| < 1. But the
stationary solutions are unstable when Ω2 > 1/3, which is
known as the Eckhaus instability. Eckhaus instability was first
discussed in 1960s in the modeling of convection in fluid
systems governed by the RGLE [20]. Within a short span of
time, interest on the instability has moved to systems described
by the complex Ginzburg Landau equation (CGLE), which
is the modulation instability, where the Eckhaus instability
can be treated as a speical case with the imaginary terms
set to zero [21]. As a reduced form of CGLE, nonlinear
Schrödinger equation (NLSE) has attracted more attention than
the RGLE because of the existence of the analytical solitary
solution, especially after soliton was reported in optical fibers
by Hasegawa and Tappert [22]. For the NLSE, the modulation
instability of optical continuous wave has been very well
studied. In systems with dissipative and gain elements, such
as laser cavities, the more general CGLE is adopted to model
the nonlinear pulse dynamics in the cavity [23]–[25]. But in
all those studies, the nonlinear phase shift and dispersion were
considered as the dominant effects in pulse shaping and stable
propagation. Although RGLE is seldom used to describe an
optical system, Eckhaus instability has also been discussed
when considering the spatial effects or a delayed feedback
in lasers [26]–[29]. However, in an one dimensional cavity,
where spatial effects and delay are not significant in laser
system dynamics, the Eckhaus instability does not show up
as a dominating effect.

B. Solution and stability analysis

Equation (5) is an initial value problem, the evolution of
the signal can be solved if the initial field is given. We note
that Eq. (5) does not possess stationary solutions because of
the existence of a nonzero phase term. To solve Eq. (5), we
introduce an amplitude-phase transformation of the form

Ū = U exp[−iε−1C(εT )Z]. (9)

Eq. (5) is transformed to

∂ZŪ = Ū − |Ū |2Ū + ∂2
T Ū − C ′

2
Z2Ū

+ 2iC ′Z∂T Ū + iεC ′′ZŪ,
(10)

where C ′ = ∂εTC and C ′′ = ∂2
εTC. We then split the temporal

dynamics by fast time t1 = T and slow time t2 = εT ∈ [0, 1],
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and assume a polynomial expansion of Ū = Ū0 + εŪ1 +
ε2Ū2 + · · · , where Ū n is the n-th order solution. By grouping
the equation in polynomial order of ε, the governing equation
at zero-th order of ε can be derived as

∂ZŪ
0 = Ū0 −

∣∣Ū0
∣∣2Ū0 + ∂2

t1Ū
0

− C ′2Z2Ū0 + 2iC ′Z∂t1Ū
0.

(11)

By assuming Ū0 = X(z, t2) exp
[
−iΩ̄0(t2)t1

]
, where X and

Ω̄0 are real, Eq. (11) could be transformed into a real equation

∂ZX = X −X3 −
[
Ω̄0(t2)− C ′Z

]2
X. (12)

Letting I = X2 6= 0, Eq. (12) is reduced into a Riccati
equation

∂ZI = R(Z)I − 2I2, (13)

where R(Z) = 2
[
1−

(
Ω̄0(t2)− C ′Z

)2]
. By solving the

Riccati equation (13), the evolution of the signal along Z
governed by Eq. (11) can be obtained as

Ū0(Z) =
exp(−iΩ̄0(t2)t1)√

I−1
0 eQ(0)−Q(Z) + 2

∫ Z
0
eQ(x)−Q(Z)dx

, (14)

where I0 and Ω̄0(t2) are the intensity and instantaneous
frequency of Ū0 at Z = 0, and Q(Z) =

∫ Z
0
R(x)dx. For

simplicity in the notation, we will write Ū0 as Ū in the
following discussion.

The linear stability of the solution (14) can be investigated
by assuming a perturbation a(t1, t2) of the solution at Z = Z0

as W (Z0) = Ū(Z0)(1 + a). The evolution of the perturbed
solution is assumed as

W (Z, t1, t2) = Ū(Z, t1, t2)[1 + eΛ(Z,t2)a(t1, t2)], (15)

where ∂ZΛ = λ(Z, t2) indicates the growth rate of the
perturbation. If λ(Z > Z0, t2) > 0, the perturbation at time
point t2 will grow exponentially, thus the solution will become
unstable. By substituting Eq. (15) into Eq. (11), the governing
equation of the perturbation is calculated as

λaŪ =−
∣∣Ū ∣∣2Ū (a+ a∗) + 2∂t1a∂t1Ū

+ Ū∂2
t1a+ 2iC ′ZŪ∂t1a.

(16)

For the solution described by Eq. (14), where ∂t1Ū =
−iΩ̄0(t2)Ū , the governing equation Eq. (16) will become

λa = −I (a+ a∗) + ∂2
t1a+ 2iΩi∂t1a, (17)

where I is the intensity and Ωi = C ′Z− Ω̄0(t2) is the instan-
taneous frequency of U . Considering the coupling between the
conjugated fields, the perturbed field can be written as

a(t1, t2) = αk(t2) exp(−ikt1) + βk(t2) exp(ikt1), (18)

where k > 0 is the mode number of the perturbation, and
αk(t2) and βk(t2) are real functions. Substitution of Eq. (18)
into Eq. (17) gives the eigenequation of the perturbation modes
as

λ

(
αk
βk

)
=−

(
I + k2 + 2kΩi I

I I + k2 − 2kΩi

)(
αk
βk

)
. (19)

αk and βk have nonzero solutions only when∣∣∣∣I + k2 + 2kΩi + λ I + λ
I + λ I + k2 − 2kΩi + λ

∣∣∣∣ = 0, (20)

which has solutions k = 0, or λ = 2Ω2
i − I − k2/2 for k > 0.

Clearly, λ will be negative for all k > 0 modes if 2Ω2
i −I < 0,

which is the criterion for the stability of the solution. Thus,
the stability condition for Eq. (14) is

λmax = 2
(
C ′Z − Ω̄0

)2
−

[
I−1
0 eQ(0)−Q(Z) + 2

∫ Z

0

eQ(x)−Q(Z)dx

]−1

< 0.
(21)

In Section III, we will discuss the solutions and their
stability based on Eqs. (14) and (21).

C. Linewidth enhancement factor
If a semiconductor amplifier, like an SOA, is used in

an FDML laser, then the linewidth enhancement factor of
the semiconductor amplifier is another important factor that
affects the performance of the FDML laser. If the linewidth
enhancement factor is considered in the model in Section II-A,
the reduced model Eq. (5) will become a complex Ginzburg
Landau equation without intraband dispersion as

∂ZU = U − |U |2U + iα|U |2U + ∂2
TU + iε−1C(εT )U. (22)

In a cavity with fully compensated dispersion, C = 0. The
stationary solution of Eq. (22) is given by

U =
√

1− Ω2e−iΩT+iα(1−Ω2)Z , (23)

which has an extra phase term α(1 − Ω2)Z when compared
with the solution (8). Although the extra phase term will not
change the intensity profile or the center frequency of the
solution, the stability region of the solution (23) is modified
because the Eckhaus instability criterion has been changed to
the Benjamin-Feir instability criterion as

Ω2 >
1

2α2 + 3
. (24)

Considering a typical value α = 5, the stationary solution will
be stable only for |Ω| < 0.137, which is narrower than the
region |Ω| < 0.577 with α = 0. The narrowing of stable region
by nonzero α will also be inherited to the evolving solution
and the corresponding stable region. However, the nonzero α
will not deviate a stationary solution from the stable region to
the unstable region thus it is possible to obtain a high quality
stationary solution in an FDML laser using SOA with nonzero
α as gain element when the dispersion is fully compensated
[15].

III. RESULTS AND DISCUSSION

In Section II, we have obtained the analytical solution
and investigated the stability of the solution. In this Section,
we will show how the high frequency fluctuations on the
waveform of FDML lasers are generated. First we will show
the triggering of Eckhaus instability in the simplest case of
a frequency shifted stationary signal. Then the triggering of
Eckhaus instability of a signal with a fixed chirp profile will
be demonstrated. Finally, we explain the evolution of the onset
of instability in a practical FDML laser cavity.
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A. Frequency shifted stationary signal

In the simplest case, where C ′ = 0, Eq. (14) is reduced to

Ū0 =
√

1− Ω̄2
0(t2) exp

[
−iΩ̄0(t2)t1

]
. (25)

Also, Q is simplified to Q(Z) = 2Z
[
1− Ω̄2

0(t2)
]
, and

the stability criterion of the eigenvalue changes to λmax =
3Ω̄2

0(t2)−1 < 0, which is the condition for Eckhaus instability.
Especially when Ω̄0(t2) is a constant, the solution becomes
the stationary solution of Eq. (8). Such stationary solution
can be found in laser cavities modeled by RGLE. A nonzero
relative frequency offset Ω̄0 can be introduced either by a
frequency shifter, or a fast tuning of the spectral filter in the
cavity. The stability of the stationary signal depends on the
offset frequency Ω̄0, which can be divided into three regions,
Ω̄2

0 < 1/3, 1/3 ≤ Ω̄2
0 ≤ 1 and Ω̄2

0 > 1. The frequencies
Ω̄2

0 = 1/3 and Ω̄2
0 = 1 stand for the critical point to trigger

the Eckhaus instability and the threshold frequency for positive
net gain, respectively.

Figure 2 shows the spectra of signals with frequencies
in the three different regions. In Fig. 2(a), the frequency
Ω̄0 = 0.5, which is within the stable region of Ω̄2

0 < 1/3, the
amplitude of the signal is −0.866 dB. The solution is stable.
The sideband noise, which is due to the roundoff error of the
computer, is lower than −200 dB at Z = 50, 000. When Ω̄0

increases to 0.6, which is inside the Eckhaus unstable region
1/3 < Ω̄2

0 < 1, sidebands are generated on both sides of the
signal at Z = 3, 000 as shown in Fig. 2(b). In this region,
although the signal is unstable, the original single frequency
signal decays very slowly until the sidebands grow to relatively
large amounts. Fig. 2(d) shows the spectral evolution under
Eckhaus instability. We observed sidebands, including higher
order sidebands, are excited by the instability at very short
distance. Eventually, the sideband at the low frequency side,
which experiences higher net gain, replaces the original single
frequency signal as the dominant mode. The new signal is
stable as it is in the stable region of Ω̄2

0 < 1/3. In other words,
the original frequency which is in the Eckhaus unstable region
is downshifted by the instability into the stable region. Finally,

Fig. 2. The spectra of the stationary signals after circulating in the cavity
with frequencies in (a) stable region, (b) Eckhaus unstable region and (c) net
loss region. (d) The spectrum dynamics of a stationary signal with Ω̄0 = 0.6,
where Eckhaus instability is triggered. The red arrow indicates the frequency
of the stationary signal.

when Ω̄0 is further increased to Ω̄2
0 > 1, as shown in Fig. 2(c),

the solution defined in Eq. (25) attenuated quickly while new
signal builds up from noise.

B. Periodically chirped signal

In an FDML laser cavity, the cavity dispersion will in-
troduce a time varying periodic chirp to the signal. Before
considering the dynamic chirp caused by the C ′Z term, we
first analyze the effect of a periodic chirp added to the signal.
We consider a signal with a stationary sinusoidal chirp profile
Ω̄0(t2) = Ω̄c − Ω̄m × cos(2πt2) in a cavity with C ′ = 0,
where Ω̄c = 0.4 and Ω̄m = 0.2 are the center and amplitude
of the frequency modulation, respectively. Since Ω̄0(t2) is
fully within the region of Ω̄2

0 < 1, the solution given by
Eq. (25) is still valid. The satisfaction of stable criterion
λmax = 3Ω̄2

0(t2) − 1 < 0 depends on the value of Ω̄0(t2) at
each individual temporal point t2. Here, the maximum value
of Ω̄2

0(t2) is 0.36(> 1/3). The portion of the signal with
t2 ∈ (0.4235, 0.5765) falls within the region of Ω̄2

0 > 1/3
and therefore is unstable. Figure 3 shows the spectrograms
of the signal at different values of Z. The spectrograms are
generated using a moving Dolph–Chebyshev gating function
applied to the signal in the time domain. At Z = 5, 000,
distinct sidebands have already formed at the extremum points
of the frequency Ω̄0. From Z = 5, 000 to 7, 000, higher
order sidebands are quickly generated and widely spread out
on the temporal waveform. After Z = 7, 000, a new signal
with a frequency lower than the original signal is generated
and becomes dominant. Eventually, the signal in the whole
unstable section is replaced by the newly formed signal in the
stable region and the higher order sidebands are suppressed in
the unstable region. We note that the portions of the signal that
were initially in the stable region remain unaffected throughout
the entire dynamics.

From the evolution of the solution (25) shown in Figs. 2–3,
it is clear that the Eckhaus instability plays a vital role in the
dynamics of the signal with either a single frequency offset or

Fig. 3. The spectrograms of the signal with frequency Ω̄0(t2) = 0.4 −
0.2 cos(2πt2) at various values of Z. The top figure shows the entire cavity
spectrogram of the signal at Z = 0. The dashed lines in the maps indicate
the boundaries to trigger Eckhaus instability. The bottom figures show the
evolution of the spectrogram in the region of 0.4 < t2 < 0.6 from Z = 0
to 50,000.
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Fig. 4. (a) The intensity evolution of signals propagation with different C′.
(b) The maximum eigenvalue λmax of the signals in (a).

a fixed frequency modulation. The portion of the signal with
frequencies in the region Ω̄2

0 > 1/3 becomes unstable and
replaced by the generation of a new signal in the stable region.
But in a realistic FDML laser, the chirp profile of the signal
is not fixed but varying continuously along the propagation,
because of a nonzero C ′, with the system dynamics given
by Eq. (14). From Ωi = C ′Z − Ω̄0, if C ′ is nonzero, Ωi
will monotonically increase or decrease with the increase of
Z. Such monotonic variation of Ωi will inevitably push the
signal to unstable region.

Figure 4 shows the evolutions of the intensity of Eq. (14)
and λmax described by Eq. (21). The intensity and λmax
are plotted against the instantaneous frequency Ωi since it is
proportional to Z when C ′ 6= 0, and identical to Ω̄0 when
C ′ = 0. For the curves with C ′ 6= 0, the initial signal at
Z = 0 are assumed to have Ω̄0 = 0 and I0 = 1. The
dashed curves with C ′ = 0 are for the solution (25). Figure
4(a) shows that for a given value of Ωi, the intensity of the
signal will increase with the increasing value of C ′ especially
for higher values of Ωi. When C ′ < 0.01, the difference
between the dynamically varying chirped solution and the
fixed chirped solution indicated by the dashed curve is very
small especially in the stable region. In contrast, the intensity
curves for higher values of C ′ deviate significantly from the
dashed curve. Besides the deviation of the intensity trace,
the stability condition is also affected by the nonzero C ′, as
shown in Fig. 4(b). When C ′ increases from 0 to 2, the critical
point of the instability has been pushed from Ωi = 0.577 to
Ωi = 0.677. When C ′ < 0.01, the critical point is almost fixed
to 0.577 which agrees with the Eckhaus instability criterion.

C. Dynamics in practical laser cavities

To investigate the signal dynamics and the instability in
lasers with harmonically swept filter, we consider the same
FDML laser cavity described in Fig. 1. The distributed gain
coefficient of the cavity is g0 = 2.5 km−1 with a flat gain
profile. The normalized parameters for such a cavity are
U = 25u, Z = 2z, Ω = 12.5ω, t1 = 0.08t, ε = 2.5 × 10−6,
t2 = εt1, and

C(t2) = −1.6× 10−4 ×
[
cos2(2πt2)− 0.8 cos3(2πt2)

]
,

C ′(t2) = 10−4 × 3.2π sin(4πt2) [1− 1.2 cos(2πt2)] ,
(26)

where the maximum value of |C ′| is 0.0019. With these
normalized parameters, the dynamics of the signal are sim-
ulated using Eq. (5). Figures 5 and 6 respectively show the

Fig. 5. The spectrograms of the signal in the FDML laser at Z = 0, 100,
300, 400, 500, 900, 1800, 20000.
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Fig. 6. The waveforms of the signal in the FDML laser at Z = 453, 500,
1800, 20000.

spectrograms and the waveforms captured at different Z values
in the simulation.

We start the simulation of Eq. (5) from a CW signal with
Ω̄0 = 0. During the propagation along Z, the frequency shift
accumulates and continuously pushes part of the spectrogram
trace away from the central line Ω = 0, as shown in Fig. 5. In
the range of Z < 300, the spectrogram trace of the signal
remains smooth because the entire signal stays within the
stable region of Ω2 < 1/3. Once the extremum points of the
spectrogram trace pass the threshold value of Ω2 = 1/3 at
Z ≈ 303, sidebands start to grow in the field just outside
the stable region but it is too weak to be observed in the
early stage. At Z = 400, the sidebands are already visible
on the spectrogram. The sidebands induce oscillations on the
waveform, which is already visible at Z = 453 as shown in
Fig. 6(a). As the section of the signal located in the unstable
region continuously expands, higher order sidebands are also
excited. After further signal evolution, e.g., at Z = 500, the
part of the signals excited the unstable region are replaced
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by the new signal generated in the stable region, as shown in
Figs. 5 and 6(b). At the same time, the new signals growing
in the stable region are also frequency shifted towards the
unstable region by the dispersion induced chirp. Eventually,
the new signals will leave the stable region and experience
its own Eckhaus instability, as shown in Fig. 5 at Z = 900.
This mechanism of new signals generation in the stable region,
frequency shift to the unstable region because of the dispersion
effect, and repetition of triggering Eckhaus instability, severely
distorts the laser signal. Figures 5 and 6(c) show the multiple
order folded spectrogram trace and waveform at Z = 1800.
After many cycles inside the cavity, e.g., at Z = 20, 000,
the signal has been folded thousands of times and becomes
very noisy almost covering the entire region. As shown in
the last spectrogram of Fig. 5, most of the signal energy gets
distributed near the two boundaries of the stable region with
the unstable regions, which means the signal experiences a
very high loss when passing through the filter. The signal
is completely diffused in the spectrogram, which limits the
instantaneous linewidth of the FDML laser. It should be noted
that the direction of frequency shift is determined by the sign
of C ′. Thus the signals with different signs of C ′ cluster on
different sides of the filter.

D. Discussion

From the simulation results reported above with the analyt-
ical solution of Eq. (5), it is obvious that the frequency shift
caused by the dispersion will continuously push the intracavity
signal into unstable region to trigger the Eckhaus instability
and generate new signals in the stable region. The simulations
results presented in Section III-B clearly show the dynamics
in the triggering of Eckhaus instability and generation of new
signals in the stable region once the part of existing signal are
pushed into the unstable region. The spectrogram evolution
and waveforms in Figs. 5 and 6 show how the repetitive
triggering of Eckhaus instability destroy the existing signal and
introduce the high frequency fluctuations into the waveform.

It should be noted that although we consider only the
dispersion induced chirp in our theoretical model (5), such
frequency shift may also be induced by other factors in the
cavity, such as the jitter of driving signal, thermal or vibration
noise to the filter etc. The nonlinear phase distortion caused
by the linewidth enhancement factor of the SOA modifies
the boundaries of stable region, but will not remove or
qualitatively change the evolution of the signals from stable
to unstable. We emphasize that the focus of this paper is to
delineate the causes of the onset of instability in the laser
cavities with harmonically swept filter. We show that the
nonlinear phase and the finite recovery time of the gain do
not contribute to the triggering of the instability. The complex
cavity dynamics after the onset of instability are governed by
the dispersion, nonlinear gain and nonlinear phase in the cavity
[13], [14], which is not considered in this paper. In applica-
tions, it is paramount to keep the operation of the FDML laser
in the stable region of stationary solutions to obtain highly
coherent output. Currently, such high quality output has only
been demonstrated in a laser cavity with fully compensated

dispersion with dynamic performance monitoring [15], which
agrees with our theoretical analysis that the nonzero dispersion
is the fundamental factor that limits the signal quality.

IV. CONCLUSION

In this paper, we studied the laser cavities with intracavity
harmonically swept filters, which could be an FDML laser that
is currently used for various applications like OCT. With ap-
propriate model reduction and approximations, we found that
the dominant dynamics in the laser cavity can be modeled by
an RGLE with a frequency shifting term, which is due to the
dispersion of the fiber. We derived the analytic solution of the
governing equation and analyzed its stability. We showed that
the cavity dispersion introduces a continuous frequency shift
(C ′) to the signal, which pushes the signal outside the stable
region and trigger the Eckhaus instability. If the continuous
frequency shift is large, the stable region in the frequency
domain will be increased. By considering practical parameter
values for the FDML laser, we numerically demonstrated that
the signal undergoes repeated triggering of Eckhaus instability
in the laser cavities by the endless frequency shifting suffered
by the signal owing to effects like dispersion. Such mechanism
is the root cause of the instability of such laser cavities with
harmonically swept filter and nonzero dispersion.
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