
FlyTrap: A Blockchain-based Proxy for
Authorisation and Audit of MQTT Connections

1st Konrad M. Dryja
Computing Science

University of Aberdeen
Aberdeen, UK.

kdryja@gmail.com

2nd Milan Markovic
Computing Science

University of Aberdeen
Aberdeen, UK.

milan.markovic@abdn.ac.uk

3rd Peter Edwards
Computing Science

University of Aberdeen
Aberdeen, UK.

p.edwards@abdn.ac.uk

Abstract—MQTT brokers have become integral components
of many IoT systems. However, the authorisation mechanisms
defined by the MQTT protocol remain optional which may
result in weak security configurations of MQTT brokers. In
addition, with increasing prevalence of IoT solutions across many
domains, MQTT brokers are used to forward various types of
data including material that may be personal or commercially
sensitive. Such data may be subject to a number of regulations
(e.g. GDPR) which require trusted and auditable reporting that
goes beyond local log files maintained by brokers. In this paper,
we explore the potential of blockchains to facilitate a trusted
and secure support infrastructure for authorisation and audit of
MQTT connections.

Index Terms—Internet of Things, MQTT, Blockchain, Trans-
parency, Security

I. INTRODUCTION

The term Internet of Things (IoT) refers to networks of
devices with various sensing and actuating capabilities ubiqui-
tously deployed in a physical environment and communicating
using the Internet. IoT networks are typically comprised
of a number of heterogeneous technologies, creating unique
security and privacy challenges. In this paper, we focus on the
authorisation and data auditability challenges associated with
MQTT brokers, and we discuss the potential of blockchain
technologies to facilitate such services.

MQTT brokers facilitate data exchange between connected
IoT clients and therefore offer a means to audit and manage
data channels associated with complex IoT infrastructures. For
this reason, such brokers are a potential target of malicious
attacks [1], [2]. The MQTT standard [3] does not impose any
compulsory security or logging restrictions on brokers. If an
MQTT broker is operated with default settings and without
intrusion detection system monitoring, it may be vulnerable to
data leakage through unauthorised topic access, be susceptible
to DoS attacks, and be unable to track malicious clients, or
even to determine the scale of a data breach [2].

With the increasing prevalence of IoT systems, it is also
important that we consider and address the various privacy
challenges that may arise. These challenges are closely related
to the ability of a deployed IoT system to collect or process
personal data. Such systems operating in the EU are subject
to the General Data Protection Regulations (GDPR)1 that

1https://gdpr-info.eu/

imposes various restrictions on how personal data should be
used and secured by systems, and also defines rights for end
users. Compliance with GDPR often necessitates advanced
forms of auditing mechanisms providing the ability to trace the
use and storage of personal data. We argue that MQTT brokers
are an important piece of IoT middleware that is ideally suited
to support such auditing mechanisms.

In this paper, we present an approach that addresses the
challenges outlined above by enhancing MQTT brokers with
an open source Ethereum-based proxy service called FlyTrap.
FlyTrap utilises smart contracts to manage the information
on access permissions of the MQTT clients, to log infor-
mation about events (such as client connections) to support
auditability, and supports monetization of MQTT broker ser-
vices via public blockchains. The remainder of this paper is
structured as follows: section II discusses in more detail our
motivation for the proposed enhancements; section III includes
an overview of background and related work; section IV
describes architecture and implementation details of FlyTrap;
section V reports evaluation results; and sections VI and VII
conclude the paper with discussion of limitations, remaining
open challenges, and future work.

II. MOTIVATION

Our research proposes several enhancements for MQTT
brokers, and we will now discuss the motivation for each of
these in turn.

A. Securing and Geo-restricting MQTT Broker Access

The MQTT standard defines only a simple authorisation
mechanism based on client ID and password fields which may
be included as part of the connect control packet. This enables
the use of a range of password or token based mechanisms
including custom solutions, external systems such as OAuth2,
and mechanisms provided by the operating system [3]. The
recent version of the standard (MQTT 5.0) has introduced op-
tions for additional authentication mechanisms based on chal-
lenge/response flows using the new AUTH packets3. However,
support for client authorisations by broker implementations

2https://tools.ietf.org/html/rfc6749
3https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-

os.html# Enhanced authentication

remains optional. Users deploying MQTT brokers should have
access to unobtrusive authorisation frameworks for securing
access to the broker, without being constrained by a specific
broker implementation of optional features. In addition, in
cases where sensitive (e.g. financial or personal) data are being
handled by the broker, regulations or internal business policies
may apply. For example, personal data originating in the EU
would be protected by the GDPR, and as a consequence may
be excluded from further processing (i.e. consumption by bro-
ker’s clients) outside the EU. To support such restrictions, an
authorisation framework should be capable of geo-restricting
access to the broker.

B. Data Traceability and Transparency

MQTT broker implementations offer a variety of logging
mechanisms. For example, Mosquitto4 allows connection, sub-
scription and message data to be saved to disk5. Such infor-
mation can help support fault detection and debugging, and
also enables reconstruction of provenance of data use. Being
able to track data forwarding is important for determining the
scale of data leaks, or to identify services that had access to
messages containing personal data. The latter is particularly
relevant in the context of the GDPR’s right to be forgotten6

that mandates personal data processors to delete all personal
data relating to a particular individual if this is requested. To
improve trust in such logs, we propose that these should be
stored transparently using immutable storage mechanisms such
as blockchains that allow for both public and permissioned
access (i.e., using private blockchain networks) to audit the
logging data.

III. BACKGROUND & RELATED WORK

A. The MQTT Protocol

The MQTT protocol (currently version 5.0) is an OASIS
standard [3] publish/subscribe messaging transport protocol
for client-server communication. Due to its small transport
overhead, MQTT is a popular protocol used in IoT infras-
tructures and is currently supported by popular commercial
products such as Azure IoT Hub [4] and AWS IoT [5]. The
protocol is typically run over TCP/IP networks with three
basic message delivery quality assurances: message delivered
at most once (QoS 0); at least once (QoS 1); and exactly once
(QoS 2). The protocol does not impose any restrictions on the
structure of the message payload. The communication between
clients is managed by the MQTT broker which manages a list
of topics through which clients (e.g., IoT devices) can either
send (i.e., publish) or receive (i.e., subscribe) arbitrary types of
data. The MQTT protocol defines a series of control packets
which direct the interactions between the broker and clients.
Figure 1 illustrates a basic message workflow between the
MQTT broker, a publisher sending data to a topic, and a topic
subscriber receiving the data.

4https://mosquitto.org
5https://mosquitto.org/man/mosquitto-conf-5.html
6https://gdpr-info.eu/issues/right-to-be-forgotten/

Publisher MQTT broker Subscriber
Connect request

Connect acknowledgment

Publish to topic “/test”

Connect request
Connect acknowledgment
Subscribe for topic “/test”

Subscribe acknowledgment

Publish to topic “/test”

Fig. 1. An overview of a basic message workflow between the MQTT broker,
publisher, and subscriber.

B. Ethereum

A blockchain network is a type of distributed ledger
technology that provides immutable trusted data storage of
events/transactions based on cryptographic proofs and was
initially popularised by the online crypto currency market
[6]. Ethereum7 refers to the technology used by the popular
public blockchain network of the same name and offers
a Turing-complete scripting language for creating arbitrary
smart-contracts. Ethereum was the first and most successful
blockchain technology that popularised creation of decen-
tralised applications (Dapps) built on such contracts [7]. While
other blockchain technologies such as Hyperledger8 also sup-
port smart contracts, we have chosen to work with Ethereum
due to its widespread popularity and maturity. Smart contracts
are programs that can execute on the network and define,
for example, entities that can access the functionalities of a
particular Dapp, associated costs, event information logged
by the network, etc. This technology is critical to support
utilisation of public blockchain networks in contexts that go
beyond the cryptocurency markets.

In addition, Ethereum can be deployed with a Proof-of-
Authority [8] consensus algorithm. This approach offers no
rewards for adding new blocks to the chain, so it is not used
in public blockchains. Such an approach is more suitable for
private permissioned consortia networks with different busi-
ness entities acting as network nodes similar to the networks
supported by Hyperledger. This extends the applicability of
Ethereum-based solutions to domains such as closed supply
chains, which would require private networks to protect com-
mercially sensitive data and to shield the solution from the
volatility of prices associated with operations on the public
blockchain network (see Section VI for further discussion).

C. Security Frameworks for MQTT

To date, various approaches to enhance MQTT security have
been proposed in the literature [9]–[11]. For example, Refaey
et al. [9] propose a single packet authorisation approach based
on the software defined perimeter (SDP) framework9. The
SDP layer shields the MQTT broker from interaction with
unauthorised or malicious clients, and is demonstrated to be
effective against DoS attacks. Shin et al. [10] discuss a security
framework incorporating the AugPAKE protocol for securing
communication between clients and the broker without the

7https://ethereum.org/
8https://www.hyperledger.org/
9https://cloudsecurityalliance.org/artifacts/sdp-architecture-guide-v2/

need for certificate validation and certificate revocation checks.
More recently, Buccafurri et al. [11] propose the use of
Ethereum blockchain and smart contracts as a trusted third
party for validation of one-time-passwords (OTP) used to
authenticate MQTT clients. They argue that the approach
is suitable for unencrypted communication channels and the
MQTT broker is assumed to bear the costs of the smart
contract operation.

D. Transparency in IoT

The concept of transparency in the context of the IoT
is closely linked to privacy of users affected by such tech-
nologies. Privacy may be impacted if the collected IoT data
include personal information or if such details can be inferred
by the exposure of behaviour patterns, or by combining a
variety of data sources [12] [13]. In our previous work, we
highlighted the lack of machine-understandable transparency
in IoT systems [14] and more specifically MQTT brokers
[15], [16]. We argued that such transparency is necessary to
automate audit of IoT systems - a key element in facilitating
regulatory compliance and user’s trust in such systems.

Recently, blockchains have been identified as a suitable
technology for enhancing transparency of IoT systems by
recording privacy-related information, for example, user con-
sent [17], [18]. They have been also considered as means
to support other aspects of IoT security. For example, Novo
proposes a blockchain-based access management platform for
IoT devices that addresses the scalability challenges faced by
centralized solutions [19]. Gatollin et al. present a transparent
key management framework for device authentication utilising
public blockchains to ensure auditability of client authentica-
tion events over time [20].

E. Research Gap

A common drawback among state of the art solutions that
address the authorisation of MQTT client connections is the
requirement to adopt additional security layers (and modified
middleware components) - something that we believe may
hinder future adoption. In contrast, FlyTrap is designed to
seamlessly integrate with message brokers based on the well
established MQTT standard without further extensions to the
broker’s implementation. Moreover, in the current state of the
art security and privacy of MQTT brokers tends to be con-
sidered in isolation. We argue that these two challenges share
similarities such as the requirement for auditable transparent
access management to topics registered by the broker. We
therefore considered both of these challenges during the design
of FlyTrap.

IV. FlyTrap ARCHITECTURE & IMPLEMENTATION

A. Architecture Overview

FlyTrap is designed as a proxy service that enhances
the standard MQTT operations with Ethereum-based access
control and topic management as well as tools for additional
logging and auditing. The FlyTrap is assumed to be deployed
alongside an MQTT broker, where the service is acting as

a secure proxy intercepting all communications between the
clients and the broker (both TCP and TLS connections are
supported). All other clients then interact with the MQTT
broker via the FlyTrap proxy service, with client identities
handled by the Ethereum blockchain.

FlyTrap

MQTT Broker

Regulator

Auditor

Ethereum Node

MQTT
Client IoT

Lightbulb
Consumer

MQTT
Client

Consumer
Layer

Broker
Layer

Web
Interface

ReadLogs

Presentation Layer

Blockchain Layer

Blockchain
CLI

M
Q

TT R
equest

M
Q

TT R
esponse

Veri
fy

Acc
es

s

Req
ue

st

MQTT
 R

eq
ue

st
+

Sign
atu

re
MQTT

 R
es

po
ns

e

MQTT Request

+Signature

MQTT Response

Read

Smart Contract

Rea
d

Smart
 C

on
tra

ct

Fig. 2. FlyTrap high-level architecture overview.

Figure 2 illustrates the four-tier architecture of FlyTrap. The
Consumer Layer is responsible for interacting with consumer
end-devices (i.e. MQTT clients) via MQTT v5.0 compliant
TCP/TLS packets. The Broker Layer is responsible for fa-
cilitating communication (e.g., forwarding authorised MQTT
messages) between FlyTrap and any MQTT v5.0 compliant
message broker. The Blockchain Layer manages communi-
cation with the Ethereum node by creating, reading, and
modifying smart contracts. The Presentation Layer contains
a set of tools for accessing and visualising information stored
on the blockchain and thus enabling the audit of the broker’s
set up (e.g., list of allowed topics and associated restrictions)
and its data forwarding events.

The core of the FlyTrap framework has been implemented
using Golang10 (v1.14), the interaction with the Ethereum
smart contracts is handled using Solidity11 (v0.6.6) and the
web-based user front end has been implemented using a
standard combination of HTML5, CSS3 and JavaScript. The
framework is available as an opensource project hosted on
GITHUB12. The remainder of this section describes in more
detail the individual layers of the FlyTrap framework and
provides examples of its use.

B. Consumer Layer

This layer handles the connection requests and forwards all
authorised PUBLISH/SUBSCRIBE messages. To communi-
cate with FlyTrap, an MQTT client has to provide additional
authorisation values as part of the MQTT packet. These are
provided as part of user properties [3] which were introduced
in MQTT v5.0 and allow clients to include key-value pairs

10https://golang.org/
11https://solidity.readthedocs.io/en/latest/
12https://github.com/kdryja/FlyTrap

in the MQTT packets. FlyTrap expects two custom properties
set as part of the CONNECT message, plain-text public key
and public key signed with the private-key (see Figure 3). A
client has to be able to produce the required signature itself
or in case of resource constrained devices has access to pre-
computed signatures.

Public Key

Private Key

Client

Hashing
Algorithm

Signing
Algorithm

Hashed
Public Key

User Properties:
{"sig": $signature,

"pub": $public_key}

MQTT CONNECT Packet

$signature

$public_key

Fig. 3. Client signing public key and attaching required values to CONNECT
message as user properties.

FlyTrap utilises Elliptic Curve Digital Signature [21] and
Keccak-256 hashing algorithms to process the public keys and
signatures (see Figure 4). The public key has exactly 160 bits
and is also used as an addresses on the Ethereum blockchain
[22].

FlyTrap

Verification
Algorithm

User Properties:
{"sig": $signature,

"pub": $public_key}

MQTT CONNECT Packet

$signature

$signature verified?
Y/N

Hashed
$sig_pubkey

Hashing
Algorithm

$public_key

(Hashed $sig_pubkey ==
Hashed $public_key)

AND
($signature verified == Y)

END

User Verified?
Y/NHashed

$public_key

Fig. 4. FlyTrap verifying a signature.

C. Broker Layer

This layer handles communication between FlyTrap and the
MQTT broker (e.g. Mosquitto). To maximise performance,
FlyTrap and the broker should be hosted on the same machine
or at least the same network, to minimise the latency of
TCP/TLS connections between the broker and the proxy. The
broker layer is bidirectional - i.e. it forwards the authorised
MQTT packets from the client to the broker and also all
packets from the broker to the client. The layer handles each
client connection through a separate port.

D. Blockchain Layer

Each Flytrap instance requires a smart contract deployed on
the Ethereum network. The smart contract is specified using
Solidity. FlyTrap’s smart contract should be configured by
the organisation operating the FlyTrap instance to associate
the contract with the organisation’s Ethereum private key.
Depending on the contract configuration, FlyTrap provides
an opportunity to monetise the operations supported by the
MQTT broker. For example, the topic owner can specify
additional costs associated with joining topics as publishers or
subscribers (i.e. adding Ethereum public keys) to the contract.
Any person wishing to join the topic then pays the required fee

which will be transferred to the topic owner (after deduction
of the cost of the transaction).

FlyTrap’s smart contract contains chain code capable of
verifying connecting clients and relevant data structures for
managing topics and recording events. A variable topic maps
string values representing the names of the topics to a Topic
structure capturing all the required metadata used to mange
the topic. This includes a flag to indicate whether the topic
is sensitive, the topic name, owner, a country code detailing
access locations for geo-restricted topics, fees for publishing
and subscribing, and a list of publishers and subscribers (see
Figure 5).

SmartContract

+ topics: mapping(string => Topic)
+ owner: address
+ addTopicCost: int

contains

<<struct>>
Topic

+ isValue: bool
+ sensitive: bool
+ name: string
+ addPubCost: int
+ addSubCost: int
+ owner: address
+ country: bytes2
+ publishers: mapping(address=>bool)
+ subscribers: mapping(address=>bool)

Fig. 5. Topic structure stored on blockchain.

FlyTrap also utilises Event, a structure used in Solidity,
which attaches itself to the transaction log. This makes it pos-
sible to append information such as a user-specified reason or
timestamps to all smart contract operations. Event information
is encoded in Application Binary Interface (ABI)13 JSON and
sent along with the transaction. Figure 6 illustrates the Event
structure used in FlyTrap.

<<event>>
ACLChange

+ source: address
+ target: address
+ action: ActionPerformed
+ name: string
+ reason: string
+ timestamp: int

<<enumeration>>
ActionPerformed

AddTopic,
AddPub,
AddSub,
RevokePub,
RevokeSub,
WrongCountry,
Banned,
Summary

Fig. 6. Event structure as stored in transaction log.

FlyTrap also supports enhanced logging for topics marked
as sensitive. For each sensitive topic FlyTrap maintains an in-
memory list containing Ethereum public keys of all clients
that posted or received data, which is periodically saved on
the blockchain according to the reporting frequency settings
set by the user. For example, if the reporting frequency is set
at 30 minutes and the system is started at 12:00, then client A
publishes to topic X at 12:05, and client B publishes to topic
X at 12:15, finally, at 12:30 a report would be generated and
placed on the blockchain which would signify that both client
A and client B published to topic X between 12:00 and 12:30.

13Encoding type used in Solidity: https://solidity.readthedocs.io/en/latest/abi-
spec.html

The aggregated reporting feature was introduced due to
a specific design characteristic of the blockchain network;
every transaction placed on a blockchain with the Proof-of-
Work consensus algorithm has an embedded gas price14. The
owner of the system would need to either accept the increased
costs associated with more detailed reporting or a decreased
reporting frequency.

To improve the latency of information retrieval from the
network and to further reduce the price of blockchain op-
erations, FlyTrap supports caching mechanisms for some of
its operations. This includes an in-memory map with mutex
lock (to avoid race conditions between different goroutines),
which stores information for repeated requests (e.g., client
connections).

E. Presentation Layer

FlyTrap provides a simple Web based user interface for
viewing the data stored on the blockchain network. The Web
app only supports read operations over the blockchain which
are free and therefore do not require an Ethereum wallet.

The user interface allows various activities performed on
the smart contract to be managed, such as addition of autho-
rised publishers to a topic; it also provides reports on failed
connection attempts, such as connections from a disallowed
country. The tool also allows topics linked to specific clients
to be identified by their public Ethereum keys, and aggregated
reports to be generated based on user-defined time windows
(as discussed in the previous section).

Since the blockchain follows the design of a linked-list, it
is not possible to look up a transaction from a specific time
directly. Instead, look up of all elements is required resulting in
the worst case complexity of O(n), where n is the number of
transactions in the smart contract. To improve performance, the
Web app maintains in-memory track of transaction hashes in
5-day intervals15, updating as further requests are performed.

F. Example Authorisation Workflows

Figure 7 illustrates an example workfow of a client success-
fully publishing a message under a specific topic. The diagram
illustrates an ordered set of steps that are performed by the
client, FlyTrap instance, MQTT broker and the blockchain
node to successfully publish a message.

As outlined above, a number of components including the
FlyTrap client, FlyTrap proxy, MQTT broker and the Ethereum
blockchain node must interact in order to publish a message.
The list below provides a detailed description of the publishing
workflow where each step is annotated with either BL -
Blockchain Layer, CL - Consumer Layer or ML - MQTT
Broker Layer to indicate the layer in which this step takes
places.

0) Marked as optional since each client can accept a
pre-computed signature, which can be loaded onto the

14Gas is a unit of work performed on Ethereum. The more complex the
operation, the more gas is required, and thus more ETH currency is needed.

15This may be changed according to specific organisational needs.

FlyTrap

MQTT Broker

Consumer
MQTT
Client

Blockchain
CLI

0. (Optional) Calculate Signature using
Private/Public key pair

1. Send CONNECT TCP packet with
Signature attached

2. Verify Signature is present (and valid)
and IP has not been blocked. Send back

CONNACK

3. Send PUBLISH packet, with
data to publish and requested

topic

4. Given Topic and Public key,
verify if key can publish to the topic

5. Forward PUBLISH
packet to the broker

6. Broker replies
with PUBACK

7. Proxy PUBACK
back to the client.

Fig. 7. Example of a successful workflow publishing a message on the broker
through FlyTrap.

device; this can be helpful for situations where there is
not enough computational power for calculations. (CL)

1) Client sends CONNECT packet, including signature +
public key in the optional fields of MQTT message.
(CL)

2) FlyTrap extracts the signature from the optional field and
verifies its integrity. It also checks if the client has not
been attempting many unsuccessful connections. Finally,
FlyTrap responds with CONNACK, signalling to the
client that it may now submit relevant payload packets.
If the integrity check has failed, CONNACK would also
have a flipped flag indicating rejected connection and
cease further communication. (CL)

3) Client now forwards the relevant PUB-
LISH/SUBSCRIBE packet to FlyTrap (as it still
believes that it is a regular MQTT broker). (CL)

4) FlyTrap extracts the requested topic from the MQTT
packet and communicates with the blockchain, present-
ing Public Key and requested topic to verify whether
data can be accessed. For this example, the access check
was successful. (BL)

5) FlyTrap proxies (unchanged) PUBLISH packet to the
actual MQTT broker. (ML)

6) MQTT broker now responds with PUBACK, indicating
successful PUBLISH. (ML)

7) Finally, FlyTrap proxies the same PUBACK packet
back to the initial client to let them know that the
operation was successful - and gracefully terminates the
connection. (CL)

To contrast the successful message publishing workflow we
now describe the steps of a failed publish workflow (also

illustrated in Figure 8).

FlyTrap

Consumer
MQTT
Client

Blockchain
CLI

0. (Optional) Calculate Signature using
Private/Public key pair

1. Send CONNECT TCP packet with
Signature attached

2. Verify Signature is present (and valid)
and IP has not been blocked. Send back

CONNACK

3. Send PUBLISH packet, with
data to publish and requested

topic

4. Given Topic and Public key,
verify if key can publish to the topic

6. Respond with PUBACK, denying
access and closing the connection

5. Check has failed, publishing is
not allowed for the given pubkey

8. (Optional) Log the failed access
attempt as a persistent transaction

7. (Optional) Place the offending IP
in a blacklist, forbidding further

connections for the next 5 minutes

Fig. 8. Example of a workflow failing to publish a message on the broker
through FlyTrap

0-3) Same as in Figure 7.
4-5) Having verified the authenticity of the Public Key, Fly-

Trap attempts to verify with the smart contract whether
the client can access the topic. As the response from
the blockchain is negative, the client is not allowed to
publish on the requested topic. (BL)

5) FlyTrap sends PUBACK back to the client, setting
reason code16 to ”Not authorised”, at the same time
terminating the connection with the client. (CL)

6) (optional) The framework uses a cache of previous con-
nections to check if the originating IP has not exceeded
the maximum number of allowed attempts. If it has, the
IP address is placed on a blacklist, and every subsequent
connection is then denied for the specified time. In this
example, that is 5 minutes. (CL)

7) (optional) If the client is banned, FlyTrap registers a
new transaction on the blockchain to persistently log
this event to check potential attack attempts or generate
reports. (BL)

V. EVALUATION

The FlyTrap prototype was evaluated based on the follow-
ing criteria: its ability to capture logging information on a
blockchain network as set out in our objectives; the cost of
operation on a public Ethereum network; and its impact on
MQTT broker performance.

A. Setup

The experiments were performed on a single Ubuntu 16.04.6
LTS virtual server instance with the following allocated re-
sources: four core Intel Xeon CPU E5-2630 @ 2.30GHz;
70 GB RAM, 15 MB L3 Cache. The experimental Ethereum

16https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-
os.html# Toc3901124

network was set up using Ganache17. The network was started
with an account owning 100 ETH coins. An example smart
contract was created containing a test topic and lists of allowed
publishers and subscribers.

B. Cost of Operation

Operation

G
as

U
S

D

0

500000

1000000

1500000

2000000

2500000

$0.0

$0.5

$1.0

$1.5

$2.0

$2.5

Contract
Create

Topic
Create

Add
Publisher

Add
Subscriber

Revoke
Subscriber

Revoke
Publisher

Gas Used Equivalent in USD

Fig. 9. Cost comparison of various operations on the blockchain for April
2020 (1 ETH = $182.29 and 1 Gas = 0.0000000054 ETH)..

Operation

G
as

U
S

D

0

500000

1000000

1500000

2000000

2500000

$0

$1

$2

$3

$4

$5

Contract
Create

Topic
Create

Add
Publisher

Add
Subscriber

Revoke
Subscriber

Revoke
Publisher

Gas Used Equivalent in USD

Fig. 10. Cost comparison of various operations on the blockchain for
September 2021 (1 ETH = $3817.20 and 1 Gas = 0.00000026 ETH).

Six operations supported by FlyTrap were performed to
extract their costs in Gas, which were then converted to USD.
As illustrated by Figures 9 and 10 costs were calculated at
specific times in 2020 and 2021. The results demonstrate
how the extreme volatility of cryptocurrency values could
impact on operational costs associated with a solution such as
FlyTrap if operated on a public network. The most expensive
operation is the creation of the smart contract, however,
this operation is only performed once. All other subsequent
operations modifying the state of the contract cost significantly
less. It should also be noted that Figures 9 and 10 illustrate
baseline costs that would be incurred to operate FlyTrap on
a public Ethereum network at the time of each experiment.

17https://www.trufflesuite.com/ganache

These would increase further if the owner of the smart contract
wished to add a profit margin to individual operations.

C. FlyTrap Performance

We focus now on the framework’s influence on latency of
MQTT packet transmissions and its scalability for concurrent
client connections.

1) Packet Latency: This experiment evaluated the latency
of MQTT packet transmissions by comparing three different
configurations: a baseline (standard) MQTT broker; FlyTrap;
and FlyTrap with caching functionality enabled. The latency
was measured for three MQTT packets, namely, CONNECT,
SUBSCRIBE, and PUBLISH. Time was observed from the
point when a packet was sent by the client until a corre-
sponding ACK packet was received back from the MQTT
broker. As no caching occurs during the CONNECT stage,
the caching functionality does not influence transmission of
CONNECT packets. Both plain TCP and TLS connections
were evaluated (see Figure 11). For each configuration 105
transmissions were executed, with the first five being discarded
as warm up measurements.

Results indicate that FlyTrap increases the latency
for CONNECT, SUBSCRIBE, and PUBLISH
packets by 53.73%, 61.92%, 62.67% for TLS and by
18.13%, 43.30%, 31.58% for plain TCP connections
respectively. The caching functionality reduces the increase
for PUBLISH and SUBSCRIBE packets to 23.41%, 15.55%
for TLS and to 18.12%, 22.19% for plain TCP connections
respectively.

2) Scalability: In this experiment, a single PUBLISH
packet was transmitted through FlyTrap with TLS enabled
from 10, 100, 1000, and 10,000 concurrently connected MQTT
clients. Every client sending the PUBLISH packet at the same
time used a separate process, thus ensuring that they did not
interfere with each other. Each client was identified with a
different public key, forcing FlyTrap to perform authorisation
flow. The measured variable includes the time between issuing
the PUBLISH packet and receiving a PUBACK packet back
from the server. We did not observe any impact on the speed
when varying the number of simultaneous client connections
between 10 and 10,000 with the average broker response
time remaining at 0.1 ms. The results therefore suggest that
introduction of the FlyTrap proxy has no impact on the
scalability of the MQTT broker.

VI. LIMITATIONS & FUTURE CHALLENGES

The decentralised nature of public blockchain networks
makes the FlyTrap data layer resilient against hardware fail-
ures and offers 100% up time. However, using a public
blockchain network means that the FlyTrap framework intro-
duces some direct costs for service operators. For example,
repeated failed connection attempts from a client would result
in a persistent log on the blockchain, which is associated with
blockchain costs and is incurred by the broker’s owner. This
creates an opportunity for an attack where an adversary could
attempt to increase costs associated with operating FlyTrap

through malicious connection attempts. Given the nature of
current blockchain currencies it would be also difficult to
predict fees for transactions, which may make apps based on
an open blockchain network unstable.

Identities of individual clients are recorded using their
public Ethereum keys which only provides pseudonymous
protection. Previous research has demonstrated that the degree
of privacy protection offered by the public key mechanisms on
the Bitcoin network may be insufficient and that as a result,
activities of certain users may be observed [23]. Further work
is therefore needed to assess whether exposing interactions of
IoT clients and brokers on a public blockchain network would
lead to potential security or privacy risks.

Public blockchain networks have also been criticised for
their extremely high carbon footprint due to the Proof-of-Work
consensus algorithm used to validate transactions [24]. Such
algorithms are dependent on the use of resources to solve diffi-
cult cryptography puzzles also referred to as mining. Currently,
Ethereum uses the Proof-of-Work consensus algorithm but in
the future the network is anticipated to move towards a more
efficient Proof-of-Stake algorithm which eliminates the need to
run energy inefficient mining operations [25]. Further research
will be needed to better understand the environmental impact
of blockchain-based solutions in the IoT context.

Finally, the approach presented in this paper relies on the
existence of a trusted channel between the broker, FlyTrap,
and clients. To achieve this, FlyTrap supports TLS connec-
tions, however, plain TCP connections are also supported for
scenarios where using TLS is not feasible. It is therefore
possible that man-in-the middle attacks may occur. FlyTrap
would be also ineffective if it is possible to bypass the proxy
and communicate directly with the broker.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we have presented a novel Ethereum-based
proxy service to support authorisation, monitoring and mon-
etisation of MQTT broker client connections. We have demon-
strated the feasibility of this approach via an implementation
and evaluation of the FlyTrap framework.

In future, we aim to evaluate the suitability of other popular
blockchain networks for integration with the FlyTrap frame-
work. We will also seek to evaluate the solution in a real world
deployment scenario (e.g., food supply chain monitoring) to
explore its effectiveness with real users. Finally, as the most
recent versions of popular MQTT Brokers (such as Mosquitto)
have introduced support for webSockets, we will explore how
this would enable us to mitigate the current FlyTrap limit
on maximum concurrent connections, which is the maximum
number of ports on Linux (i.e., 65535).

REFERENCES

[1] S. Andy, B. Rahardjo, and B. Hanindhito, “Attack scenarios and security
analysis of mqtt communication protocol in iot system,” in 2017 4th
International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI), 2017, pp. 1–6.

Fig. 11. A comparison of latency observed for different MQTT packets with and without TLS enabled.

[2] J. J. Anthraper and J. Kotak, “Security, privacy and forensic concern of
mqtt protocol,” in Proceedings of International Conference on Sustain-
able Computing in Science, Technology and Management (SUSCOM),
Amity University Rajasthan, Jaipur-India, 2019.

[3] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “Mqtt
version 5.0,” OASIS Standard, 2019, https://docs.oasis-
open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html# Toc3901000.

[4] S. Klein, IoT Solutions in Microsoft’s Azure IoT Suite, 2017.
[5] S. Bhatt, F. Patwa, and R. Sandhu, “Access control model for aws

internet of things,” in International Conference on Network and System
Security. Springer, 2017, pp. 721–736.

[6] S. Nakamoto et al., “A peer-to-peer electronic cash system,” Bitcoin.–
URL: https://bitcoin. org/bitcoin. pdf, 2008.

[7] V. Buterin, “Ethereum White Paper: A Next Generation Smart
Contract & Decentralized Application Platform,” Etherum,
2014, https://blockchainlab.com/pdf/Ethereum white paper-
a next generation smart contract and decentralized application platform-
vitalik-buterin.pdf.

[8] P. Network, “Proof of authority: consensus model with identity at stake,”
2017.

[9] A. Refaey, A. Sallam, and A. Shami, “On iot applications: a proposed
sdp framework for mqtt,” Electronics Letters, vol. 55, no. 22, pp. 1201–
1203, 2019.

[10] S. Shin, K. Kobara, Chia-Chuan Chuang, and Weicheng Huang, “A secu-
rity framework for mqtt,” in 2016 IEEE Conference on Communications
and Network Security (CNS), 2016, pp. 432–436.

[11] F. Buccafurri, V. De Angelis, and R. Nardone, “Securing MQTT by
blockchain-based otp authentication,” Sensors (Switzerland), 2020.

[12] L. Urquhart, T. Lodge, and A. Crabtree, “Demonstrably doing account-
ability in the internet of things,” International Journal of Law and
Information Technology, vol. 27, no. 1, pp. 1–27, 2018.

[13] S. R. Peppet, “Regulating the internet of things: first steps toward
managing discrimination, privacy, security and consent,” Tex. L. Rev.,
vol. 93, p. 85, 2014.

[14] M. Markovic, D. Garijo, P. Edwards, and W. Vasconcelos, “Semantic
modelling of plans and execution traces for enhancing transparency of iot
systems,” in 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS), 2019, pp. 110–115.

[15] M. Markovic and P. Edwards, “Enhancing transparency of mqtt brokers
for iot applications through provenance streams,” in Proceedings of
the 6th International Workshop on Middleware and Applications for
the Internet of Things, ser. M4IoT ’19. New York, NY, USA:

Association for Computing Machinery, 2019, p. 17–20. [Online].
Available: https://doi.org/10.1145/3366610.3368099

[16] M. Markovic, D. Corsar, W. Asif, P. Edwards, and M. Rajarajan,
“Towards transparency of iot message brokers,” in Provenance and
Annotation of Data and Processes, K. Belhajjame, A. Gehani, and
P. Alper, Eds. Cham: Springer International Publishing, 2018, pp. 200–
203.

[17] K. Rantos, G. Drosatos, K. Demertzis, C. Ilioudis, A. Papanikolaou, and
A. Kritsas, “Advocate: A consent management platform for personal
data processing in the iot using blockchain technology,” in Innovative
Security Solutions for Information Technology and Communications, J.-
L. Lanet and C. Toma, Eds. Cham: Springer International Publishing,
2019, pp. 300–313.

[18] S. Cha, T. Tsai, W. Peng, T. Huang, and T. Hsu, “Privacy-aware and
blockchain connected gateways for users to access legacy iot devices,”
in 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE),
2017, pp. 1–3.

[19] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1184–1195, 2018.

[20] A. Gattolin, C. Rottondi, and G. Verticale, “Blast: Blockchain-assisted
key transparency for device authentication,” in 2018 IEEE 4th Inter-
national Forum on Research and Technology for Society and Industry
(RTSI). IEEE, 2018, pp. 1–6.

[21] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, no. 1, pp. 36–63, 2001.

[22] M. Dameron, “Beigepaper: An ethereum technical specification,” 2017.
[23] F. Reid and M. Harrigan, An Analysis of Anonymity in the Bitcoin

System. New York, NY: Springer New York, 2013, pp. 197–223.
[24] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,”

in 25th IET Irish Signals Systems Conference 2014 and 2014 China-
Ireland International Conference on Information and Communications
Technologies (ISSC 2014/CIICT 2014), 2014, pp. 280–285.

[25] F. Saleh, “Blockchain without waste: Proof-of-stake,” Review
of Financial Studies, Forthcoming, 2020, available at
SSRN:https://ssrn.com/abstract=3183935.

