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Abstract

Micro-Raman spectroscopy on carbonaceous material has been applied to estimate the maximum paleo-

temperatures achieved by the Tectono-metamorphic units that constitute most of the backbone of the 

Internal domain of the Rif orogen in North Morocco. The Internal Rif is composed by the continental deep 

units of the Sebtides, exhumed at the end of the Alpine cycle, overlained by the Variscan Ghomarides. Both 

units are trust above the meta-carbonates of the Dorsale Calcaire. In the norther part of the Rif, the Sebtide 

complex cropping out at the core of the Beni Mezala antiform suffered maximum paleo-temperatures 

derived from Raman parameters typical of greenschists facies, whereas in the flanks of the antiform the gap 

in temperatures between Lower Paleozoic (Silurian and Devonian) and Carboniferous Ghomarides probably 
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reflect the temperatures peaks reached during Eo Variscan and Late Variscan phases. Moreover, our data 

suggest that one of the two analysed units in the Ghomarides always reached higher metamorphic conditions 

during both Variscan cycles. Further to the south, the increase in maximum temperatures towards the 

contact with the Beni-Bousera peridotite reflects an Alpine thermal overprinting, probably linked to slab 

retreat and delamination driven crustal anatexis, accompanied by magma emplacement during the last 

phases of the Alpine orogenesis. 

. 

1. Introduction 

Maximum paleo-temperatures are strictly linked to rocks rheology and geochemical processes that occur at 

depth in different geodynamic settings, from passive margins to subduction systems. Thus, correct 

assessment of maximum paleo-temperatures experienced by rocks is an essential tool to unravel the 

evolution of the thermal structure of the crust during the main phases of an orogenesis. Classical 

metamorphic zones, based on metamorphic reactions and pseudosections, suffer from the superimposition 

of retrograde processes or by the presence/absence of diagnostic minerals that can undermine the accurate 

determination of the peak temperatures. On the other hand, maximum temperatures derived from the 

analyses of carbonaceous material (CM) dispersed in rocks have proven to provide robust and, sometimes, 

more precise data given the irreversible nature of organic matter transformation with temperature increase 

(TEICHMÜLLER, 1986; TAYLOR et alii, 1998, BEYSSAC et alii, 2002; LAHFID et alii, 2010). The most used 

thermal indicators for dispersed organic matter derive from optical analyses (e.g. vitrinite reflectance, color 

alteration indexes; HARTKOPF-FRÖDER et alii, 2015; SPINA et alii, 2018; SORCI et alii, 2020), although, in the 

last decades, an increasing interest raised towards the use of thermal parameters derived from Raman 

spectroscopy. This tool was initially developed for metamorphic temperature higher than about 300°C 

(PASTERIS AND WOPENKA, 1991; BEYSSAC et alii, 2002), but its use has recently been extended to lower 

metamorphic degrees (RAHL et alii, 2005; LAHFID et alii, 2010) and diagenesis (LI, 2007; GUEDES et alii, 2010; 

WILKINS et alii, 2014; LÜNSDORF et alii, 2017; SCHITO et alii, 2017, 2019; SCHMIDT et alii, 2017; HENRY et 

alii, 2018, 2019; SCHITO & CORRADO, 2018). Given the application in a wide range of temperature conditions, 
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Raman spectroscopy on carbonaceous material (RSCM) has become one of the most used geothermometers 

in geological studies to accurately unravel thermal metamorphic gradients (NEGRO et alii, 2006; DELCHINI et 

alii, 2016; DUCOUX et alii, 2019; LAHFID et alii, 2019). 

The selected playground for new Raman studies on metamorphic rocks is the Internal Rif in Northern 

Morocco. This area represents the innermost tectonic domain preserved on-shore of the wider Betic-Rif-Tell 

orogenic chain that developed during the Mesozoic-Cenozoic complex convergence between Africa and 

Eurasia plates forming the westernmost termination of the Mediterranean Alpine orogenic system (LEPRÊTRE 

et alii, 2018; ROYDEN & FACCENNA, 2018). 

The Internal Rif offers a unique opportunity to observe at surface high-grade metamorphic rocks from an 

alpine fossil subduction zone (Sebtide tectonic units) tectonically lying below low-grade metamorphic rocks 

derived from a complex polyphase Variscan history (Ghomaride tectonic units). In detail, the Ghomarides 

and Sebtides represent respectively the upper and lower plates preserved in a metamorphic core complex 

(CHALOUAN et alii, 2008). They are composed by Paleozoic rocks with a partially preserved Mesozoic-

Cenozoic cover and by lower Paleozoic to Triassic deep-crustal mica-schists, migmatites and granulites 

associated with peridotites (Beni Bousera complex), respectively (CHALOUAN et alii, 2008). 

Given its importance in the Alpine orogenic reconstruction in the western Mediterranean, the Sebtides have 

been the subject of several studies aiming at the definition of their P-T deformation history, in particular of 

their deepest units (MARRONE et alii, 2021; SOTO et alii, 1999; MICHARD et alii, 2006; BOOTH-REA et alii, 

2007; ROSSETTI et alii, 2010, 2020; PLATT et alii, 2013; GUEYDAN et alii, 2015; MELCHIORRE et alii, 2017; 

WILLIAMS & PLATT, 2018) . On the other hand, the Variscan metamorphic evolution of the Ghomarides 

complex has been widely  studied by CHALOUAN (1986) and CHALOUAN & MICHARD (1990) with the aim to 

correlate it with the history of similar Variscan terranes in Spain (Betic Cordillera), northern Algeria (Kabylian 

domain) and southern Italy (Calabro-Peloritain arc).  

An accurate study of the maximum paleo-temperatures achieved by Sebtides and Ghomarides in the Internal 

Rif by means of Raman spectroscopic analyses on carbonaceous material has been already developed by 

NEGRO et alii (2006). Nevertheless, using the RCSM method proposed by BEYSSAC et alii (2002), the authors 

did not investigate in detail paleo-temperature distributions in tectonic units that suffered peak 
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metamorphisms lower than 330°C. This led the authors to provide interesting interpretation on the Alpine 

history of the units surrounding the Beni-Bousera and Ronda peridotites but failed to provide useful 

constraints for the low-metamorphic Variscan history of the Ghomarides.   

The present work aims to fulfill this gap providing more accurate Raman paleo-temperature data, in 

particular for the Ghomaride succession and for the organic carbon-poor successions of the Upper Sebtides 

in northern part of the Rif belt. 

2. Geological Setting

Located at the western edge of the West-Mediterranean Alpine systems, the Rif belt corresponds to the 

southern limb of Gibraltar Arc that developed in the framework of Africa-Eurasia collision (DOCHERTY & 

BANDA, 1995; PÉROUSE et alii, 2010; PLATT et alii, 2013; VAN HINSBERGEN et alii, 2014) and is a part of the 

Maghrebides orogenic system (Tell-Rif; DURAND-DELGA, 1980). The Maghrebides resulted from the closure 

of the Maghrebian Tethys and the docking of the Meso-Mediterranean blocks (i.e., Alboran and Kabily 

domains) onto the African margin during the Early Miocene (CHALOUAN & MICHARD, 2004; LEPRÊTRE et alii, 

2018).

The Rif belt is classically divided into three main tectono-stratigraphic domains (FAVRE & STAMPFLI, 1992; 

FRIZON DE LAMOTTE et alii, 2011), namely from north to south and from internal to external portion of the 

chain: (i) Internal or Alboran Domain (MILLIARD, 1959; BOUILLIN, 1986; GARCÍA-DUEÑAS et alii, 1992), (ii) 

Maghrebian Flysch Basin Domain (GUERRERA et alii, 1993, 2005; LEPRÊTRE et alii, 2018; ATOUABAT et alii, 

2020) , and (iii) External Domain (DIDON et alii, 1973; LEBLANC, 1979; MICHARD et alii, 2014; GIMENO-VIVES 

et alii, 2019; GIMENO-VIVES et alii, 2020).  The internal domain, object of this work, is subdivided into three 

tectonic complexes, recognized from bottom to top as: Sebtides complex,  Ghomarides complex  and the 

‘Dorsale Calcaire’ (EL KADIRI et alii, 1992).

The Sebtide Complex represents the structurally deepest unit and it is composed by the Lower Sebtides (Filalì 

and Beni Bousera Units) and Upper Sebtides (Federico Unit). The Beni Bousera consists of a peridotite body, 

with topmost discontinuous slivers of granulites (kinzigites, CHALOUAN et alii, 2008) that emplaced in the 
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crust as a consequence of the Variscan orogen collapse (ROSSETTI et alii, 2020) and was finally exhumed 

during Alpine stages (AZDIMOUSA et alii, 2014). It is separated by the overlying gneisses of the Filalì Unit 

through a ductile shear zone (MICHARD et alii, 2006; CHALOUAN et alii, 2008; ROSSETTI et alii, 2010). The 

Federico Unit in the northern part of the Rif is formed by four thrust imbrications, namely Tzigarine, Boquete 

de Anjera, Beni Mezala 1 and 2 (from here onward BM1 and BM2 respectively), each of them showing the 

same stratigraphy and a general downward increase in metamorphic grade. The uppermost Tizgarine Unit is 

composed by Permian-Triassic red pelites, and Middle-Upper Triassic dolomitic marbles. The Permian-

Triassic successions of Boquete de Anjera, BM1 and BM2  Units are characterized by purple phyllites and dark 

quartz-phyllite respectively, overlain by Triassic marbles on top (BOUYBAOUENE et alii, 1998). Locally in both 

Beni Mezala Units, some Carboniferous-Permian schists occur. 

Lower and upper Sebtides are thought to have experienced metamorphic conditions that reached the 

eclogite facies in the Federico Unit under HP-LT conditions and granulite facies under a higher geothermal 

gradient in Filalì and Beni-Bousera Units (CHALOUAN & MICHARD, 1990; ROSSETTI et alii, 2020), even if 

recent works (RODRÍGUEZ-RUIZ et alii, 2020)  suggested lower metamorphic conditions for the inner BM1 

Unit in the northern sector of the study area. Federico Unit is characterized by pervasive planar and linear 

tectonic fabric with a top-to-the NNW sense of shearing (MICHARD et alii, 2006). 

The Ghomaride complex consists of an Ordovician to Carboniferous succession, uncomformably overlain by  

Triassic red beds and, locally, Liassic limestones and Paleocene-Eocene calcarenites (CALVO et alii, 2001). This 

complex includes four Paleozoic tectonic units that, from the bottom to the top, are the Akaili Unit, the 

Koudiat Tizian Unit and the Beni Hozmar Unit. A fourth unit, Talembote Unit, is a klippe preserved above the 

Dorsale Calcaire in the Oued-Laou area (CHALOUAN & MICHARD, 1990; CHALOUAN et alii, 2008). In the 

different units the Ordovician to Silurian stratigraphy is rather homogeneous, characterized by Ordovician 

phyllites with quartzites and meta-conglomerates and by graptolitic shales and pillow basalts at the top of 

the Silurian section. Devonian sediments consist of distal calcareous flysch in the Akaili Unit and more 

proximal flysch and pelagic limestones in the Koudiat-Tizian and Beni-Hozmar (CHALOUAN, 1986). The 

Ordovician to Devonian succession was subjected to Eo-Variscan metamorphic event deformation 

characterized by NNE trending structures and white mica, chlorite and quartz recrystallization (CHALOUAN 
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& MICHARD, 1990). Visean-Bashkirian greywackes uncomformably onlap, showing NW oriented structures 

and limited recrystallization associated with a late Variscan low grade metamorphic event. Brittle Alpine 

deformation was recorded in the unconformable Triassic red beds that mostly constitute the uppermost 

deposits except for some Jurassic limestones and Upper Eocene conglomerates that locally crop out 

(ZAGHLOUL et alii, 2010). 

Finally, the ‘Dorsale Calcaire’, consists of Triassic-Middle Jurassic carbonate platform deposits, Jurassic-

Cretaceous sediments overlayed by Paleocene-Eocene clays and limestones and by Eocene to Aquitanian 

clastic deposits and olistostromes (EL KADIRI et alii, 1992). It is detached along the Triassic levels, from most 

likely the Ghomarides (DURAND-DELGA & OLIVIER, 1988) or partly from Ghomarides and Sebtides (WILDI, 

1983). The Triassic successions are composed by dolostones, dolomitic breccias and stromatolitic dolostones, 

while during the Jurassic, a transition to a more distal environment is represented by a condensed pelagic 

sedimentation in the entire succession. Eocene deposits composed of arenites, bioclastic limestones and 

chaotic breccias, are separated by an unconformity from the Mesozoic succession, indicative of an uplift in 

early Eocene times (MICHARD & CHALOUAN, 1990; CHALOUAN et alii, 2008). 
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For Review OnlyFigure 1  – Schematic geological map of the South Mediterranean (a) and of the Rif chain in North Morocco (b). 

Schematic cross section from the Alboran Sea to the external zones (c) (modified after; SUTER, 1980; FRIZON DE 

LAMOTTE et alii, 2017; GIMENO-VIVES et alii, 2019; ATOUABAT et alii, 2020). 

3. Sampling areas and Materials

Sixteen samples from the Internal Rif have been collected and analysed from two areas (Fig. 2a): the Beni 

Mezala antiform to the North (Zone 1) and the region between Martil Village and Oued Laou, to the south of 

the town of Tetouan (Zone 2). 

In Zone 1, sampling was performed along a NE-SW transect from the South of Ceuta town to the contact 

between the ‘Dorsale Calcaire’ and the Flysch domain (Fig. 2b) across the Beni Mezala antiform. Five samples 
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were collected in the Federico Units (Figs. 2b and 3a, b) in the core of the antiform and five from Ghomarides 

on both flanks of it (Figs. 2b and 3c, d). Samples from Ghomarides derived from Silurian and Carboniferous 

sections of the Akaili and Beni-Hozmar Units (Table 1).  One sample (Mar 4.1) comes from a Silurian shaly 

horizon in the Beni-Hozmar Unit further to the South, close to the contact with the ‘Dorsale Calcaire’ (Fig. 

2a).  

In Zone 2, samples were collected across a NW-SE oriented transect from Amsa village to Oued-Laou river 

(Fig. 2a and c) covering an area where mainly Ghomarides Akaili and Sebtides Filalì Units crop out. In the 

Ghomarides, one sample comes from Carboniferous pelitic levels of the Akaili Unit cropping out in Ras Mazari 

cape area (close to the North of Amsa village), whereas all the others derive from Devonian to Ordovician 

Ghomarides (Akaili Unit). In this sector of the Septides, sample Mar 20.1 comes from Filalì Unit (Tab. 1). 
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Figure 2 – A. Geological map of Internal Rif with indicated sampling zones (1 and 2) and sampling sites. Redrawn after 

CHALOUAN et alii, 2008.
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Table 1 – Sample distribution from the lowest tectonic units (bottom) to the shallowest (top) with indicated age, 

tectonic unit and coordinates (West Greenwhich and North) of each sampling site.

Complex Sample name Long. Lat. Tectonic Unit Age

MAR_5.1 05° 26' 51" 35° 49' 56" Beni Hozmar Silurian

MAR_4.1 05° 26' 57'' 34° 49' 40'' Beni Hozmar Silurian

MAR_3.1 05° 27' 10" 35° 49' 24" Beni Hozmar Carboniferous

MAR_19.1 05° 02' 20" 35° 23' 59" Akaili Silurian

MAR_18.1 05° 07' 27" 35° 28' 47" Akaili Silurian-Devonian?

MAR_17.1 05° 09' 52" 35° 30' 29" Akaili Devonian

MAR_15.1 05° 12' 24" 35° 32' 02" Akaili Devonian

MAR_14.1 05° 13' 41" 35° 32' 56" Akaili Carboniferous

MAR_10.1 05° 24' 57" 35° 51' 48" Akaili Silurian

MAR_9.1 05° 24' 57" 35° 51' 48" Akaili Carboniferous

GH
O

M
AR

ID
ES

MAR_6.1 05° 21' 57'' 35° 52' 12'' Akaili Silurian

MAR_1.2 05° 22' 27" 35° 52' 8" Tizgarine Permian

MAR_1.1 05° 22' 26" 35° 52' 8" Tizgarine Permian

MAR_12.1 05° 23' 31" 35° 52' 26" Beni Mezala 2 Permian-Triassic

SE
BT

ID
ES

MAR_8.1 05° 22' 50'' 35° 52' 56'' Beni Mezala 1 Permian-Triassic

MAR_20.1 05° 01' 16'' 35° 23' 28'' Filalì Ordovician-Devonian

4. Methods 

TOC (total organic carbon) expresses the percentage of organic carbon weight related to the total weight of 

the analyzed rock. In this work data were acquired using a TOC Elementar model TOC VARIO Select analyzer, 

coupled with an oven (max temperature of 850°C).
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Raman spectroscopic analyses allowed to determine the degree of order of the organic matter and thus 

paleo-temperatures experienced by the rocks during prograde metamorphism (e.g. Raman spectroscopy on 

carbonaceous material geothermometer – RSCM; BEYSSAC et alii, 2002; LAHFID et alii, 2010; LÜNSDORF et 

alii, 2014). 

The Raman spectrum of carbonaceous material consists of two main bands at   ̴1585 cm-1 (the graphite peak, 

G ) and    1350 cm-1 (the disorder peak, D; TUINSTRA & KOENIG, 1970). These bands occur as the result of the 

hybridised atomic orbital configuration of carbon atoms and the relative amount of  sp2 carbon bonds 

(graphite-like, trigonal planar symmetry) bounded by sp3 sites (diamond-like, tetrahedral symmetry; 

ROBERTSON & OREILLY, 1987). The G band is assigned to the E2g symmetry in-plane vibration of the carbon 

atoms in the graphene sheets. On the other hand, the D band has been interpreted either by double resonant 

Raman scattering (A1g-mode of small graphite crystallites; THOMSEN & REICH, 2000) or to ring breathing 

vibration in the graphite sub-unit or polycyclic aromatic compounds (CASTIGLIONI et alii, 2001; DI DONATO 

et alii, 2004; NEGRI et alii, 2004; LÜNSDORF, 2016). Their mutual relationships change with maturity level of 

organic matter (e.g.  temperature; TUINSTRA & KOENIG, 1970) up to the graphitic stage (BEYSSAC et alii, 

2002). The number of bands that composes the carbonaceous material Raman spectrum, decreases with 

increasing ordering (i.e. temperature increase) passing from more than five bands in diagenetic organic 

matter to a single band in pure graphite (Fig. 4; HENRY et alii, 2019 for a complete review).
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Figure 3 Outcrop examples of a) schists from BM 2 Unit; b) black phyllites from Tizgarine Unit; c) Devonian pelites 

from the Ghomarides; d) Carboniferous pelites from the Ghomarides.  

Analyses in this work were performed on petrographic thin sections according to recommendation in 

BEYSSAC et alii (2002) and LÜNSDORF et alii (2017), using a Jobin Yvon micro-Raman LabRam system with a 

Neodymium-Yag laser of 532nm (green laser) as a light source and a CCD detector. Spectra were acquired 

in the first order Raman spectral range (700 to 2300 cm-1). The power of the laser was 40mW and was 

reduced to less than 0.4 mW by optical filters to avoid heating alteration of the organic matter. The 

integration time for each data was of 20 s repeated for three times under a 50x magnification lens (as 

defined by SCHITO et alii, 2017). 

Temperatures were derived according to two different approaches in order to check the comparability 

between the relatively new  method of  LÜNSDORF et alii. (2017)  with the classic fitting approach proposed 

by BEYSSAC et alii. (2002) for high metamorphism or by LAHFID et alii. (2010) for low metamorphism.  The 

automatic method proposed by LÜNSDORF & LÜNSDORF (2016)  and LÜNSDORF et alii (2017)   is designed 
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to offer a comparability of Raman results at different stages of “organic metamorphism”. The method is 

based on the IFORS software that curve-fits Raman spectra of carbonaceous material modelling 

simultaneously the background with a fifth-order polynomial curve and the Raman signal with pseudo-Voight 

bands. The optimization of the curve is an iterative process that adds pseudo-Voight functions (note that the 

number of bands is not imposed a priori) until the best-representation of the baseline-subtracted spectrum 

is reached (LÜNSDORF & LÜNSDORF, 2016; LÜNSDORF et alii, 2017). Among Raman parameters carried out 

from this process, the normalized intensities of the D and G bands (STA-D, STA-G) are used to calculate paleo-

temperature by means of the third-degree polynomial equation proposed by LÜNSDORF et alii (2017). The 

correlation against temperatures provided in LÜNSDORF et alii (2017) is based on a reference series of 26 

samples collected across the central and western Alps in a range comprised between 100 and 700°C.  

RA2 or R2 parameters and related paleo-temperatures, were calculated, depending on the shape of the 

spectra, by means of a four-to-three bands deconvolution as suggested by BEYSSAC et alii (2002) for graphitic 

carbon (Figs. 4b and c) or by a five bands deconvolution proposed by LAHFID et alii (2010) for low-

metamorphic organic matter (Fig. 4a). Bands deconvolution was performed using LabSpec software by 

Horiba. Paleo-temperatures were calculated according to the following equations: 

                                                                                                                                               (1)𝑇 (°𝐶) =  ― 445 × 𝑅2 + 641

                                                                                                                                                             (2)𝑇 (°𝐶) =
𝑅𝐴2 ― 0.27

0.0045
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Figure 4 Examples of Raman spectra and related bands assignment for different temperature intervals in the Internal 

Rif chain. a) Very disordered Raman spectrum from Carboniferous pelites of the Akaili Unit (Gomarides); b) spectrum 

from Silurian shales of the Akaili Unit (Ghomarides); c) spectrum of graphitic carbon from the Filalì Unit (Sebtides). 

5. Results

TOC data in Sebtide samples indicate values between 0.7 and 0.8% except for sample 12.1 from the Beni 

Mezala 2 Unit where TOC is higher than 2%. In the Ghomarides, samples show values ranging between about 

0.6 and 3.9% in the Akaili Unit and between 0.6 and 1.6% in the Beni Hozmar Unit, generally indicating high 

organic carbon content (Tab. 2).
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Between 14 to 35 Raman spectra on organic fragments were acquired for each sample, to obtain a reliable 

temperature estimation (Table 2). High fluorescing spectra with a low signal-to-noise ratio were discarded 

after acquisition during a first qualitative evaluation. 

In zone 1, Raman spectra on organic matter from the BM 2 Unit show a well-developed D band and a strongly 

asymmetric G band due to the presence of a clearly defined D2 band. In the Tizgarine Unit, the G band shows 

lower intensities with respect to the D band and the D2 band shows lower intensities and wavenumber 

position. Such features correlate to paleo-temperatures of approximately 365°C in the BM 2 Unit and 

between 324 and 337°C (according to different approaches, see Tab. 2) in the Tizgarine Unit.

In zone 1, samples 10.1, 6.1 and 9.1 from the Ghomarides show very different spectral features. Spectra in 

sample 10.1 and 6.1 are characterized by two well-developed D and G bands with similar intensities (Fig. 5a), 

whereas in sample 9.1 the G band shows higher intensities with respect to the D band and a shoulder toward 

lower wavenumbers occurs on the D band (and 5c). Such differences, shown in Figs. 5a and c, correspond to 

a drop of more than 100°C between Lower Paleozoic (300-305°C in 10.1 and 296-299°C in 6.1) and 

Carboniferous samples (195-197°C in sample 9.1). A similar interval gap was also observed the Beni-Hozmar 

unit where paleo-temperatures range between 352 and 372°C in the Silurian sample 5.1 and between 285 

and 288 °C in the Carboniferous sample 3.1 (Tab. 2 and Figs. 5b and d). 

In zone 2, the only sample from Filalì unit shows spectra at an advanced stage of graphitization, characterized 

by a narrow G band with higher intensities with respect to the D band corresponding to temperature of 486-

488°C (Fig 4c). Moving toward the NE in the Ghomarides, Raman spectra show a progressive increase of 

structural disorder with the increase of the D band intensity in samples 18.1 and 17.1 and with a broadening 

of both G and D bands in samples 15.1 and 14.1. Raman temperatures indicate a temperature decrease from 

the SW to the NE passing from 442-446°C in sample 19.1, to 340-370°C for samples 18.1 and 17.1 and 246-

304°C at 15.1 and 14.1 sampling sites (Fig. 6, Tab. 2).  
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Figure 5 Differences between Carboniferous and pre- Carboniferous Raman spectra in the Akaili and Beni-Hozmar 

Units.
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Table 2. TOC data and Raman derived temperatures for the analysed samples. * Values in Italic represent R2 ratio 

according to Beyssac et alii, 2002 ; values in bold RA2 ratio according to Lahfid et alii, 2010.

Sample Unit TOC 
(%)

T°C mean
(LÜNSDORF 
et alii, 2014)

std T°C R2/RA2* std 
R2/RA2*

T°C mean
RA2/R2 std T°C n° of 

spectra

Mar 8.1 Beni Mezala 
1 0.4 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Mar 
12.1

Beni Mezala 
2 2 365.21 19.75 0.62 0.03 365.52 14.26 20

Mar 1.1 Tizgarine 0.7 324.62 17.39 0.68 0.01 337.87 6.80 20
Mar 1.2 Tizgarine 0.8 325.64 16.66 0.66 0.04 332.19 10.31 22
Mar 
10.1 Akaili 0.7 298.11 15.39 1.62 0.07 300.91 15.97 32

Mar 9.1 Akaili 0.8 197.00 13.72 0.89 0.13 195.22 29.35 21
Mar 6.1 Akaili 0.4 299.35 21.91 1.60 0.05 296.57 11.13 32
Mar 5.1 Beni Hozmar 0.6 372.24 12.20 0.65 0.03 352.80 12.43 33
Mar 3.1 Beni Hozmar 1.6 285.76 10.95 1.57 0.08 288.57 18.49 27
Mar 4.1 Beni Hozmar 0.4 368.54 15.52 0.64 0.02 356.30 11.01 28
Mar 
14.1 Akaili 1.5 246.55 8.93 1.14 0.14 246.86 30.96 21

Mar 
15.1 Akaili 1.9 295.71 18.98 1.64 0.08 304.79 18.87 35

Mar 
17.1 Akaili 0.7 368.27 9.38 0.65 0.03 380.84 8.02 22

Mar 
18.1 Akaili 3.9 342.46 15.28 0.66 0.03 347.64 11.70 24

Mar 
19.1 Akaili 1.2 442.23 13.16 0.64 0.03 446.34 7.67 22

Mar 
20.1 Filalì 0.7 488.07 5.71 0.36 0.06 486.15 6.67 14

6. Discussion

6.1 RSCM temperatures

The RSCM geothermother is one of the most used methods to assess the peak temperatures reached during 

prograde metamorphism (see HENRY et alii, 2019 for a complete review). It is based on the variation of the 

Raman spectrum of graphitic carbon at increasing temperatures, detected by curve-fit derived parameters 

(PASTERIS & WOPENKA, 1991). Different correlations between Raman parameters and temperatures have 
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been proposed depending on the fitting approach and the metamorphic types and degree (BEYSSAC  et alii, 

2002; AOYA et alii, 2010; LAHFID et alii, 2010; LÜNSDORF et alii, 2017; MORI et alii, 2017; HENRY et alii, 2019; 

LI et alii, 2020). Among them the most used are those of BEYSSAC et alii (2002) and LAHFID et alii (2010), 

based on the R2 and RA2 parameters for high and low-grade metamorphism, respectively. At the highest-

grades, CM spectrum is composed by one band in pure graphite and by four bands at about 330°C (BEYSSAC 

et alii, 2002), while in the interval between 200 and 320°C it can be adequately fitted with five Lorentzian 

bands (LAHFID et alii, 2010). While this fitting approach has been successfully applied in a number of studies 

(BEYSSAC et alii, 2004, 2019; NEGRO et alii, 2006; GALY et alii, 2008; DELCHINI et alii, 2016; COCHELIN et alii, 

2018; LAHFID et alii, 2019, among others) it has been demonstrated that the parameters calculation can be 

strongly influenced by the operator fitting approach (LÜNSDORF et alii, 2014).  For this reason an automatic 

method has been proposed by LÜNSDORF & LÜNSDORF (2016) to provide higher comparability to the RSCM 

geothermometer. 

In this work, the automatic approach of LÜNSDORF & LÜNSDORF (2016) is particularly suitable since many 

samples lie in the paleo-temperature range between 300 and 350°C (Tab. 2). This is the interval where the 

two geothermometers by BEYSSAC et alii (2002) and LAHFID et alii (2010) overlap and the choice of a bad 

fitting approach can lead to paleo-temperatures misinterpretation. Nevertheless, in order to constrain as 

much as possible our thermal data and avoid errors that can derived from the automatic processing of some 

spectra with low signal-to-noise ratio (Fig. 5), the RSCM temperatures derived with the IFORS software have 

been double checked by calculating the R2 or RA2 ratio and derived paleo-temperatures. Results shown in 

Table 2 indicate that maximum differences reached 20°C only in sample 3.1 and that they are lower than 

10°C in most of the dataset. This evidence indicate a general agreement in paleo-temperature results 

considering that the error of the RSCM methods is always comprised between 40-50°C (BEYSSAC et alii, 

2002); LAHFID et alii, 2010; LÜNSDORF & LÜNSDORF, 2016).

The approach based on a comparative between two fitting procedures strengthen the quality of the data 

presented in this work and further confirms the validity of the IFORS software. 
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6.2 Thermal evolution of the Rif and comparison with previous works 

The Rif-Betic orogen is a key area in the Mediterranean puzzle to decipher the western Mediterranean 

geodynamic evolution (ROYDEN & FACCENNA, 2018 for a review) and it offers the opportunity to study both 

exhumed root of the Alpine orogen (e.g. Sebtides) and terranes derived from the fragmented Variscan chain 

(e.g. Ghomarides). 

The metamorphic evolution of the internal units of the Rif-Betic orogen has been the subject of detailed 

studies focused on the outcrops of Beni Mzala antiform and around the Beni Bousera peridotite  

(KORNPROBST, 1974; DURAND-DELGA, 1980; CHALOUAN AND MICHARD, 1990; MICHARD et alii, 2006; 

NEGRO et alii, 2006; CHALOUAN et alii, 2008; PLATT et alii, 2013, MARRONE et alii, 2021).

In the Federico Unit,  cropping out at the core of the Beni Mzala antiform, paleo-temperatures derived from 

the analyses of carbonaceous material were not present in literature given the moderate-to-low TOC content 

(NEGRO et alii., 2006 and Table 2). Despite this, we were able to carry out enough CM spectra whose RSCM 

geothermometer shows values of about 320°C in the Tizgarine Unit and of about 365°C in BM 2 one. Data 

from Tizgarine Unit suggest that it suffered slightly warmer conditions than those calculated by the coockeite-

pyrophillites-phengite association (about 300°C according to BOUYBAOUENE et alii., 1998). On the other 

hand, the average temperature calculated for BM2, even if slightly lower, seem to confirm the minimum 

temperatures of 380°C provided by the presence of relict Mg-Carpholite  estimated by BOUYBAOUENE et alii, 

(1998) rather than those of 450°C calculated by VIDAL et alii (1999) by means of Chl-Cld thermometer. Results 

for the BM2 should be considered only as a first approximation, since we were able to derive Raman 

maximum temperature only on one sample and therefore need to be further validated in the future. 
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Figure 6 Raman-derived temperatures plotted on cross-sections 1 and 2 located in Fig. 1. Redrawn and modified after 

NEGRO et alii, 2006 and CHALOUAN et alii, 2008. Temperature shown in the figure are derived from the IFORS 

software (LÜNSDORF & LÜNSDORF, 2016). For comparison with other RSCM approaches see Table 2 and section 6.1. 

Acronysms: DC – Dorsale Calcaire; BHo – Beni Hozmar; KTi – Koudiat Tiziane; Aka – Akaili; Tiz – Tizgarine; BM2 – Beni 

Mzala; Lws – Lower Sebtides.

In the Ghomarides cropping out on the flanks of the Beni Mezala antiform, NEGRO et alii (2006) already 

provided Raman measurements on four samples from the Akaili Unit and on one sample from Koudiait 

Tiziane unit,  suggesting temperature always below 330°C, as this is the lower calibration limit of the RSCM 

geothermometer based on R2 parameter proposed by BEYSSAC et alii (2002).  This limit can now be overcome 

since new correlations at low metamorphism are now available in literature for low metamorphism (RAHL et 

alii, 2005; LAHFID et alii, 2010; LÜNSDORF et alii, 2017) and  in diagenesis (SCHITO et alii, 2017; 2019;  HENRY 

et alii, 2019) allowing to use the RSCM geothermometers in a variety of geological conditions (MUIRHEAD et 

alii, 2019; KEDAR et alii, 2020; NIRRENGARTEN et alii, 2020). 
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Our data on the Ghomarides in the northern sector of the Rif belt, outline a paleo-temperature jump between 

pre-Carboniferous and Carboniferous successions both in the Akaili and Beni Hozmar units. In detail, the 

maximum temperatures acquired during the Eo-Variscan phases by the pre-Carboniferous rocks are at the 

boundary between anchizone and epizone (about 300°C, FREY et alii, 1987) in the Akaili Unit and in the 

epizone  (about 370°C) in the Beni-Hozmar (Table 2 and Fig. 7).  On the contrary, Visean rocks in the Akaili 

Unit show values typical of deep diagenetic/low anchizone conditions (about 200°C) reached during the late 

Variscan phase, while temperatures in rocks with the same age are about 280°C in the Beni-Hozmar unit. 

Previous data from illite crystallinity (CHALOÜAN & MICHARD, 1985) also indicated lower metamorphism for 

Carboniferous rocks in the Ghomarides, but with no significant differences among their units (CHALOUAN & 

MICHARD, 1985; CHALOUAN & MICHARD, 1990). Thus our data show thus for the first time in detail the 

thermal structure across the Paleozoic Ghomarides, highlighting that the Beni-Hozmar Unit suffered 

metamorphism at higher temperatures with respect to the Akaili Unit both during Eo and Late Varsican 

events. It is particularly interestingly to note that almost the same gap in paleo-temperatures between 80 

and 100°C is recorded above and below the Variscan unconformity among the two units and this could 

suggest that they kept some similar structural relationship during both events. 

As matter of fact very little is known about the Variscan history of the Palezoic units in the Ghomarides or in 

similar units in the Maghrebian chain. In the Malaguides (southern Spain), the pre-Alpine deformation in 

Paleozoic rocks is very poorly constrained (MARTIN-ALGARRA et alii, 2009). HT/LP mineralogical assemblage, 

associated to paleo-temperatures of about 500°C were locally found in the lowermost Ordovician-Silurian 

rocks near the Ronda peridotite (RUIZ-CRUZ & GALÁN, 2002; RUIZ-CRUZ & NOVÁK, 2003; NEGRO et alii, 

2006), while clay mineralogical analyses (ABAD et alii, 2003) and CAI (Conodont Alteration Index) 

determination (MARTIN-ALGARRA et alii, 2009) failed to precisely detect variation at lower paleo-

temperature and the whole Palaeozoic section is generally described to have suffered achizone to epizone 

metamorphism. In both Greater and Lesser Kabylia (northern Algeria), similarly to the Ghomarides, MICHARD 

et alii (2006) describe a Late Devonian Eo-variscan phase that led to greenschists metamorphism and a Late-

Variscan phase responsible for the folding of the unconformable Carboniferous deposits. These domains, 

together with the Calabria-Peloritan arc are thought to share a similar structural position in a western 
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(southwestern?  RAUMER et alii, 2002) sector of the Paleotethys, rather than in the Rheic realm such as other 

Variscan sectors in Iberia and Morocco ( i.e. Balearic, Iberian and Moroccan mesetas), and to suffered similar 

metamorphisms (CHALOUAN & MICHARD, 1990; RAUMER et alii, 2002; MARTIN-ALGARRA et alii, 2009). This 

hypothesis is mainly based on stratigraphic and structural affinities of the Paleozoic successions, even if at 

low metamorphic degree the lack of a more comprehensive dataset hampers a full understanding. The RSCM 

approach proposed in this work has shown to be promising. Thus it could be applied in similar areas and 

provide evidence (or not) of a common metamorphic history of the Variscan terranes in the Mediterranean 

area. 
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Figure 7. Geological map of internal Rif with indicated Raman-derived maximum paleo-temperatures. Temperature 

shown in the figure are derived from the IFORS software (LÜNSDORF & LÜNSDORF, 2016). For comparison with other 

RSCM approaches see Table 2 and section 6.1. 
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In the southern sector (Zone 2), samples were collected along the route from Ras Mazari to Cape Zaouia (Fig. 

7). The main contribution of this work was to unravel paleo-temperatures for the Devonian and 

Carboniferous rocks (samples 15.1 and 14.1) that were previously reported to be lower than 330°C by NEGRÒ 

et alii (2006). New data show a jump in paleo-temperature of about 50°C between Carboniferous and 

Devonian rocks  moving from Ras Mazari to Tamrabete area south of Tetouan town (Fig. 7). This gap is lower 

than that observed in the northern sector for the Akaili unit. Moreover, the observation  that paleo-

temperatures of the pre-Carbonifeous samples are similar, suggest that Carboniferous rocks here 

experienced higher thermal stress probably due to a Late Oligocene (Early Miocene?) thermal event that 

affected the area (see discussion below).

As matter of fact, MICHARD et alii. (2006) showed in this area that K/Ar on white mica isotopic ages tend to 

increase moving from the Ghomaride–Sebtide tectonic contact (Zaouia Fault, 25My) to the Ras Mazari area 

where the apparent ages are of about 183 My. This age distribution, coupled with the increase of Raman 

temperature from Ras Mazari to the Zaouia Fault (Fig. 8 from NEGRÒ et alii, 2006) has been interpreted as a 

thermal event connected to the emplacement of the Beni-Boussera peridotites. Nevertheless, recent works 

recently questioned the hypothesis of “hot” exhumation of the Rif–Betic peridotites during the Alpine 

orogeny  (ROSSETTI et alii, 2020; FARAH et alii, 2021).  By means of geochronological data on the migmatitic 

rocks that form the envelopment of the Beni Bousera peridotite, ROSSETTI et alii, (2020) point out a main 

Hercynian thermal event, associated with intra-crustal emplacement of the peridotite, occurred and was 

followed by cooling and exhumation from deep to shallower crustal conditions. The final stage of exhumation 

is constrained by the authors to the Early Miocene and is coeval with the main stage of the Alboran basin 

back-arc extension. At this time, the westward retreat of the Tethyan subduction caused lithosphere 

delamination and asthenosphere upwelling that led to crustal partial melting and diffuse magmatism as 

outlined by the andalusite-bearing dykes that intruded the Beni Bousera units (ROSSETTI et alii, 2013). All 

these pieces of evidence suggest that the thermal gradient depicted by Raman data in the present work and 

in NEGRÒ et alii (2006), as well as the thermal reset of the K/Ar on white mica isotopic ages (MICHARD et alii, 

2006), related to an Alpine HT metamorphic event that is independent from the peridotite emplacement. 

Given this, our data show some differences with respect to the paleo-temperature pattern provided by 
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NEGRÒ et alii (2006). This can be observed, particularly, in the area between Ras Mazari and R Mekkad, where 

paleo-temperatures estimations differ for more than 100°C (Fig. 7).  Considering that we followed the 

analytical procedure for Raman spectra acquisition by  BEYSSAC et alii (2002), a possible source of error could 

be envisaged in different fitting methods. However, in our case,the paleo-temperatures from R2 shown in 

Tab. 2 show a very good agreement with to those calculated with the IFORS software, strengtening our 

results. The fitting procedure or the user interpretation could in part justify differences observed among 

similar spectra as shown in Fig. 7b (comparison spectra at 442-485°C and 488-508°C), but cannot be held 

responsible for spectra related to samples near Tamkerte, which show very different features. In this case, 

the differences  are due to different heating conditions (Fig. 8b). Working with organic matter, differences in 

thermal maturity (maximum paleo-temperature) can be usually ascribed to the presence of reworked 

material (LACZO & JAMBOR, 1988; LUCCA et alii, 2018; QIN et alii, 2018; BALESTRA et alii, 2019), but this does 

not seem to be the case, since spectra in our samples are very homogeneous. This piece of evidence suggests 

that paleo-temperatures in this sector of the Ghomarides, has higher spread than previously assessed. One 

possible explanation for this spread could be the effect of localized shear/strain (KITAMURA et alii, 2012; 

KUO et alii, 2014, 2017; KEDAR et alii, 2020) that could have locally increased the thermal stress. Moreover, 

as shown by MÜNCH et alii. (2021) in the area near Ceuta town, the internal zone of the Rif chain has been 

dissected by E-W and NNW-SSE normal faults between about 18 an 11 My and this can explain why a regular 

trend of increasing paleo-temperatures from Ras Mazari to Cape Zaouia has not been detected (Fig. 8). 
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Figure 8 a) Raman paleo- temperatures from this work and from NEGRO et alii. (2006), plotted in zone 2 for 

comparison. b) Comparison between Raman spectra and related paleo-temperatures from this work and NEGRO et 

alii. (2006). Spectra on the same row correspond to samples from the same sampling area. Paleo-emperature shown 

in the figure are derived from the IFORS software (LÜNSDORF & LÜNSDORF, 2016). For comparison with other RSCM 

approaches see Table 2 and section 6.1.

Conclusion

In this work we implemented the paleo-thermal database of the Internal Rif in Morocco providing a new set 

of data in the Sebtide and Ghomaride successions through Raman spectroscopy on dispersed organic matter. 

In the upper Sebtides cropping out in the Beni Mezala antiform we show that Tizgarine and BM 2 Units 

experienced maximum paleo-temperature of about 320 and 370°C, respectively. In the same area, data from 

Ghomarides show a temperature jump across the Eo-Variscan unconformity in both Akaili and Beni Hozmar 

Units. Interestingly, our data also indicate higher paleo-temperatures in Beni Hozmar suggesting higher 

metamorphic conditions suffered by this unit. 

In the southern area between Ras Mazari and Cape Zaouia, samples collected from the Akaili Unit show 

increasing paleo-temperatures moving towards the tectonic contact with the Filalì Unit connected with a 

Late Oligocene high temperature metamorphic event and not related to emplacement of the Beni-Bousera 

peridotite.
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Abstract

Micro-Raman spectroscopy on carbonaceous material has been applied to estimate the maximum paleo-

temperatures achieved by the Tectono-metamorphic units that constitute most of the backbone of the 

Internal domain of the Rif orogen in North Morocco. The Internal Rif is composed by the continental deep 

units of the Sebtides, exhumed at the end of the Alpine cycle, overlained by the Variscan Ghomarides. Both 

units are trust above the meta-carbonates of the Dorsale Calcaire. In the norther part of the Rif, the Sebtide 

complex cropping out at the core of the Beni Mezala antiform suffered maximum paleo-temperatures 

derived from Raman parameters typical of greenschists facies, whereas in the flanks of the antiform the gap 

in temperatures between Lower Paleozoic (Silurian and Devonian) and Carboniferous Ghomarides 
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probably reflect the temperatures peaks reached during Eo Variscan and Late Variscan phases. Moreover, 

our data suggest that one of the two analysed units in the Ghomarides always reached higher metamorphic 

conditions during both Variscan cycles. Further to the south, the increase in maximum temperatures 

towards the contact with the Beni-Bousera peridotite reflects an Alpine thermal overprinting, probably 

linked to slab retreat and delamination driven crustal anatexis, accompanied by magma emplacement during 

the last phases of the Alpine orogenesis. 

. 

1. Introduction 

Maximum paleo-temperatures are strictly linked to rocks rheology and geochemical processes that occur at 

depth in different geodynamic settings, from passive margins to subduction systems. Thus, correct 

assessment of maximum paleo-temperatures experienced by rocks is an essential tool to unravel the 

evolution of the thermal structure of the crust during the main phases of an orogenesis. Classical 

metamorphic zones, based on metamorphic reactions and pseudosections, suffer from the superimposition 

of retrograde processes or by the presence/absence of diagnostic minerals that can undermine the accurate 

determination of the peak temperatures. On the other hand, maximum temperatures derived from the 

analyses of carbonaceous material (CM) dispersed in rocks have proven to provide robust and, sometimes, 

more precise data given the irreversible nature of organic matter transformation with temperature increase 

(TEICHMÜLLER, 1986; TAYLOR et alii, 1998, BEYSSAC et alii, 2002; LAHFID et alii, 2010). The most used 

thermal indicators for dispersed organic matter derive from optical analyses (e.g. vitrinite reflectance, color 

alteration indexes; HARTKOPF-FRÖDER et alii, 2015; SPINA et alii, 2018; SORCI et alii, 2020), although, in the 

last decades, an increasing interest raised towards the use of thermal parameters derived from Raman 

spectroscopy. This tool was initially developed for metamorphic temperature higher than about 300°C 

(PASTERIS AND WOPENKA, 1991; BEYSSAC et alii, 2002), but its use has recently been extended to lower 

metamorphic degrees (RAHL et alii, 2005; LAHFID et alii, 2010) and diagenesis (LI, 2007; GUEDES et alii, 2010; 

WILKINS et alii, 2014; LÜNSDORF et alii, 2017; SCHITO et alii, 2017, 2019; SCHMIDT et alii, 2017; HENRY et 

alii, 2018, 2019; SCHITO & CORRADO, 2018). Given the application in a wide range of temperature conditions, 
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Raman spectroscopy on carbonaceous material (RSCM) has become one of the most used geothermometers 

in geological studies to accurately unravel thermal metamorphic gradients (NEGRO et alii, 2006; DELCHINI et 

alii, 2016; DUCOUX et alii, 2019; LAHFID et alii, 2019). 

The selected playground for new Raman studies on metamorphic rocks is the Internal Rif in Northern 

Morocco. This area represents the innermost tectonic domain preserved on-shore of the wider Betic-Rif-Tell 

orogenic chain that developed during the Mesozoic-Cenozoic complex convergence between Africa and 

Eurasia plates forming the westernmost termination of the Mediterranean Alpine orogenic system (LEPRÊTRE 

et alii, 2018; ROYDEN & FACCENNA, 2018). 

The Internal Rif offers a unique opportunity to observe at surface high-grade metamorphic rocks from an 

alpine fossil subduction zone (Sebtide tectonic units) tectonically lying below low-grade metamorphic rocks 

derived from a complex polyphase Variscan history (Ghomaride tectonic units). In detail, the Ghomarides 

and Sebtides represent respectively the upper and lower plates preserved in a metamorphic core complex 

(CHALOUAN et alii, 2008). They are composed by Paleozoic rocks with a partially preserved Mesozoic-

Cenozoic cover and by lower Paleozoic to Triassic deep-crustal mica-schists, migmatites and granulites 

associated with peridotites (Beni Bousera complex), respectively (CHALOUAN et alii, 2008). 

Given its importance in the Alpine orogenic reconstruction in the western Mediterranean, the Sebtides have 

been the subject of several studies aiming at the definition of their P-T deformation history, in particular of 

their deepest units (MARRONE et alii, 2021; SOTO et alii, 1999; MICHARD et alii, 2006; BOOTH-REA et alii, 

2007; ROSSETTI et alii, 2010, 2020; PLATT et alii, 2013; GUEYDAN et alii, 2015; MELCHIORRE et alii, 2017; 

WILLIAMS & PLATT, 2018) . On the other hand, the Variscan metamorphic evolution of the Ghomarides 

complex has been widely  studied by CHALOUAN (1986) and CHALOUAN & MICHARD (1990) with the aim to 

correlate it with the history of similar Variscan terranes in Spain (Betic Cordillera), northern Algeria (Kabylian 

domain) and southern Italy (Calabro-Peloritain arc).  

An accurate study of the maximum paleo-temperatures achieved by Sebtides and Ghomarides in the Internal 

Rif by means of Raman spectroscopic analyses on carbonaceous material has been already developed by 

NEGRO et alii (2006). Nevertheless, using the RCSM method proposed by BEYSSAC et alii (2002), the authors 

did not investigate in detail paleo-temperature distributions in tectonic units that suffered peak 
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metamorphisms lower than 330°C. This led the authors to provide interesting interpretation on the Alpine 

history of the units surrounding the Beni-Bousera and Ronda peridotites but failed to provide useful 

constraints for the low-metamorphic Variscan history of the Ghomarides.   

The present work aims to fulfill this gap providing more accurate Raman paleo-temperature data, in 

particular for the Ghomaride succession and for the organic carbon-poor successions of the Upper Sebtides 

in northern part of the Rif belt. 

2. Geological Setting

Located at the western edge of the West-Mediterranean Alpine systems, the Rif belt corresponds to the 

southern limb of Gibraltar Arc that developed in the framework of Africa-Eurasia collision (DOCHERTY & 

BANDA, 1995; PÉROUSE et alii, 2010; PLATT et alii, 2013; VAN HINSBERGEN et alii, 2014) and is a part of the 

Maghrebides orogenic system (Tell-Rif; DURAND-DELGA, 1980). The Maghrebides resulted from the closure 

of the Maghrebian Tethys and the docking of the Meso-Mediterranean blocks (i.e., Alboran and Kabily 

domains) onto the African margin during the Early Miocene (CHALOUAN & MICHARD, 2004; LEPRÊTRE et alii, 

2018).

The Rif belt is classically divided into three main tectono-stratigraphic domains (FAVRE & STAMPFLI, 1992; 

FRIZON DE LAMOTTE et alii, 2011), namely from north to south and from internal to external portion of the 

chain: (i) Internal or Alboran Domain (MILLIARD, 1959; BOUILLIN, 1986; GARCÍA-DUEÑAS et alii, 1992), (ii) 

Maghrebian Flysch Basin Domain (GUERRERA et alii, 1993, 2005; LEPRÊTRE et alii, 2018; ATOUABAT et alii, 

2020) , and (iii) External Domain (DIDON et alii, 1973; LEBLANC, 1979; MICHARD et alii, 2014; GIMENO-VIVES 

et alii, 2019; GIMENO-VIVES et alii, 2020).  The internal domain, object of this work, is subdivided into three 

tectonic complexes, recognized from bottom to top as: Sebtides complex,  Ghomarides complex  and the 

‘Dorsale Calcaire’ (EL KADIRI et alii, 1992).

The Sebtide Complex represents the structurally deepest unit and it is composed by the Lower Sebtides (Filalì 

and Beni Bousera Units) and Upper Sebtides (Federico Unit). The Beni Bousera consists of a peridotite body, 

with topmost discontinuous slivers of granulites (kinzigites, CHALOUAN et alii, 2008) that emplaced in the 
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crust as a consequence of the Variscan orogen collapse (ROSSETTI et alii, 2020) and was finally exhumed 

during Alpine stages (AZDIMOUSA et alii, 2014). It is separated by the overlying gneisses of the Filalì Unit 

through a ductile shear zone (MICHARD et alii, 2006; CHALOUAN et alii, 2008; ROSSETTI et alii, 2010). The 

Federico Unit in the northern part of the Rif is formed by four thrust imbrications, namely Tzigarine, Boquete 

de Anjera, Beni Mezala 1 and 2 (from here onward BM1 and BM2 respectively), each of them showing the 

same stratigraphy and a general downward increase in metamorphic grade. The uppermost Tizgarine Unit is 

composed by Permian-Triassic red pelites, and Middle-Upper Triassic dolomitic marbles. The Permian-

Triassic successions of Boquete de Anjera, BM1 and BM2  Units are characterized by purple phyllites and dark 

quartz-phyllite respectively, overlain by Triassic marbles on top (BOUYBAOUENE et alii, 1998). Locally in both 

Beni Mezala Units, some Carboniferous-Permian schists occur. 

Lower and upper Sebtides are thought to have experienced metamorphic conditions that reached the 

eclogite facies in the Federico Unit under HP-LT conditions and granulite facies under a higher geothermal 

gradient in Filalì and Beni-Bousera Units (CHALOUAN & MICHARD, 1990; ROSSETTI et alii, 2020), even if 

recent works (RODRÍGUEZ-RUIZ et alii, 2020)  suggested lower metamorphic conditions for the inner BM1 

Unit in the northern sector of the study area. Federico Unit is characterized by pervasive planar and linear 

tectonic fabric with a top-to-the NNW sense of shearing (MICHARD et alii, 2006). 

The Ghomaride complex consists of an Ordovician to Carboniferous succession, uncomformably overlain by  

Triassic red beds and, locally, Liassic limestones and Paleocene-Eocene calcarenites (CALVO et alii, 2001). This 

complex includes four Paleozoic tectonic units that, from the bottom to the top, are the Akaili Unit, the 

Koudiat Tizian Unit and the Beni Hozmar Unit. A fourth unit, Talembote Unit, is a klippe preserved above the 

Dorsale Calcaire in the Oued-Laou area (CHALOUAN & MICHARD, 1990; CHALOUAN et alii, 2008). In the 

different units the Ordovician to Silurian stratigraphy is rather homogeneous, characterized by Ordovician 

phyllites with quartzites and meta-conglomerates and by graptolitic shales and pillow basalts at the top of 

the Silurian section. Devonian sediments consist of distal calcareous flysch in the Akaili Unit and more 

proximal flysch and pelagic limestones in the Koudiat-Tizian and Beni-Hozmar (CHALOUAN, 1986). The 

Ordovician to Devonian succession was subjected to Eo-Variscan metamorphic event deformation 

characterized by NNE trending structures and white mica, chlorite and quartz recrystallization (CHALOUAN 
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& MICHARD, 1990). Visean-Bashkirian greywackes uncomformably onlap, showing NW oriented structures 

and limited recrystallization associated with a late Variscan low grade metamorphic event. Brittle Alpine 

deformation was recorded in the unconformable Triassic red beds that mostly constitute the uppermost 

deposits except for some Jurassic limestones and Upper Eocene conglomerates that locally crop out 

(ZAGHLOUL et alii, 2010). 

Finally, the ‘Dorsale Calcaire’, consists of Triassic-Middle Jurassic carbonate platform deposits, Jurassic-

Cretaceous sediments overlayed by Paleocene-Eocene clays and limestones and by Eocene to Aquitanian 

clastic deposits and olistostromes (EL KADIRI et alii, 1992). It is detached along the Triassic levels, from most 

likely the Ghomarides (DURAND-DELGA & OLIVIER, 1988) or partly from Ghomarides and Sebtides (WILDI, 

1983). The Triassic successions are composed by dolostones, dolomitic breccias and stromatolitic dolostones, 

while during the Jurassic, a transition to a more distal environment is represented by a condensed pelagic 

sedimentation in the entire succession. Eocene deposits composed of arenites, bioclastic limestones and 

chaotic breccias, are separated by an unconformity from the Mesozoic succession, indicative of an uplift in 

early Eocene times (MICHARD & CHALOUAN, 1990; CHALOUAN et alii, 2008). 
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For Review OnlyFigure 1  – Schematic geological map of the South Mediterranean (a) and of the Rif chain in North Morocco (b). 

Schematic cross section from the Alboran Sea to the external zones (c) (modified after; SUTER, 1980; FRIZON DE 

LAMOTTE et alii, 2017; GIMENO-VIVES et alii, 2019; ATOUABAT et alii, 2020). 

3. Sampling areas and Materials

Sixteen samples from the Internal Rif have been collected and analysed from two areas (Fig. 2a): the Beni 

Mezala antiform to the North (Zone 1) and the region between Martil Village and Oued Laou, to the south of 

the town of Tetouan (Zone 2). 

In Zone 1, sampling was performed along a NE-SW transect from the South of Ceuta town to the contact 

between the ‘Dorsale Calcaire’ and the Flysch domain (Fig. 2b) across the Beni Mezala antiform. Five samples 
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were collected in the Federico Units (Figs. 2b and 3a, b) in the core of the antiform and five from Ghomarides 

on both flanks of it (Figs. 2b and 3c, d). Samples from Ghomarides derived from Silurian and Carboniferous 

sections of the Akaili and Beni-Hozmar Units (Table 1).  One sample (Mar 4.1) comes from a Silurian shaly 

horizon in the Beni-Hozmar Unit further to the South, close to the contact with the ‘Dorsale Calcaire’ (Fig. 

2a).  

In Zone 2, samples were collected across a NW-SE oriented transect from Amsa village to Oued-Laou river 

(Fig. 2a and c) covering an area where mainly Ghomarides Akaili and Sebtides Filalì Units crop out. In the 

Ghomarides, one sample comes from Carboniferous pelitic levels of the Akaili Unit cropping out in Ras Mazari 

cape area (close to the North of Amsa village), whereas all the others derive from Devonian to Ordovician 

Ghomarides (Akaili Unit). In this sector of the Septides, sample Mar 20.1 comes from Filalì Unit (Tab. 1). 
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Figure 2 – A. Geological map of Internal Rif with indicated sampling zones (1 and 2) and sampling sites. Redrawn after 

CHALOUAN et alii, 2008.
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Table 1 – Sample distribution from the lowest tectonic units (bottom) to the shallowest (top) with indicated age, 

tectonic unit and coordinates (West Greenwhich and North) of each sampling site.

Complex Sample name Long. Lat. Tectonic Unit Age

MAR_5.1 05° 26' 51" 35° 49' 56" Beni Hozmar Silurian

MAR_4.1 05° 26' 57'' 34° 49' 40'' Beni Hozmar Silurian

MAR_3.1 05° 27' 10" 35° 49' 24" Beni Hozmar Carboniferous

MAR_19.1 05° 02' 20" 35° 23' 59" Akaili Silurian

MAR_18.1 05° 07' 27" 35° 28' 47" Akaili Silurian-Devonian?

MAR_17.1 05° 09' 52" 35° 30' 29" Akaili Devonian

MAR_15.1 05° 12' 24" 35° 32' 02" Akaili Devonian

MAR_14.1 05° 13' 41" 35° 32' 56" Akaili Carboniferous

MAR_10.1 05° 24' 57" 35° 51' 48" Akaili Silurian

MAR_9.1 05° 24' 57" 35° 51' 48" Akaili Carboniferous

GH
O

M
AR

ID
ES

MAR_6.1 05° 21' 57'' 35° 52' 12'' Akaili Silurian

MAR_1.2 05° 22' 27" 35° 52' 8" Tizgarine Permian

MAR_1.1 05° 22' 26" 35° 52' 8" Tizgarine Permian

MAR_12.1 05° 23' 31" 35° 52' 26" Beni Mezala 2 Permian-Triassic

SE
BT

ID
ES

MAR_8.1 05° 22' 50'' 35° 52' 56'' Beni Mezala 1 Permian-Triassic

MAR_20.1 05° 01' 16'' 35° 23' 28'' Filalì Ordovician-Devonian

4. Methods 

TOC (total organic carbon) expresses the percentage of organic carbon weight related to the total weight of 

the analyzed rock. In this work data were acquired using a TOC Elementar model TOC VARIO Select analyzer, 

coupled with an oven (max temperature of 850°C).
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Raman spectroscopic analyses allowed to determine the degree of order of the organic matter and thus 

paleo-temperatures experienced by the rocks during prograde metamorphism (e.g. Raman spectroscopy on 

carbonaceous material geothermometer – RSCM; BEYSSAC et alii, 2002; LAHFID et alii, 2010; LÜNSDORF et 

alii, 2014). 

The Raman spectrum of carbonaceous material consists of two main bands at   ̴1585 cm-1 (the graphite peak, 

G ) and    1350 cm-1 (the disorder peak, D; TUINSTRA & KOENIG, 1970). These bands occur as the result of the 

hybridised atomic orbital configuration of carbon atoms and the relative amount of  sp2 carbon bonds 

(graphite-like, trigonal planar symmetry) bounded by sp3 sites (diamond-like, tetrahedral symmetry; 

ROBERTSON & OREILLY, 1987). The G band is assigned to the E2g symmetry in-plane vibration of the carbon 

atoms in the graphene sheets. On the other hand, the D band has been interpreted either by double resonant 

Raman scattering (A1g-mode of small graphite crystallites; THOMSEN & REICH, 2000) or to ring breathing 

vibration in the graphite sub-unit or polycyclic aromatic compounds (CASTIGLIONI et alii, 2001; DI DONATO 

et alii, 2004; NEGRI et alii, 2004; LÜNSDORF, 2016). Their mutual relationships change with maturity level of 

organic matter (e.g.  temperature; TUINSTRA & KOENIG, 1970) up to the graphitic stage (BEYSSAC et alii, 

2002). The number of bands that composes the carbonaceous material Raman spectrum, decreases with 

increasing ordering (i.e. temperature increase) passing from more than five bands in diagenetic organic 

matter to a single band in pure graphite (Fig. 4; HENRY et alii, 2019 for a complete review).
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Figure 3 Outcrop examples of a) schists from BM 2 Unit; b) black phyllites from Tizgarine Unit; c) Devonian pelites 

from the Ghomarides; d) Carboniferous pelites from the Ghomarides.  

Analyses in this work were performed on petrographic thin sections according to recommendation in 

BEYSSAC et alii (2002) and LÜNSDORF et alii (2017), using a Jobin Yvon micro-Raman LabRam system with a 

Neodymium-Yag laser of 532nm (green laser) as a light source and a CCD detector. Spectra were acquired 

in the first order Raman spectral range (700 to 2300 cm-1). The power of the laser was 40mW and was 

reduced to less than 0.4 mW by optical filters to avoid heating alteration of the organic matter. The 

integration time for each data was of 20 s repeated for three times under a 50x magnification lens (as 

defined by SCHITO et alii, 2017). 

Temperatures were derived according to two different approaches in order to check the comparability 

between the relatively new  method of  LÜNSDORF et alii. (2017)  with the classic fitting approach proposed 

by BEYSSAC et alii. (2002) for high metamorphism or by LAHFID et alii. (2010) for low metamorphism.  The 

automatic method proposed by LÜNSDORF & LÜNSDORF (2016)  and LÜNSDORF et alii (2017)   is designed 
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to offer a comparability of Raman results at different stages of “organic metamorphism”. The method is 

based on the IFORS software that curve-fits Raman spectra of carbonaceous material modelling 

simultaneously the background with a fifth-order polynomial curve and the Raman signal with pseudo-

Voight bands. The optimization of the curve is an iterative process that adds pseudo-Voight functions (note 

that the number of bands is not imposed a priori) until the best-representation of the baseline-subtracted 

spectrum is reached (LÜNSDORF & LÜNSDORF, 2016; LÜNSDORF et alii, 2017). Among Raman parameters 

carried out from this process, the normalized intensities of the D and G bands (STA-D, STA-G) are used to 

calculate paleo-temperature by means of the third-degree polynomial equation proposed by LÜNSDORF 

et alii (2017). The correlation against temperatures provided in LÜNSDORF et alii (2017) is based on a 

reference series of 26 samples collected across the central and western Alps in a range comprised between 

100 and 700°C.  

RA2 or R2 parameters and related paleo-temperatures, were calculated, depending on the shape of the 

spectra, by means of a four-to-three bands deconvolution as suggested by BEYSSAC et alii (2002) for 

graphitic carbon (Figs. 4b and c) or by a five bands deconvolution proposed by LAHFID et alii (2010) for low-

metamorphic organic matter (Fig. 4a). Bands deconvolution was performed using LabSpec software by 

Horiba. Paleo-temperatures were calculated according to the following equations: 

                                                                                                                                               (1)𝑻 (°𝑪) =  ― 𝟒𝟒𝟓 × 𝑹𝟐 + 𝟔𝟒𝟏

                                                                                                                                                             (2)𝑻 (°𝑪) =
𝑹𝑨𝟐 ― 𝟎.𝟐𝟕

𝟎.𝟎𝟎𝟒𝟓
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Figure 4 Examples of Raman spectra and related bands assignment for different temperature intervals in the Internal 

Rif chain. a) Very disordered Raman spectrum from Carboniferous pelites of the Akaili Unit (Gomarides); b) spectrum 

from Silurian shales of the Akaili Unit (Ghomarides); c) spectrum of graphitic carbon from the Filalì Unit (Sebtides). 

5. Results

TOC data in Sebtide samples indicate values between 0.7 and 0.8% except for sample 12.1 from the Beni 

Mezala 2 Unit where TOC is higher than 2%. In the Ghomarides, samples show values ranging between about 

0.6 and 3.9% in the Akaili Unit and between 0.6 and 1.6% in the Beni Hozmar Unit, generally indicating high 

organic carbon content (Tab. 2).
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Between 14 to 35 Raman spectra on organic fragments were acquired for each sample, to obtain a reliable 

temperature estimation (Table 2). High fluorescing spectra with a low signal-to-noise ratio were discarded 

after acquisition during a first qualitative evaluation. 

In zone 1, Raman spectra on organic matter from the BM 2 Unit show a well-developed D band and a strongly 

asymmetric G band due to the presence of a clearly defined D2 band. In the Tizgarine Unit, the G band shows 

lower intensities with respect to the D band and the D2 band shows lower intensities and wavenumber 

position. Such features correlate to paleo-temperatures of approximately 365°C in the BM 2 Unit and 

between 324 and 337°C (according to different approaches, see Tab. 2) in the Tizgarine Unit.

In zone 1, samples 10.1, 6.1 and 9.1 from the Ghomarides show very different spectral features. Spectra in 

sample 10.1 and 6.1 are characterized by two well-developed D and G bands with similar intensities (Fig. 5a), 

whereas in sample 9.1 the G band shows higher intensities with respect to the D band and a shoulder toward 

lower wavenumbers occurs on the D band (and 5c). Such differences, shown in Figs. 5a and c, correspond to 

a drop of more than 100°C between Lower Paleozoic (300-305°C in 10.1 and 296-299°C in 6.1) and 

Carboniferous samples (195-197°C in sample 9.1). A similar interval gap was also observed the Beni-

Hozmar unit where paleo-temperatures range between 352 and 372°C in the Silurian sample 5.1 and 

between 285 and 288 °C in the Carboniferous sample 3.1 (Tab. 2 and Figs. 5b and d). 

In zone 2, the only sample from Filalì unit shows spectra at an advanced stage of graphitization, characterized 

by a narrow G band with higher intensities with respect to the D band corresponding to temperature of 486-

488°C (Fig 4c). Moving toward the NE in the Ghomarides, Raman spectra show a progressive increase of 

structural disorder with the increase of the D band intensity in samples 18.1 and 17.1 and with a broadening 

of both G and D bands in samples 15.1 and 14.1. Raman temperatures indicate a temperature decrease from 

the SW to the NE passing from 442-446°C in sample 19.1, to 340-370°C for samples 18.1 and 17.1 and 246-

304°C at 15.1 and 14.1 sampling sites (Fig. 6, Tab. 2).  
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Figure 5 Differences between Carboniferous and pre- Carboniferous Raman spectra in the Akaili and Beni-Hozmar 

Units.
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Table 2. TOC data and Raman derived temperatures for the analysed samples. * Values in Italic represent R2 ratio 

according to Beyssac et alii, 2002 ; values in bold RA2 ratio according to Lahfid et alii, 2010.

Sample Unit TOC 
(%)

T°C mean
(LÜNSDORF 
et alii, 2014)

std T°C R2/RA2* std 
R2/RA2*

T°C mean
RA2/R2 std T°C n° of 

spectra

Mar 8.1 Beni Mezala 
1 0.4 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Mar 
12.1

Beni Mezala 
2 2 365.21 19.75 0.62 0.03 365.52 14.26 20

Mar 1.1 Tizgarine 0.7 324.62 17.39 0.68 0.01 337.87 6.80 20
Mar 1.2 Tizgarine 0.8 325.64 16.66 0.66 0.04 332.19 10.31 22
Mar 
10.1 Akaili 0.7 298.11 15.39 1.62 0.07 300.91 15.97 32

Mar 9.1 Akaili 0.8 197.00 13.72 0.89 0.13 195.22 29.35 21
Mar 6.1 Akaili 0.4 299.35 21.91 1.60 0.05 296.57 11.13 32
Mar 5.1 Beni Hozmar 0.6 372.24 12.20 0.65 0.03 352.80 12.43 33
Mar 3.1 Beni Hozmar 1.6 285.76 10.95 1.57 0.08 288.57 18.49 27
Mar 4.1 Beni Hozmar 0.4 368.54 15.52 0.64 0.02 356.30 11.01 28
Mar 
14.1 Akaili 1.5 246.55 8.93 1.14 0.14 246.86 30.96 21

Mar 
15.1 Akaili 1.9 295.71 18.98 1.64 0.08 304.79 18.87 35

Mar 
17.1 Akaili 0.7 368.27 9.38 0.65 0.03 380.84 8.02 22

Mar 
18.1 Akaili 3.9 342.46 15.28 0.66 0.03 347.64 11.70 24

Mar 
19.1 Akaili 1.2 442.23 13.16 0.64 0.03 446.34 7.67 22

Mar 
20.1 Filalì 0.7 488.07 5.71 0.36 0.06 486.15 6.67 14

6. Discussion

6.1  RSCM temperatures

The RSCM geothermother is one of the most used methods to assess the peak temperatures reached 

during prograde metamorphism (see HENRY et alii, 2019 for a complete review). It is based on the variation 

of the Raman spectrum of graphitic carbon at increasing temperatures, detected by curve-fit derived 

parameters (PASTERIS & WOPENKA, 1991). Different correlations between Raman parameters and 
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temperatures have been proposed depending on the fitting approach and the metamorphic types and 

degree (BEYSSAC  et alii, 2002; AOYA et alii, 2010; LAHFID et alii, 2010; LÜNSDORF et alii, 2017; MORI et alii, 

2017; HENRY et alii, 2019; LI et alii, 2020). Among them the most used are those of BEYSSAC et alii (2002) 

and LAHFID et alii (2010), based on the R2 and RA2 parameters for high and low-grade metamorphism, 

respectively. At the highest-grades, CM spectrum is composed by one band in pure graphite and by four 

bands at about 330°C (BEYSSAC et alii, 2002), while in the interval between 200 and 320°C it can be 

adequately fitted with five Lorentzian bands (LAHFID et alii, 2010). While this fitting approach has been 

successfully applied in a number of studies (BEYSSAC et alii, 2004, 2019; NEGRO et alii, 2006; GALY et alii, 

2008; DELCHINI et alii, 2016; COCHELIN et alii, 2018; LAHFID et alii, 2019, among others) it has been 

demonstrated that the parameters calculation can be strongly influenced by the operator fitting approach 

(LÜNSDORF et alii, 2014).  For this reason an automatic method has been proposed by LÜNSDORF & 

LÜNSDORF (2016) to provide higher comparability to the RSCM geothermometer. 

In this work, the automatic approach of LÜNSDORF & LÜNSDORF (2016) is particularly suitable since many 

samples lie in the paleo-temperature range between 300 and 350°C (Tab. 2). This is the interval where the 

two geothermometers by BEYSSAC et alii (2002) and LAHFID et alii (2010) overlap and the choice of a bad 

fitting approach can lead to paleo-temperatures misinterpretation. Nevertheless, in order to constrain as 

much as possible our thermal data and avoid errors that can derived from the automatic processing of 

some spectra with low signal-to-noise ratio (Fig. 5), the RSCM temperatures derived with the IFORS 

software have been double checked by calculating the R2 or RA2 ratio and derived paleo-temperatures. 

Results shown in Table 2 indicate that maximum differences reached 20°C only in sample 3.1 and that they 

are lower than 10°C in most of the dataset. This evidence indicate a general agreement in paleo-

temperature results considering that the error of the RSCM methods is always comprised between 40-50°C 

(BEYSSAC et alii, 2002); LAHFID et alii, 2010; LÜNSDORF & LÜNSDORF, 2016).

The approach based on a comparative between two fitting procedures strengthen the quality of the data 

presented in this work and further confirms the validity of the IFORS software. 
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6.2 Thermal evolution of the Rif and comparison with previous works 

The Rif-Betic orogen is a key area in the Mediterranean puzzle to decipher the western Mediterranean 

geodynamic evolution (ROYDEN & FACCENNA, 2018 for a review) and it offers the opportunity to study both 

exhumed root of the Alpine orogen (e.g. Sebtides) and terranes derived from the fragmented Variscan chain 

(e.g. Ghomarides). 

The metamorphic evolution of the internal units of the Rif-Betic orogen has been the subject of detailed 

studies focused on the outcrops of Beni Mzala antiform and around the Beni Bousera peridotite  

(KORNPROBST, 1974; DURAND-DELGA, 1980; CHALOUAN AND MICHARD, 1990; MICHARD et alii, 2006; 

NEGRO et alii, 2006; CHALOUAN et alii, 2008; PLATT et alii, 2013, MARRONE et alii, 2021).

In the Federico Unit,  cropping out at the core of the Beni Mzala antiform, paleo-temperatures derived from 

the analyses of carbonaceous material were not present in literature given the moderate-to-low TOC content 

(NEGRO et alii., 2006 and Table 2). Despite this, we were able to carry out enough CM spectra whose RSCM 

geothermometer shows values of about 320°C in the Tizgarine Unit and of about 365°C in BM 2 one. Data 

from Tizgarine Unit suggest that it suffered slightly warmer conditions than those calculated by the 

coockeite-pyrophillites-phengite association (about 300°C according to BOUYBAOUENE et alii., 1998). On the 

other hand, the average temperature calculated for BM2, even if slightly lower, seem to confirm the 

minimum temperatures of 380°C provided by the presence of relict Mg-Carpholite  estimated by 

BOUYBAOUENE et alii, (1998) rather than those of 450°C calculated by VIDAL et alii (1999) by means of Chl-

Cld thermometer. Results for the BM2 should be considered only as a first approximation, since we were able 

to derive Raman maximum temperature only on one sample and therefore need to be further validated in 

the future. 
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Figure 6 Raman-derived temperatures plotted on cross-sections 1 and 2 located in Fig. 1. Redrawn and modified after 

NEGRO et alii, 2006 and CHALOUAN et alii, 2008. Temperature shown in the figure are derived from the IFORS 

software (LÜNSDORF & LÜNSDORF, 2016). For comparison with other RSCM approaches see Table 2 and section 6.1. 

Acronysms: DC – Dorsale Calcaire; BHo – Beni Hozmar; KTi – Koudiat Tiziane; Aka – Akaili; Tiz – Tizgarine; BM2 – Beni 

Mzala; Lws – Lower Sebtides.

In the Ghomarides cropping out on the flanks of the Beni Mezala antiform, NEGRO et alii (2006) already 

provided Raman measurements on four samples from the Akaili Unit and on one sample from Koudiait 

Tiziane unit,  suggesting temperature always below 330°C, as this is the lower calibration limit of the RSCM 

geothermometer based on R2 parameter proposed by BEYSSAC et alii (2002).  This limit can now be 

overcome since new correlations at low metamorphism are now available in literature for low 

metamorphism (RAHL et alii, 2005; LAHFID et alii, 2010; LÜNSDORF et alii, 2017) and  in diagenesis (SCHITO 

et alii, 2017; 2019;  HENRY et alii, 2019) allowing to use the RSCM geothermometers in a variety of geological 

conditions (MUIRHEAD et alii, 2019; KEDAR et alii, 2020; NIRRENGARTEN et alii, 2020). 
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Our data on the Ghomarides in the northern sector of the Rif belt, outline a paleo-temperature jump 

between pre-Carboniferous and Carboniferous successions both in the Akaili and Beni Hozmar units. In 

detail, the maximum temperatures acquired during the Eo-Variscan phases by the pre-Carboniferous rocks 

are at the boundary between anchizone and epizone (about 300°C, FREY et alii, 1987) in the Akaili Unit and 

in the epizone  (about 370°C) in the Beni-Hozmar (Table 2 and Fig. 7).  On the contrary, Visean rocks in the 

Akaili Unit show values typical of deep diagenetic/low anchizone conditions (about 200°C) reached during 

the late Variscan phase, while temperatures in rocks with the same age are about 280°C in the Beni-Hozmar 

unit. Previous data from illite crystallinity (CHALOÜAN & MICHARD, 1985) also indicated lower 

metamorphism for Carboniferous rocks in the Ghomarides, but with no significant differences among their 

units (CHALOUAN & MICHARD, 1985; CHALOUAN & MICHARD, 1990). Thus our data show thus for the first 

time in detail the thermal structure across the Paleozoic Ghomarides, highlighting that the Beni-Hozmar 

Unit suffered metamorphism at higher temperatures with respect to the Akaili Unit both during Eo and 

Late Varsican events. It is particularly interestingly to note that almost the same gap in paleo-temperatures 

between 80 and 100°C is recorded above and below the Variscan unconformity among the two units and 

this could suggest that they kept some similar structural relationship during both events. 

As matter of fact very little is known about the Variscan history of the Palezoic units in the Ghomarides or 

in similar units in the Maghrebian chain. In the Malaguides (southern Spain), the pre-Alpine deformation 

in Paleozoic rocks is very poorly constrained (MARTIN-ALGARRA et alii, 2009). HT/LP mineralogical 

assemblage, associated to paleo-temperatures of about 500°C were locally found in the lowermost 

Ordovician-Silurian rocks near the Ronda peridotite (RUIZ-CRUZ & GALÁN, 2002; RUIZ-CRUZ & NOVÁK, 

2003; NEGRO et alii, 2006), while clay mineralogical analyses (ABAD et alii, 2003) and CAI (Conodont 

Alteration Index) determination (MARTIN-ALGARRA et alii, 2009) failed to precisely detect variation at 

lower paleo-temperature and the whole Palaeozoic section is generally described to have suffered 

achizone to epizone metamorphism. In both Greater and Lesser Kabylia (northern Algeria), similarly to the 

Ghomarides, MICHARD et alii (2006) describe a Late Devonian Eo-variscan phase that led to greenschists 

metamorphism and a Late-Variscan phase responsible for the folding of the unconformable Carboniferous 

deposits. These domains, together with the Calabria-Peloritan arc are thought to share a similar structural 
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position in a western (southwestern?  RAUMER et alii, 2002) sector of the Paleotethys, rather than in the 

Rheic realm such as other Variscan sectors in Iberia and Morocco ( i.e. Balearic, Iberian and Moroccan 

mesetas), and to suffered similar metamorphisms (CHALOUAN & MICHARD, 1990; RAUMER et alii, 2002; 

MARTIN-ALGARRA et alii, 2009). This hypothesis is mainly based on stratigraphic and structural affinities 

of the Paleozoic successions, even if at low metamorphic degree the lack of a more comprehensive dataset 

hampers a full understanding. The RSCM approach proposed in this work has shown to be promising. Thus, 

it could be applied in similar areas and provide evidence (or not) of a common metamorphic history of the 

Variscan terranes in the Mediterranean area. 
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Figure 7. Geological map of internal Rif with indicated Raman-derived maximum paleo-temperatures. Temperature 

shown in the figure are derived from the IFORS software (LÜNSDORF & LÜNSDORF, 2016). For comparison with other 

RSCM approaches see Table 2 and section 6.1. 
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In the southern sector (Zone 2), samples were collected along the route from Ras Mazari to Cape Zaouia (Fig. 

7). The main contribution of this work was to unravel paleo-temperatures for the Devonian and 

Carboniferous rocks (samples 15.1 and 14.1) that were previously reported to be lower than 330°C by 

NEGRÒ et alii (2006). New data show a jump in paleo-temperature of about 50°C between Carboniferous 

and Devonian rocks  moving from Ras Mazari to Tamrabete area south of Tetouan town (Fig. 7). This gap 

is lower than that observed in the northern sector for the Akaili unit. Moreover, the observation  that 

paleo-temperatures of the pre-Carbonifeous samples are similar, suggest that Carboniferous rocks here 

experienced higher thermal stress probably due to a Late Oligocene (Early Miocene?) thermal event that 

affected the area (see discussion below).

As matter of fact, MICHARD et alii. (2006) showed in this area that K/Ar on white mica isotopic ages tend to 

increase moving from the Ghomaride–Sebtide tectonic contact (Zaouia Fault, 25My) to the Ras Mazari area 

where the apparent ages are of about 183 My. This age distribution, coupled with the increase of Raman 

temperature from Ras Mazari to the Zaouia Fault (Fig. 8 from NEGRÒ et alii, 2006) has been interpreted as a 

thermal event connected to the emplacement of the Beni-Boussera peridotites. Nevertheless, recent works 

recently questioned the hypothesis of “hot” exhumation of the Rif–Betic peridotites during the Alpine 

orogeny  (ROSSETTI et alii, 2020; FARAH et alii, 2021).  By means of geochronological data on the migmatitic 

rocks that form the envelopment of the Beni Bousera peridotite, ROSSETTI et alii, (2020) point out a main 

Hercynian thermal event, associated with intra-crustal emplacement of the peridotite, occurred and was 

followed by cooling and exhumation from deep to shallower crustal conditions. The final stage of exhumation 

is constrained by the authors to the Early Miocene and is coeval with the main stage of the Alboran basin 

back-arc extension. At this time, the westward retreat of the Tethyan subduction caused lithosphere 

delamination and asthenosphere upwelling that led to crustal partial melting and diffuse magmatism as 

outlined by the andalusite-bearing dykes that intruded the Beni Bousera units (ROSSETTI et alii, 2013). All 

these pieces of evidence suggest that the thermal gradient depicted by Raman data in the present work and 

in NEGRÒ et alii (2006), as well as the thermal reset of the K/Ar on white mica isotopic ages (MICHARD et alii, 

2006), related to an Alpine HT metamorphic event that is independent from the peridotite emplacement. 

Given this, our data show some differences with respect to the paleo-temperature pattern provided by 
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NEGRÒ et alii (2006). This can be observed, particularly, in the area between Ras Mazari and R Mekkad, 

where paleo-temperatures estimations differ for more than 100°C (Fig. 7).  Considering that we followed the 

analytical procedure for Raman spectra acquisition by  BEYSSAC et alii (2002), a possible source of error could 

be envisaged in different fitting methods. However, in our case,the paleo-temperatures from R2 shown in 

Tab. 2 show a very good agreement with to those calculated with the IFORS software, strengtening our 

results. The fitting procedure or the user interpretation could in part justify differences observed among 

similar spectra as shown in Fig. 7b (comparison spectra at 442-485°C and 488-508°C), but cannot be held 

responsible for spectra related to samples  near Tamkerte, which show very different features. . In this 

case,  the differences  are due to different heating conditions (Fig. 8b). Working with organic matter, 

differences in thermal maturity (maximum paleo-temperature) can be usually ascribed to the presence of 

reworked material (LACZO & JAMBOR, 1988; LUCCA et alii, 2018; QIN et alii, 2018; BALESTRA et alii, 2019), 

but this does not seem to be the case, since spectra in our samples are very homogeneous. This piece of 

evidence suggests that paleo-temperatures in this sector of the Ghomarides, has higher spread than 

previously assessed. One possible explanation for this spread could be the effect of localized shear/strain 

(KITAMURA et alii, 2012; KUO et alii, 2014, 2017; KEDAR et alii, 2020) that could have locally increased the 

thermal stress. Moreover, as shown by MÜNCH et alii. (2021) in the area near Ceuta town, the internal zone 

of the Rif chain has been dissected by E-W and NNW-SSE normal faults between about 18 an 11 My and this 

can explain why a regular trend of increasing paleo-temperatures from Ras Mazari to Cape Zaouia has not 

been detected (Fig. 8). 
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Figure 8 a) Raman paleo- temperatures from this work and from NEGRO et alii. (2006), plotted in zone 2 for 

comparison. b) Comparison between Raman spectra and related paleo-temperatures from this work and NEGRO et 

alii. (2006). Spectra on the same row correspond to samples from the same sampling area. Paleo-emperature shown 

in the figure are derived from the IFORS software (LÜNSDORF & LÜNSDORF, 2016). For comparison with other RSCM 

approaches see Table 2 and section 6.1.

Conclusion

In this work we implemented the paleo-thermal database of the Internal Rif in Morocco providing a new set 

of data in the Sebtide and Ghomaride successions through Raman spectroscopy on dispersed organic matter. 

In the upper Sebtides cropping out in the Beni Mezala antiform we show that Tizgarine and BM 2 Units 

experienced maximum paleo-temperature of about 320 and 370°C, respectively. In the same area, data from 

Ghomarides show a temperature jump across the Eo-Variscan unconformity in both Akaili and Beni Hozmar 

Units. Interestingly, our data also indicate higher paleo-temperatures in Beni Hozmar suggesting higher 

metamorphic conditions suffered by this unit. 

In the southern area between Ras Mazari and Cape Zaouia, samples collected from the Akaili Unit show 

increasing paleo-temperatures moving towards the tectonic contact with the Filalì Unit connected with a 

Late Oligocene high temperature metamorphic event and not related to emplacement of the Beni-Bousera 

peridotite.
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