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Abstract 
This paper presents a detailed description of phase-field models of electrodeposition in lithium-anode 

batteries, along with underlying assumptions and parameters commonly employed. We simulate the 

coupled electrochemical interactions during a battery charge cycle using finite elements on open-

source packages, allowing for parallel computation and time step adaptivity. We compare 

conventional free energy and grand canonical formulations. We obtain agreement between 1D phase-

field simulations and the theoretical Faradic reaction kinetics. We study the mesh-induced errors 

through spatial convergence analysis. These simulations results set the groundwork for 2D and 3D 

simulations of dendritic metal electrodeposition in batteries. 
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Symbol List 

Symbol Description Units  Symbol Description Units 

𝑀 Metal atom specie [−]  �̃� 
Normalized Li-metal 

concentration 
[−] 

𝑀! Cation specie [−]  �̃�! 
Normalized Li-ion 

concentration 
[−] 

𝐴" Anion specie [−]  �̃�" 
Normalized anion 

concentration 
[−] 

𝐶 
Li-metal 

concentration 
[mol/m#]  𝜇#$ 

Chemical potential 
specie “𝑖” at ref. state 

[J/mol] 

𝐶! Li-ion concentration [mol/m#]  𝜉 
Phase-field order 

parameter 
[−] 

𝐶" Anion concentration [mol/m#]  𝑔(𝜉) Double-well function [J/m#] 

𝜙 Electric potential [V]  𝑊 Barrier height [J/m#] 

Δ𝜙$% Interfacial voltage at 
equilibrium 

[V]  𝛿%&  
Phase-field diffuse 
interface thickness 

[m] 

Δ𝜙 Electric potential 
difference 

[V]  𝛿' 
Computed phase-field 

interfacial thickness 
[m] 

𝐸$ 
Standard half-cell 

potential 
[V]  𝛾 Surface Energy [J/m&] 

�̅� 
Electrochemical 

potential 
[J/mol]  𝐿' Kinetic coefficient [1/s] 

𝜇 Chemical potential [J/mol]  ℎ%(𝜉) 
Polynomial 

interpolation function 
[−] 

𝜂 Total overpotential [V]  ℎ((𝜉) 
Sigmoid interpolation 

function 
[−] 

𝜂) 
Activation 

overpotential 
[V]  𝐿*  Interfacial mobility [m#/(	J	s	)] 

𝜂+  
Concentration 
overpotential 

[V]  𝐽 Flux of lithium species [mol/(m&s)] 

𝑎#  Activity of specie “𝑖” [−]  𝐽! Flux of Li-ion species [mol/(m&s)] 

𝑖 Current density [A/m&]  𝐷$(( Effective diffusivity [m&/s] 

𝑖) Exchange current 
density 

[A/m&]  𝐷* Diffusivity electrode [m&/s] 

𝛼 Charge transfer 
coefficient 

[−]  𝐷+ Diffusivity electrolyte [m&/s] 

𝑇 Temperature [K]  Ω Grand free energy 
functional 

[J] 
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𝑅 Gas constant [J/(mol	K)]  𝜖* Difference chemical 
potential “𝑠” phase 

[J/mol] 

𝑛 Valence [−]  𝜖+ Difference chemical 
potential “𝑙” phase 

[J/mol] 

ℱ Faraday constant [sA/mol]  𝜒 Susceptibility factor [mol&/(J	m#)] 

𝑣 
Lithium 

electrodeposition rate 
[m/s]  𝐸9⃗  Electric field vector [V/m] 

λ 
Electrodeposited film 

thickness 
[m]  𝚤 Current density vector [A/m&] 

𝑡 Time [s]  𝜎,--  Effective conductivity [S/m] 

𝑠 Solid electrode phase [−]  𝜎* Conductivity electrode [S/m] 

𝑙 Liquid electrolyte 
phase 

[−]  𝜎+ Conductivity 
electrolyte 

[S/m] 

𝐹 Gibbs free energy [J]  𝑙.  Battery cell size [m] 

𝑓+/ 
Helmholtz free energy 

density 
[J/m#]  𝑙0 Anode initial thickness [m] 

𝑓12)3  Surface energy 
density 

[J/m#]  𝜙, Charging voltage [V] 

𝑓,4,+  
Electrostatic energy 

density 
[J/m#]  ℎ0 

Length normalization 
constant 

[m] 

𝐹5#. Free energy of mixing [J]  𝑡0 
Time normalization 

constant 
[s] 

𝜅 
Gradient energy 

coefficient 
[J/m]  𝐸0 

Energy density 
normalization constant 

[𝐽/𝑚#] 

𝜌,  Charge density [J/(m#V)]  𝑙- 
Phase-field interface 

position 
[m] 

𝐶.*  Site density electrode [mol/m#]  𝑖' 
Theoretical current 

density 
[A/m&] 

𝐶.+  
Site density 
electrolyte 

[mol/m#]  h Mesh size [m] 

𝐶) Bulk Li-ion 
concentration 

[mol/m#]  h678 Minimum mesh size [m] 

    𝜀 
Electrode position 

error 
[%] 
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1. Introduction 
Our society's continually increasing energy needs have triggered the development of improved energy 

storage systems. Conventional lithium-ion batteries have dominated the rechargeable battery market 

since the late 1990s. Unfortunately, these batteries are approaching their performance limit of 250 

Wh/kg [1],[2]. Novel chemistry and designs, such as metal anode batteries, are under active research 

to achieve an energy density of 500 Wh/kg and manufacturing costs lower than $100/kWh [3].  

Presently, metallic lithium (Li) is the most prominent anode material for pursuing high energy-density 

batteries due to its superior theoretical capacity (3860 mAh/g) as well as low reduction potential (-

3.04 V vs. standard hydrogen electrode). However, two unresolved challenges remain in the path 

towards the commercial implementation of lithium metal batteries (LMBs) and lithium anodes in 

general. Firstly, the formation of inert solid electrolyte interphase (SEI) on the surface of lithium 

deposits during the recharge cycle, caused by the high reactivity of Li with the electrolyte and 

subsequent continual consumption, resulting in low Coulombic efficiency (excess of Li, up to 300%, 

was used in the past for this issue [1]). 

The unstable deposition of Li causes the second challenge during the charge cycle, which often occurs 

in a random and disordered way, leading to the formation of dendrites [4]. This problem compounds 

with the increase in the lithium reactive area, which enlarges the SEI surface area [5]. Further, lithium 

dendrites can break due to internal stresses and disconnect from the anode, generating a “dead 

lithium” compound that does not participate in the electrochemical reaction, further reducing 

Coulombic efficiency [6]. In the worst-case scenario, the dendrites can pierce the separator and 

contact the cathode leading to an internal short-circuit and potential thermal runaway of the battery 

[7],[8]. Rosso et al. [9] reported a fuse effect of the first lithium dendrite reaching the opposite 

electrode, which melts due to high current density; before the significant front of dendrites eventually 

connects the cathode and short-circuit the battery (producing an erratic potential). 

Developing a stable rechargeable lithium metal anode has become critical for realizing new generation 

high energy density rechargeable technologies, such as Li-air, Li-S, and Li-flow batteries [10],[11]. The 

fundamental role of dendrites in electrodeposition processes has motivated several efforts to control 

the dendritic patterns and make metal-anode batteries commercially viable. 

Various computational models seek to understand better the mechanisms of dendrite formation and 

growth in lithium anodes. Typically, we classify these models into two main groups: thermodynamic 

and dynamic [12],[13]. Within the dynamic models, phase-field (diffuse-interface) models can 

simulate the morphology evolution of Li electrodeposit due to reaction-driven phase transformation 
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within metal anode batteries and rationalize morphology patterns of dendrites observed 

experimentally [14]-[29].  

The phase-field model tracks boundaries and interfaces implicitly using an auxiliary function (the 

phase-field order parameter), avoiding the need for large mesh displacements with moving boundary 

conditions. The evolution of the phase-field variables satisfies local equilibrium [30] and free energy 

minimization [31], leading to nonlinear partial differential equations (PDE’s). These models 

incorporate interfacial energy, interface kinetics, and curvature-driven phase boundary movement 

rigorously.  

Different phase-field models of electrochemical systems describe the phase-field evolution by the 

Cahn-Hilliard equation [32],[33], the classical Allen-Cahn equation [34], or a modified non-linear Allen-

Cahn reaction model [19]. Thus, while some of these models assume linear kinetics [14]-[16],[21], only 

applicable in the limit of minor deviations from equilibrium (current densities below the limiting 

current), others describe the nonlinear relation between the phase transformation rate and the 

thermodynamic driving force, following either Butler–Volmer [17]-[20],[23] or Marcus reaction 

kinetics [24]. Furthermore, while the derivation of most of these models uses a free energy functional 

[20],[23],[25],[27], other models also adopt the grand canonical formulation, exchanging 

concentration for chemical potential as the natural variable to achieve better numerical stability 

[24],[26].  

Typically, the charging conditions for a lithium battery either fix the applied electric potential or the 

charging current density. Different sets of boundary conditions (BC’s) can represent each charging 

state through different electrodeposition models. In practice, Dirichlet BCs can effectively represent 

fixed electric potential charging state [16],[17],[20],[22]; in contrast, Neuman BCs at the lithium cation 

concentration (electrolyte side) represent fixed charging current density state [23],[24],[26]-[28]. 

There are several aspects related to the morphology evolution of lithium metal electrodes that remain 

unsolved. A significant effort seeks to develop two-dimensional models to rationalize three-

dimensional dendritic patterns observed experimentally qualitatively. Furthermore, various strategies 

to suppress Li dendrites' growth and weaken the side reactions exist [24]-[29]. However, clarifying the 

numerical features behind phase-field models has attracted less interest. 

This work uses one-dimensional (flat interface) simulations to study various numerical aspects of an 

electrodeposition phase-field model, thereby setting the groundwork for 2D and 3D simulations. Our 

study includes a description of the model’s equations and critical parameters. A comparative analysis 

is performed between simulations using a phase-field model derived from a free energy functional 
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[23] and the recent grand canonical approach [24],[26]. Our results show how spatial resolution 

(element size) combined with selected phase-field interface thickness affects the evolution rate of 

simulated electrodeposits under different applied voltages. 

Furthermore, we compare the phase-field simulation results against theoretical Faradic reaction rates, 

and sharp-interface Butler-Volmer kinetics at different applied voltages, assuming uniform and 

compact electrodeposited film. Finally, we propose a convergence test to study the impact of different 

mesh resolutions on the electrode position. 

2. Governing equations 
We model a battery cell composed of a solid metal anode made of pure lithium and a binary liquid 

electrolyte [26]. The variables of interest are 𝐶 , representing the concentration of lithium, and 𝜙 

representing the electric potential. When an electric potential difference (Δ𝜙 ) other than the 

equilibrium value (Δ𝜙,9) is imposed to the system (i.e., charging the battery), the binary electrolyte 

dissociates in 𝑀! cation and 𝐴" anion species, being transported to the negative (anode) and positive 

(cathode) electrodes, respectively; developing an ionic concertation gradient [1]. We describe the 

overpotential as, 

 𝜂 = Δ𝜙	 − Δ𝜙,9  (1) 

where Δ𝜙,9  is the electrode-electrolyte interfacial voltage at equilibrium, when the electrode 

electrochemical potential equals to that of the electrolyte, �̅�,4,+'2:3, = �̅�,4,+'2:4;', as determined by 

the Nernst equation [19], 

 Δ𝜙,9 = 𝐸$ +
𝑅𝑇
𝑛ℱ

ln
𝑎<!"𝑎,=

𝑎<
 (2) 

where 𝐸$ is the standard half-cell potential, 𝑎<!"  is the activity of 𝑀! ion in the electrolyte, 𝑎,= the 

activity of the electrons, and 𝑎<  the activity of the lithium atom. 𝑅, 𝑇, 𝑛, and ℱ represent the gas 

constant, temperature, valence, and Faraday’s constant, respectively. Thus, the total overpotential (1) 

is the overpotential sum of activation 𝜂) = Δ𝜙	 − 𝐸$ and concentration 𝜂+ = − >?
=ℱ
ln

)#!")$
!

)#
. 

As a result of the applied overpotential, Faradic reactions occur, current passes through the electrode-

electrolyte interface, a Li! cation gains an electron and deposits on the anode surface (Li! + 𝑒" →

Li), as Figure 1 sketches. 



 7 

 

Figure 1 – Schematic of lithium electrodeposition process. Grey, orange, and yellow spheres represent 

𝐴" anions, 𝑀! cations, and 𝑀 atom, respectively. 

The physical processes involved in the electrochemical deposition of lithium are charge and mass 

transport, where Butler-Volmer kinetics is the standard phenomenological model assumed to govern 

the charge and mass transport at the electrode-electrolyte interface [35],[36], also known as the 

current-overpotential equation: 

 𝑖 = 𝑖0 S𝑒
"A=ℱB>? − 𝑒

(D"A)=ℱB
>? T (3) 

where 𝑖 is the current density and 𝑖0 is the exchange current density (assumed constant in this case). 

The latter parameter is an indicator of the electron-transfer activity on the electrode surface at the 

equilibrium potential and has been identified as an intrinsic kinetic parameter [29]. The first and 

second terms in brackets represent the oxidation and reduction reactions, respectively, where 𝛼 is the 

charge transfer coefficient that characterizes the symmetry of the forward and reverse reactions [37]. 

The lithium electrodeposition rate depends on the applied overpotential via a Faradic reaction [38], 

 𝑣 =
𝜕λ
𝜕𝑡
=

𝑖
ℱ	𝑛	𝐶5(

=
𝑖0

ℱ	𝑛	𝐶5(
S𝑒"

A=ℱB
>? − 𝑒

(D"A)=ℱB
>? T (4) 

where λ represents the electrodeposited film thickness over a time 𝑡. 𝐶5(  represents the site density 

of lithium metal. The superscripts "𝑠"  and "𝑙"  represent the solid-electrode and liquid-electrolyte 

phases, respectively. At the mesoscale, the electrode phase is assumed as a pure solid (neglecting any 

solid phase nanoporosity). Furthermore, this model neglects the presence of a solid-electrolyte 

interface (SEI), thus neither species nor charge can be stored at the electrode-electrolyte interface.  
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Phase-field Butler-Volmer equation 
Assuming a dilute electrolyte solution, the activity of lithium ions equals its concentration (𝑎<!" =

�̃�!), whereby we assume electrons are always available on the surface of the electrode, with an activity 

equal to unity (𝑎, = 1) [23]; then the equilibrium electrode-electrolyte interfacial voltage (2) is: 

 Δ𝜙,9 = 𝐸$ +
𝑅𝑇
𝑛ℱ

ln
�̃�!
𝑎<

 (5) 

The activity of M-atom (𝑎<) can be defined variationally by 𝑎# = 𝑒
%
&'

()*+,
(-+ , in terms of the free energy 

of mixing 𝐹5#., see (8) [19], where 𝑐#  represents the concentration of specie 𝑖.  

First, we compute the system’s Gibbs free energy, as the summation of the Helmholtz free energy 

density (𝑓+/), surface energy density (𝑓12)3), and electrostatic energy density (𝑓,4,+), [32],[33],[15]: 

 𝐹 = $ %𝑓./(𝐶𝑖) + 𝑓0123(∇𝐶𝑖) + 𝑓454.(𝐶𝑖, 𝜙)-𝑑𝑉
6

 (6) 

where 𝐶#  represents the chemical species concentrations (e.g., lithium metal atom (𝐶), lithium cation 

(𝐶!), and anion (𝐶"), respectively). The gradient energy density associated with the surface energy of 

the system is characterised as 𝑓12)3 =
D
G
∇𝐶# ∙ 𝜅∇𝐶#, and 𝑓,4,+ = 𝜌𝜙 is the electrostatic energy density, 

where 𝜌 = ∑ 𝑛#ℱ𝐶##  is the charge density. The Helmholtz free energy density is [19],[23], 

 𝑓+/ = 𝑊�̃�G(1 − �̃�)G + 𝐶0𝑅𝑇]�̃�!	𝑙𝑛(�̃�!) + �̃�"	𝑙𝑛(�̃�")^ +_𝑐#𝜇#$

#

 (7) 

with 𝐶 being normalised against the site density of lithium metal (𝐶5( , inverse of molar volume), �̃� =

𝐶/𝐶5( , and ion concentrations, �̃�! = 𝐶!/𝐶0 and �̃�" = 𝐶"/𝐶0, being normalised against the initial bulk 

concentration of lithium in the electrolyte (𝐶0 = 𝑐0𝐶54 ), , where 𝑐0 is the initial bulk lithium molar ratio 

in the electrolyte, and 𝐶54  is the site density of the electrolyte phase [23]. 

The Helmholtz free energy density in (7) shows the contributions of two equilibrium states (solid 

electrode and liquid electrolyte), the contribution of the lithium ions, and the summation of chemical 

potentials for each species at a reference state (𝜇#$). We model the equilibrium states using a double-

well function 𝑔(�̃�) = 𝑊�̃�G(1 − �̃�)G, where 𝑊/16 is the barrier between the two states.  

The continuous phase-field variable 𝜉 represents the dimensionless concentration of lithium atom �̃�, 

where 𝜉 = 1 and 0 represent the pure electrode and electrolyte phases, respectively; 𝜉  is a non-

conserved order parameter in our model [20]. Since the free energy has two local equilibria �̃�H and �̃�I, 
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then 𝜉 = +̃"+7̃
+̃7"+8̃

 is the phase field with minima at 𝜉 = 1 and 𝜉 = 0, satisfying the Allen-Cahn reaction 

(ACR) model: KL
K'
= ℛ eM&

M++
f, a nonlinear generalization of the Allen-Cahn equation for chemical kinetics.  

We express, in terms of 𝜉, the free energy of mixing 𝐹5#. relative to the standard state as [19]: 

𝐹9:; = 𝑓./ + 𝑓0123 −&𝑐:𝜇:<
:

= ) *𝑊𝜉=(1 − 𝜉)= + 𝐶>𝑅𝑇3�̃�?	𝑙𝑛(�̃�?) + �̃�@	𝑙𝑛(�̃�@)8 +
1
2𝜅
(∇𝜉)=< 𝑑𝑉

6
 (8) 

and, following Chen et al. [23], we calculate the activity of M-atom variationally as: 

 𝑎< = 𝑒
D
>?
M&*+,
ML = 𝑒

1N(L)"O∇AL
>?+*B  

(9) 

Substituting (5) and (9) into (1), we obtain the total overpotential expression in terms of 𝜉: 

 𝜂 = Δ𝜙 − 𝐸$ −
𝑅𝑇
𝑛ℱ

gln �̃�! −
𝑔N(𝜉) − 𝜅𝛻G𝜉

𝑐5( 𝑅𝑇
i (10) 

and substituting (10) into the Butler-Volmer (3), we arrive at: 

 𝑖 = 𝑖0 j𝑒
"A=ℱ>? QBC"

>?
=ℱRS8 +"̃"

1D(L)"OTAL
+*B >?

UV
− 𝑒

(D"A)=ℱ
>? QBC"

>?
=ℱRS8 +"̃"

1D(L)"OTAL
+*B >?

UV
k (11) 

Finally, we obtain the phase-field evolution equation (Allen-Cahn reaction (ACR) equation) by 

matching the velocity of the sharp interface limit of the phase-field equation, with the current-

overpotential equation as follows [18],[24],[39]: 

 
∂𝜉
∂𝑡
= 𝐿B j𝑒

"A=ℱ>? QBC"
>?
=ℱRS8 +̃""

1D(L)"OTAL
+*B >?

UV
− 𝑒

(D"A)=ℱ
>? QBC"

>?
=ℱRS8 +"̃"

1D(L)"OTAL
+*B >?

UV
k (12) 

where 𝐿B is the electrochemical reaction kinetic coefficient [26]. Figure 2 describes geometrically the 

phase-field interface position at two different time steps (𝑡= < 𝑡=!D), elucidating the relationship 

between the phase-field time derivative (12) and the lithium electrodeposition rate (4) as: 

 
∂𝜉
∂𝑡
=

1
𝛿%&

	
𝜕λ
𝜕𝑡

 (13) 

where 𝛿%&  is the phase-field diffuse interface thickness. 
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Figure 2 -Diffuse interface geometry. 1D spatial variation of 𝜉 at two moments in time (𝑡= and 𝑡=!D) 

We relate the Li surface energy (𝛾) and computed phase-field interfacial thickness (𝛿') to the model 

parameters according to: 𝛿' =
GO
WX

 [40], where 𝛿' ≅
G
W
𝛿%&, thus 𝛿%& ≅

O
X
. Now, by comparing (4), (12) 

and (13), the electrochemical reaction kinetic coefficient becomes  

 𝐿B =
𝛾	𝑖0

ℱ	𝑛	𝜅	𝐶5(
 (14) 

When the system is far from equilibrium, the interface energy driving force is significantly smaller than 

the electrochemical reaction contribution, Liang et al. [18] linearized the phase-field equation about 

the interface energy. Using a Taylor expansion, Chen et al. [23] linearized the phase-field Butler-

Volmer equation to obtain: 

 
𝜕𝜉
𝜕𝑡
= −𝐿* p

𝜕𝑔(𝜉)
𝜕𝜉

− 𝜅∇G𝜉q − 𝐿B
𝜕ℎ(𝜉)
𝜕𝜉

p𝑒R
(D"A)=ℱBC

>? U − �̃�!	𝑒
Y"A=ℱ	BC>? [q (15) 

The standard half-cell potential 𝐸$  is set as 0 for Li/Li+ equilibrium [23], thus our activation 

overpotential becomes: 𝜂) = 𝜙. Moreover, ℎ(𝜉) is an interpolation function that smooths the diffuse 

interface in the current implementation. The interpolation function satisfies ℎ(0) = 0, ℎ(1) = 1, 

𝜕ℎ(0)/𝜕𝜉 = 𝜕ℎ(1)/𝜕𝜉 = 0 , ensuring that 𝜕𝑓+//𝜕𝜉 = 0  when 𝜉 = 0  and 𝜉 = 1 , for any electric 

potential value. A popular choice is a polynomial interpolation function ℎ%(𝜉) = 𝜉W(6𝜉G − 15𝜉 + 10), 

[41], which satisfies these properties. Herein, we also use a sigmoid interpolation function [42], [43]: 

 ℎ\(𝜉) =
𝑒]YL"

D
G[

1 + 𝑒]YL"
D
G[

 (16) 

where 𝜗 is a parameter that determines the interface thickness of the interpolation function; we use 

𝜗 = 20, for interpolation between 𝜉 = 0 and 𝜉 = 1. Figure 3 plots these interpolation functions. 
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Figure 3 – Comparison between sigmoid vs polynomial interpolation functions 

Besides satisfying the above-mentioned properties, the sigmoid function (16) is bound to the range 

between 0 and 1 for all possible values of 𝜉. This property is especially useful to deal with numerical 

overshoots of the phase-field variable (𝜉 < 0 and 𝜉 > 1) that are frequent in these simulations. Our 

experience show that the sigmoid function delivers better the computational efficiency; thus, we use 

it in all of our simulations. 

The interfacial mobility 𝐿*  can be expressed as [23]:  

 𝐿! = 𝛽 $𝛼	𝑒"#$
%ℱ'
() 	"+, -!̃/ + (1 − 𝛼)	𝑒(1"#)$

%ℱ'
() 	"+, -!̃/- = 𝛽 .𝛼

�̃�3#

𝑒#
%ℱ'
()

+ (1 − 𝛼)
𝑒(1"#)

%ℱ'
()

�̃�3
(1"#) 1	 (17) 

where 𝛽 = #EX
>?ℱ=O^*B

A. Replacing constant values in (17), Figure 4 plots the exponential variation of 𝐿*  

within the range of charging voltages relevant for lithium dendrite electrodeposition (𝜙 = 0  to 

−3	[𝑉]), and Li-ion concentration ranging 0 ≤ 𝑐|+ ≤ 1. 
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Figure 4 – Interfacial mobility (𝐿*/𝛽) value within the range of charging voltages relevant for dendritic 

electrodeposition of lithium (𝜙 = 0 to −3	[𝑉]), and range of Li-ion concentration (0 ≤ 𝑐|+ ≤ 1). The 

inset plots 𝐿*/𝛽 in logarithmic scale for better appreciation. 

 
Figure 5 – “Step-like” diffuse interface due to the imbalance between interface energy term (𝐿*) and 

electrochemical reaction contribution. X: direction normal to phase-field interface (see Section 3). 

Figure 4 shows that the 𝐿*  value (assumed constant for each simulation) needs to be adjusted to the 

selected voltage that charges the battery. Furthermore, the 𝐿*  dependency on �̃�3 is lower, but not 

insignificant. Therefore, selecting an adequate value for 𝐿*  is vital to achieve the right balance 
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between the phase-field interface energy term and the electrochemical reaction contribution. This 

adjustment avoids the unphysical broadening of the phase-field interface when simulating larger 

electro potential values, see Figure 5.  

Diffusion migration 
A diffusion-migration equation describes the motion of charged chemical species (lithium-ion) in the 

fluid electrolyte. The temporal evolution of �̃�! = 𝐶!/𝐶0, satisfies the modified Nernst-Planck diffusion 

equation, which describes the flux of Li-ions under the influence of both a concentration gradient (∇𝐶!) 

and an electric field (𝛻𝜙) [44]: 

 𝜕𝐶!
𝜕𝑡

= −∇ ∙ 𝐽! (18) 

where the flux of lithium-ion species is: 

 𝐽! = −𝐷,-- S𝛻𝐶! +
𝑛ℱ
𝑅𝑇

𝐶!𝛻𝜙T (19) 

Herein, the effective diffusivity is interpolated by 𝐷,--(𝜉) = 𝐷(ℎ(𝜉) + 𝐷4[1 − ℎ(𝜉)], where 𝐷( and 

𝐷4 	are the electrode and electrolyte diffusivities respectively.  

Alternatively, Plapp [45] demonstrated that exchanging concentration (𝐶) for chemical potential (𝜇) 

as one of the dependent variables ensures constant chemical potential at equilibrium; in addition, 

simulations are more robust at low concentration values. This grand canonical formulation was 

recently applied to other phase-field models of electrokinetic [24],[26]. The grand free energy 

functional of an electrochemical system is [24]: 

 Ω[𝜉, 𝜇, 𝜙] = $ %𝑓./4𝜉, 𝜇5 + 𝑓01234∇𝜉5 + 𝑓454.(𝜇, 𝜙)-𝑑𝑉
6

 (20) 

which represents the grand canonical version of (6). Thus, by making use of the Nernst-Einstein 

relation (𝛻𝐶 = 𝐶∇𝜇/𝑅𝑇), the flux equation of all lithium species can be written as follows: 

 𝐽 = −
𝐷,--𝐶_#
𝑅𝑇

(𝛻𝜇 + 𝑛ℱ𝛻𝜙) (21) 

where the concentration of lithium species 𝐶_#  has the contribution from the electrode and electrolyte 

phases. However, derivation of diffusion equation by Hong et al. [26] does not consider the effect of 

lithium-metal diffusivity in the flux of lithium species, by assuming it to be much smaller than the 

diffusivity of lithium-ion; thus: 𝐽 ≅ − `F^"
>?

(𝛻𝜇 + 𝑛ℱ𝛻𝜙), where the concentration of lithium ion is 

interpolated in terms of 𝜉 and 𝜇 as [46]: 
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 𝐶!(𝜇, 𝜉) = �̃�!(𝜇, 𝜉)	𝐶0 = 𝐶54 𝑐4(𝜇)[1 − ℎ(𝜉)] = 𝐶54
𝑒
ab"c

F

>? d

1 + 𝑒R
b"cF
>? U

[1 − ℎ(𝜉)] (22) 

with 𝑐4(𝜇) as the local lithium molar ratio at liquid phase, and 𝜖4 = 𝜇04 − 𝜇0e as the difference in the 

chemical potential of lithium and neutral components at the initial equilibrium state in the liquid phase. 

The flux assumption creates an inconsistency in the diffusion equation via the grand canonical 

approach; where the chemical potential of all lithium species (𝜇) only considers the contribution of 

the flux of lithium-ion species (𝐽!). The grand canonical formulation used this assumption when it was 

initially derived as a solidification model for phase-field processes [45], and then adapted to model 

metal electrodeposition [24],[26], where only the charged species are affected by the electric field (𝜙).  

Moreover, an additional term (^*
B

^E

KL
K'

) needs to be included in the Nernst-Planck diffusion equation, to 

account for the amount of lithium-ion elimination in the electrolyte solution, due to electrodeposition 

on the solid phase (metal electrode). Thus, diffusion equation is finally expressed as [44]: 

 
𝜕�̃�!
𝜕𝑡

= ∇ ∙ S𝐷,--	𝛻�̃�! + 𝐷,--
𝑛ℱ
𝑅𝑇

�̃�!𝛻𝜙T −
𝐶5(

𝐶0
𝜕𝜉
𝜕𝑡

 (23) 

The diffusion equation in terms of the chemical potential (𝜇), following Hong et al. [26], becomes: 

 
𝜕𝜇
𝜕𝑡

=
1
𝜒
p𝛻 ∙

𝐷4�̃�!
𝑅𝑇

𝐶0
𝐶54

(∇𝜇 + 𝑛ℱ𝛻𝜙) −
𝜕ℎ
𝜕𝑡
g𝑐(

𝐶5(

𝐶54
− 𝑐4iq (24) 

where the susceptibility factor 𝜒 is: 

 𝜒 =
𝜕𝑐(

𝜕𝜇
ℎ
𝐶5(

𝐶54
+
𝜕𝑐4

𝜕𝜇
[1 − ℎ] (25) 

Electrostatic Potential 
We account for the electrostatic potential distribution 𝜙 using the charge continuity equation [15]: 

 𝜕𝜌
𝜕𝑡

= −∇ ∙ 𝚤 (26) 

where 𝚤  is the current density vector and 𝜌 = Σ#𝑛#ℱ𝑐#  is the charge density. Experimental 

observations support the assumption that space-charge effects do not affect the stability of 

electrodeposits [47]. Therefore, we ignore the double-layer effects and assume electroneutrality 

(�̃�! = �̃�", 𝜇! = 𝜇") [24]. Thus, electroneutrality means that 𝜌4 = 0 and 𝜌( = −𝑛ℱ𝐶, where 𝐶 = 𝐶5( �̃�; 

thus, Δ𝜌 represents the electrons that create neutral 𝐶 from 𝐶! in the electrolyte. Another benefit of 
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the electroneutrality assumption is the model simplification that only needs to track the lithium cation 

(𝐿𝑖!) movement. 

Therefore, making use of Ohm’s law in the continuity equation, 𝚤 = 𝜎	𝐸9⃗ , where 𝜎 is the conductivity 

and 𝐸9⃗ = −∇𝜙  is the electric field, we obtain the Poisson equation, including a source term to 

represent the charge that enters or leaves the system due to the electrochemical reaction: 

 𝛻 ∙ �𝜎,--(𝜉)	𝛻𝜙� = 𝑛ℱ𝐶5(
𝜕�̃�
𝜕𝑡

 (27) 

Since the phase-field variable 𝜉 corresponds to the lithium atom concentration (�̃�), we can express the 

previous equation as [23]: 

 𝛻 ∙ �𝜎,--(𝜉)	𝛻𝜙� = 𝑛ℱ𝐶5(
𝜕𝜉
𝜕𝑡

 (28) 

We interpolate the effective conductivity by 𝜎,--(𝜉) = 𝜎(ℎ(𝜉) + 𝜎4[1 − ℎ(𝜉)], where 𝜎( and 𝜎4 	are 

the electrode and electrolyte phase conductivity, respectively.  

3. System Layout & Properties 
Generally, the computational domain for a battery simulation comprises the anode and cathode 

regions and the space between the electrodes filled with electrolyte [48]. However, for most phase-

field simulations of metal electrodeposition, including those performed herein, the cathode region is 

reduced into a current collector boundary condition on the electrolyte side of the domain (Figure 6). 

We model a battery cell, with a traditional 1D sandwich architecture, and an initial interelectrode 

distance of 180𝜇𝑚, undergoing a recharging process under fixed applied electric potential status. The 

initial structure consists of a 20𝜇𝑚 -thick metal anode ( 𝑙0 = 20𝜇𝑚	 ), made up of pure lithium, 

separated from the liquid electrolyte by a smooth interface, as Figure 6 shows. The initial condition 

drives from the equilibrium solution for a one-dimensional transition zone between solid (𝜉 = 1) and 

liquid (𝜉 = 0), where our variables (𝜉, �̃�!, 𝜙) vary in the “𝑥” spatial direction normal to the interface 

according to 𝜉(𝑥) = D
G
p1 − 𝑡𝑎𝑛ℎ g𝑥�f

GO
iq [41]. 
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Figure 6 – Boundary conditions for battery charge simulation  

On the cell’s right side, the electrolyte is 1M LiPFg dissolved in EC/DMC 1:1 volume ratio solution, 

including Li! cation and PFg" anion species. We compute the site density of the electrolyte (𝐶54 ) using 

the density (1.3	g/cmW)	and molar mass (90	g/mol) of the electrolyte; similarly, the site density of 

the electrode 𝐶5(   uses the density (0.534	g/cmW) and molar mass (6.941	g/mol) of pure lithium [26]. 

We use a Dirichlet boundary condition 𝜉 = 1 on the left boundary for the phase-field order parameter 

(solid electrode phase) and a non-flux Neumann boundary condition on the right boundary, which 

allows the electrodeposition process (𝜉 changing from 0 to 1) when the reaction front approaches the 

right boundary (cathode). 

For the Li-ion concentration, we apply Dirichlet boundary conditions, �̃�! = 0 and �̃�! = 1, to the left 

and right cell boundaries, respectively. Thus, the Li-ion flows into the battery (electrolyte side), 

ensuring that the amount of Li deposited at electrode-electrolyte interface equals the amount of Li! 

supplied on the electrolyte side, thus avoiding quick Li-ion depletion and keeping the 

electrodeposition process running for the entire simulation time. 

Alternatively, when solving for the chemical potential 𝜇, instead of �̃�!, we apply a non-flux Neumann 

boundary condition on the left boundary (electrode phase), indicating a constant lithium molar ratio, 

while we apply a time-varying Dirichlet boundary condition on the electrolyte side (right boundary), 

allowing for a change on the chemical potential value when the reaction front approaches the right 

boundary. Table 1 summarizes our set of boundary conditions. 
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Additionally, Table 2 presents the parameters we use in the current phase-field model. The 

normalization constants for length, time, energy density and concentration scales are set as ℎ0 =

1[𝜇𝑚], 𝑡0 = 1[𝑠], 𝐸0 = 2.5 × 10g[J/mW], and 𝐶0 = 1 × 10W	[𝑚𝑜𝑙/𝑚W], respectively. 

Table 1 – Boundary Conditions (1D Problem) 

 Electrode (𝑥 = 0) Electrolyte (𝑥 = 𝑙.) 

Phase - Field 𝜉 = 1 𝑛 ∙ ∇ξ = 0 

Li-ion Concetration �̃�! = 0 �̃�! = 1 

or   

Chemical Potential 𝑛 ∙ ∇𝜇 = 0 𝜇 = 𝜖 + 𝑅𝑇	𝑙𝑛 g
𝑐(𝜇)	

1 − 𝑐(𝜇)	
i 

Electrostatic Potential 𝜙 = 𝜙h[𝑉] 𝜙 = 0	[𝑉] 

 

Table 2 – Simulation Parameters 

Variable name Symbol Real value Normalized Source 

Exc. Current Density 𝑖) 30[A/m&] 30 [49] 

Surface Energy 𝛾 0.5[J/m&] 0.22 [50],[51]  

Barrier height 𝑊 W = 12
γ
δ/
= 6.67 × 100[J/m#] 2.67 Computed 

Gradient energy coeff 𝜅 κ =
3	γ	δ/
2 = 8.34 × 10"1[J/m] 0.335 Computed 

Kinetic coeff 𝐿' 𝐿' = 𝑖)
𝛾

𝑛	𝐶.* 	ℱ	𝜅
= 0.00271[1/s] 0.00271 Computed 

Difference in the 

chemical potential 

𝜖* ϵ2 = µ)2 − µ)3 −13.8 [26] 

𝜖+ ϵ4 = µ)4 − µ)3 2.631 [26] 

Site density electrode 𝐶.*  7.64 × 105[mol/m#] 76.4 [26] 

Site density electrolyte 𝐶.+  1.44 × 105[mol/m#] 14.4 [23] 

Bulk Li-ion Concen.  𝐶) 1000[mol/m#] 1 Computed 

Conductivity electrode 𝜎* 101[S/m] 101 [23] 

Conductivity electrolyte 𝜎+ 1.19[S/m] 1.19 [52] 

Diffusivity electrode 𝐷* 7.5 × 10"6#[m&/s] 0.75 [23] 

Diffusivity electrolyte 𝐷+ 3.197 × 10"6)[m&/s] 319.7 [52] 
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Table 2 shows that although the electrode and electrolyte materials can exhibit 𝐿𝑖/𝐿𝑖! dependent 

conductivities and diffusivities, their values are set constant across each phase for simplicity. 

4. Numerical Implementation 
Our PDE system includes the phase-field (15), diffusion (23) or (24), and electric potential (28) 

equations. We solve this system using finite elements implemented in the open-source computing 

platform FEniCS [53],[54].  

We use a second-order backward-difference (BDF2) time marching scheme with an adaptive time step 

size. The BDF2 scheme is an implicit integration method that requires solutions at two previous time 

steps and can start using the first-order backward-difference method (BDF1). BDF2 has second-order 

accuracy and dampens unresolved frequencies, unlike the commonly used Crank-Nicolson method. 

Liao et al. [55] demonstrate numerically the effectiveness of BDF2 time integrator for phase-field 

crystal model, especially when coupled with an adaptive time-step strategy. 

Using standard variational arguments [56],[57], we convert the PDEs into a system of nonlinear 

equations. We solve the non-linear system using PETSc’s Scalable Nonlinear Equations Solvers (SNES), 

combined with iterative biconjugate gradient stabilized method (BiCGStab) for the linear system [58]. 

The nonlinear relative convergence tolerance for SNES is 𝜀2,4 = 10"i. 

We improve the performance of the linear solver by using the sigmoid interpolation function (16), 

reducing by 30% the number of linear iterations, thus reducing the computational cost significantly. 

We also use the PETSc scalable implementation of parallel ILU preconditioner (hypre_euclid) [58]. 

Phase-Field Diffuse Interface Thickness & Mesh Size: A Discussion 
The interface thickness between the lithium electrode and the electrolyte is about 5𝑛𝑚  [59]. 

Simulating this thickness is impractical due to the computational cost [14],[15]; the smaller the 

interface thickness, the finer the grid resolution (mesh size) used, causing the simulation time to 

increase significantly. Therefore, broadening the interface for computational reasons (thin interface 

formulations) is essential in our model [60],[61]. However, the thickness selection must follow 

reasonable criteria since using an oversized interface deviates the simulation from reality [62].  
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Figure 7 – Schematic of phase-field diffuse interface ( ) as a result of the equilibration of the opposing 

effects of the energy barrier (K1(L)
KL

) and the gradient energy (𝜅∇G𝜉). 

An analysis of the published data reveals that the interface thickness used in phase-field simulations 

of electrodeposition are varied (from less than 0.1𝑛𝑚 – 1D [15] up to 50[𝜇𝑚] [25]), although this 

thickness is often not reported [22],[23],[27],[28]; this fact shows the lack of agreement in criteria in 

the definition of the phase-field interface. In our phase-field model (15), the phase-field diffuse 

interface thickness (𝛿%&) results from the interaction between two opposite effects on the interfacial 

energy term (K1(L)
KL

− 𝜅∇G𝜉), as Figure 7 shows. On the one hand, the reduction of the volume of 

material where 𝜉 is between 0 and 1 (proportional to 𝑊 ∝ 𝛾), and on the other hand, the diffusion of 

the interface to minimize the energy relative to the gradient of 𝜉 (proportional to 𝜅). [40],[41]. Two 

different expressions for 𝑊  and 𝜅  are common in phase-field models of electrokinetics available 

depending on the definition of phase-field thickness (𝛿' ). Boettinger et al [41] characterized the 

characteristic thickness (𝛿I ) from an equilibrium solution: 𝜉(𝑥) = D
G
p1 − 𝑡𝑎𝑛ℎ g𝑥�f

GO
iq (the term 

multiplying 𝑥, 2𝛿I = �2𝜅/𝑊); alternatively, Cahn-Hilliard [40] used the slope at 𝑥 = 0 to estimate 

an interface thickness (𝛿^j). Table 3 summarizes different expressions for 𝑊 and 𝜅; that relate these 

phase-field interface thicknesses: 𝛿^j = 4𝛿I. 
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Table 3- Comparison between different expressions for 𝑊 and 𝜅 in literature [40],[41]. 

Variable name Symbol Cahn-Hilliard Boettinger et al. 

Theoric Interfacial thickness 𝛿' 2�2𝜅/𝑊 �𝜅/2𝑊 

Barrier height 𝑊 12
𝛾
𝛿^j

 3
𝛾
𝛿I

 

Gradient energy coefficient 𝜅 
3	𝛾	𝛿^j
2

 6𝛾𝛿I 

 

Section 5 further analyses the effect of the phase-field interface thickness on the electrodeposition 

rate simulation results, which ultimately control the temporal evolution of the electrodeposits. As a 

default set-up for our simulations, we adopt a phase-field interface thickness of 𝛿%& = 1[𝜇𝑚], with 

h = 0.25[𝜇𝑚] spatial resolution (4 linear elements across the diffuse interface). 

5. Results and Discussion 
We perform several simulations to evaluate our electrodeposition model and to guide further 2D and 

3D battery simulations. These studies compare simulations results using phase-field models derived 

using a free energy functional [23] against those using a grand canonical approach [24],[26]. We study 

the effect of the applied overpotential (and the prediction’s agreement with Faradic kinetics), as well 

as we analyze the prediction sensitivity to the phase-field interface thickness. Additionally, we perform 

a convergence test using different mesh resolutions, and the relative differences of the electrode 

position is computed for both formulations. 

First, we study the spatial variation of the phase-field, Li-ion concentration, and electric potential at 

the initial stage and two different times (100s and 200s) for a flat interface (one-dimensional 

simulation) as Figure 8 shows. These results illustrate our set of initial conditions, as well as the 

evolution of our system’s variables (𝜉, �̃�!, 𝜙) by solving three coupled (15), (23), and (28). This model 

corresponds to a phase-field derivation from a free energy functional. The growth of Li deposit starts 

when we apply a negative voltage (𝜙h = −0.45[𝑉]) to the cell (charging state). We use a phase-field 

interface thickness of 𝛿%& = 1[𝜇𝑚], with spatial resolution of h = 0.25[𝜇𝑚] (mesh size) combined 

with time step adaptivity [63],[64]. 
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Figure 8 – Spatial variation of phase-field (𝜉), Li-ion concentration (�̃�!), and electric potential (𝜙) in 

electrode-electrolyte system during charging ( 𝜙h = −0.45[𝑉] ) at 𝑡0 = 0	𝑠	(solid) , 𝑡D = 100	𝑠 

(dotted), and 𝑡G = 200	𝑠 (dashed). 

Figure 8 shows that the electrode-electrolyte interface moves as lithium deposits on the electrode 

surface as time progresses. The electrodeposition evolution results in a steeper distribution of Li-ion 

concentration at the electrode-electrolyte interface (compare the concentration profile at 𝑡D = 100	𝑠 

and 𝑡G = 200	𝑠 ), due to the increase of the electric potential gradient (migration forces) as the 

interelectrode distance shortens. Finally, in agreement with the experimental observations of 

Nishikawa et al. [38], the electrodeposition velocity increases over time (compare the interface 

position at 𝑡D = 100	𝑠 and 𝑡G = 200	𝑠). 

We repeat the simulation switching lithium-ion concentration (�̃�!) for chemical potential (𝜇) as a 

dependent variable (grand canonical formulation) [24],[26],[45]. Even though the grand canonical 

approach was recently applied to other phase-field models of electrokinetics [24],[26], to the best of 

our knowledge, there is no evidence comparison between the performance of each formulation in this 

field. Thus, we verify the agreement between simulation results and identify advantages and 

disadvantages of each approach.  Figure 9 shows the initial conditions for the grand canonical 

approach, as well as the evolution of our system’s variables (𝜉, 𝜇, 𝜙 ) by solving three coupled 

equations. Again, we apply a negative voltage (𝜙h = −0.45[𝑉]) to the cell (charging state). These 

results show a distribution of field variables similar to that of the free energy approach. 
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Figure 9 – Spatial variation of phase-field (𝜉), chemical potential (𝜇) and electric potential (𝜙) in 

electrode-electrolyte system during charging ( 𝜙h = −0.45[𝑉] ) at 𝑡0 = 0	𝑠	(solid) , 𝑡D = 100	𝑠 

(dotted), and 𝑡G = 200	𝑠 (dashed). 

 
Figure 10 –lithium-ion concentration (�̃�!) comparison between free energy (FE) and grand canonical 

(GC) approaches using sigmoid smoothing (29). Phase field (𝜉) (blue) for reference; Charge: 𝜙h =

−0.45[𝑉]; 𝑙'0 = 20	𝜇𝑚 (solid), 𝑙'D = 66	𝜇𝑚 (dotted), and  𝑙'G = 157	𝜇𝑚 (dashed). 
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Furthermore, Figure 10 shows the agreement between the lithium-ion concentration (�̃�!) at different 

phase-field interface positions ( 𝑙' ), using the free energy formulation and the grand canonical 

approach when using sigmoid smoothing [45]: 

 �̃�!(𝜇, 𝜉) =
𝐶54

𝐶0
𝑒
ab"c

F

>? d
�1 + 𝑒

ab"c
F

>? d
�

"D

 (29) 

Figure 10 shows a steeper 𝐿𝑖!  concentration distribution as the front approaches the opposite 

electrode (𝑙'G > 𝑙'D); since proximity induces a higher electric potential gradient (∇𝜙) as the model 

approaches the battery short-circuit condition. This produces an increase of the 𝐿𝑖! concentration at 

the electrode-electrolyte interface (𝜉 = 0.5), from �̃�! = 0.03 at 𝑙'D = 66[𝜇𝑚], to �̃�! = 0.06 at 𝑙'G =

157[𝜇𝑚], leading to faster rates of lithium electrodeposition according to (15). 

We compare the electrodeposition rates predicted by the free energy (�̃�!) and grand canonical (𝜇) 

approaches under different applied voltages. Figure 11 displays the electrodeposit position (𝜉 = 0.5) 

over time for different applied voltages (𝜙h = −0.45,−0.60,−0.75[𝑉]). 

We also compare the phase-field results against the theoretical Faradic model, used to theoretically 

interpret the growth rate of a uniform deposited film [38],[65]. The theoretical operating current 

density across the flat electrode surface is 𝑖' = 𝜙h/ e
4G
*B
+ 4,"4G

*F
f , where 𝜙h, 𝜎(, 𝜎4, 𝑙. and 𝑙' , are the 

applied voltage, electrode and electrolyte conductivities, battery cell size, and the electrode surface 

position at time 𝑡, respectively. Therefore, we compute the theoretical electrodeposited film thickness, 

𝜆 = 𝑙' − 𝑙0, integrating Faraday’s law (4) over time as follows:  

 𝜆 =
∫ 𝑖'𝑑𝑡
'
0
𝑛ℱ𝐶5(

 (30) 

In (30), we define a set of electrode positions �𝑙'+ ∈ ℝ	𝑠. 𝑡. 𝑙0 ≤ 𝑙'+ ≤ 𝑙.¡, using a small interval size 

between these positions (i.e., Δ𝑙' = 0.01[𝜇𝑚] achieves convergence). We calculate the theoretical 

current density 𝑖'+(𝑙'+) for each position, and estimate the Faradic electrodeposition rate, 𝑣(𝑡=!D), 

using the forward Euler method: 

 𝑣(𝑡=!D) =
λ(𝑡=!D) − λ(𝑡=)
𝑡=!D − 𝑡=

=
𝑙'(𝑡=!D) − 𝑙'(𝑡=)

𝑡=!D − 𝑡=
 (31) 

Thus, solving for 𝑡=!D from (31), we obtain a set of 𝑡# 	𝑣𝑠	𝑙'+  values that allows for comparison with 

phase-field model predictions within a range of charging voltages as Figure 11 shows.  
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Figure 11 – Interface position vs time for different applied voltages: theoretical rate (T) (30) (solid), 

simulation results under free energy (dashed), and grand canonical (dotted) approaches. 

 Figure 11 shows the grand canonical approach (dotted lines) is more sensitive to changes in the 

applied voltage than the conventional free energy formulation (dashed lines). Taking the position of 

the electrode after 𝑡 = 20	𝑠 as an indication of the electrodeposition rate, we obtain relative position 

differences of 9.75%, 10.9%, and 11.5% for the free energy approach under −0.45 ,−0.60  and 

−0.75[𝑉], respectively. The grand canonical approach results in larger relative position differences of 

1.22%, 51.8%, and over 400% under identical charging conditions. Although we obtain good 

agreement with the Faradic theory (solid line) using the grand canonical approach to model the lowest 

applied voltage (𝜙h = −0.45[𝑉]), we obtain consistent reaction rates (with comparable position 

differences under various charging conditions) for the conventional free energy approach (�̃�!). 

We select an appropriate phase-field interface thickness (𝛿%&) by analyzing its effect on the simulated 

electrodeposition rate, which ultimately determines the evolution time scale (motion) of the 

electrodeposits. Figure 12 displays a comparative analysis of the simulated electrodeposit position 

(𝜉 = 0.5) over time for different values of interface thickness (𝛿%& = 1, 5, 10[𝜇𝑚]) under an applied 

voltage of 𝜙h = −0.45[𝑉]. 
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Figure 12 – Interface position vs time for different phase-field interface thickness (𝛿%& = 1, 5, 10[𝜇𝑚]) 

for applied voltage 𝜙h = −0.45[𝑉]: theoretical rate (30) (solid), free energy (dashed), and grand 

canonical (dotted) approaches. 

Figure 12 shows that the phase-field interface thickness significantly affects the simulated reaction 

rates; wider interfaces (larger 𝛿%&) induce extremely fast electrodeposition rates, up to 200% greater 

than theoretical results. These discrepancies have a physical justification: electrodeposition occurs at 

the electrode-electrolyte interface; thus, expanding the interface for computational reasons (physical 

interfaces can be as small as 5[𝑛𝑚] [59]) increases the reactive area in the simulation, which induces 

faster than physical electrodeposition rates. However, as Figure 12 and the position analysis below 

illustrate, convergent electrodeposition rates (interface-thickness-independent growth) are possible 

well before reaching the nanometer width interfaces. 

Figure 12 includes results for the free energy and grand canonical approaches. Let the electrode 

position at 𝑡 = 100	𝑠 be a correlate of the electrodeposition rate, we compute position differences of 

10.0%, 29.8%, and 47.2% for the free energy approach using 1, 5, and 10[𝜇𝑚] interface thicknesses, 

respectively; alternatively, the grand canonical approach yields relative position differences of 0.43%, 

62.6%, and 168% for the same interface thickness values. Therefore, the grand canonical results 

(dotted lines) are more sensitive to changes in 𝛿%&  than those of the conventional free energy 

formulation (dashed lines).  
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In short, the grand canonical formulation has greater sensitivity to both the phase-field interface 

thickness and the applied electric potential value, which practically restricts when the negative applied 

voltages (𝜙h < −0.50[𝑉]) we may simulate in 2D and 3D applications. 

Yet, these reaction rates sensitive to negative applied voltages (see Figure 11) guide our detailed 

analysis of the grand canonical approach using different phase-field interface thicknesses. We did not 

conduct a similar study of the free energy approach due to its significantly lower sensitivity to the 

interface thickness and applied voltage as per Figure 11 and Figure 12. We study the interface position 

plotting it as a function of time for different applied electric potential values in Figure 13 . An interface 

thickness of 𝛿%& = 0.5[𝜇𝑚]  yields a good agreement with the theoretical Faradic rates under 

−0.40,−0.45, and −0.50[𝑉] applied voltages with a spatial resolution of h = 0.125[𝜇𝑚] (mesh size) 

allows for four elements to span the phase-field interface. 

 
Figure 13 – Interface position vs time for different applied voltages: theoretical electrodeposition rate 

(30) (solid); simulation results (grand canonical formulation; dotted). Phase-field interface thickness 

𝛿%& = 0.5[𝜇𝑚], and h = 0.125[𝜇𝑚] mesh size. 

Figure 13 shows that the electrodeposition rate accelerates (curved) as the interface approaches the 

opposite electrode (battery short-circuit condition) [20],[38],[49]. This result agrees with the 

mathematical model (solid lines), where the deposition rate has a nonlinear relationship. We obtain 

larger electrodeposition rates under more negative electric potential values (faster battery charge).   
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We calculate the current density relation to the electrodeposition velocity (ν) using (4). The current 

density increases as the electrode progresses to the opposite side, producing a nonlinear relationship 

with the total overpotential (𝜂), as Figure 14 depicts; which satisfies the sharp-interface Butler-Volmer 

equation: 𝑖 = 𝐿B S𝑒
"H!ℱJ&' − 𝑒

(%LH)!ℱJ
&' T. Figure 14 shows that as the deposit approaches the opposite 

electrode, the overpotential slightly increases with time [66], which corresponds to the reaction rate 

increase due to the 𝐿𝑖! concentration increase at the electrode-electrolyte interface. 

 
Figure 14 – Comparison of the phase-field model (dotted lines) with the sharp-interface Butler-Volmer 

equation (solid line) under different electric potential values. 

We perform a spatial convergence analysis to verify the convergence rates and quantify the mesh-

induced error. We compare flat interface simulation results for different spatial resolutions, 𝑛. =

400, 800, 1600, 3200, 12800; (with a domain size of 𝑙. = 200[𝜇𝑚]), using a small time-step size 

( Δ𝑡 = 6.25 × 10"k[𝑠] ) to neglect the temporal error, such that l'/'E
nNOP//E

≪ 1 , where h678 =

0.015625[𝜇𝑚] is the finest mesh size. 

The position of the electrodeposit interface (𝜉 = 0.5) is the basis of our comparison, since it is the 

parameter that defines the reaction rate (time-scale) in our simulation. Starting with a 20𝜇𝑚-thick 

metal anode, separated from the liquid electrolyte by a 1[𝜇𝑚] interface; we compute the final phase-

field interface position (electrode position) after 20𝑠 of simulation under an applied electric potential 

value of 𝜙h = −0.45[𝑉] (a commonly used electric potential in the literature [23],[24],[26]), using 

different mesh sizes. The spatial convergence analysis reveals that we obtain grid-independent results 
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after sufficient mesh refinement (see Figure 15). The agreement between the h = 0.015625[𝜇𝑚] and 

0.03125[𝜇𝑚] results (finest and second finest meshes) is of 99.99% and 99.93%, for the free energy 

formulation and the grand canonical approach, respectively. 

 
Figure 15 – Relative position error “𝜀” at 𝑡 = 20	𝑠 vs mesh sizes h, using free energy ( ), and grand 

canonical ( ) formulations. The inset shows the interface position “XnO”  vs mesh sizes h, using both 

formulations. Phase-field interface thickness 𝛿%& = 1[𝜇𝑚]. 

Figure 15 plots the relative error evolution over the mesh size (h). We compute the electrode position 

errors, relative to the finest mesh resolution (most accurate), as follows: 𝜀 =
oQNOP"oQO
oQNOP"oRS

× 100, where 

XnNOP, XnO  and Xpq, are the electrode position of the finest spatial resolution, the current mesh result, 

and the electrode’s initial thickness (initial position of the phase-field interface), respectively.  

Hence, the mesh-induced errors we compute are lower than 5% for the grand canonical approach, 

and 1.5% for the free energy functional, when utilising the coarsest spatial resolution (h = 0.5[𝜇𝑚], 

and two linear elements spanning the phase-field interface) to simulate electrodeposition process 

under 𝜙h = −0.45[𝑉]. The mesh-induced errors do not significantly affect the electrodeposition rate, 

compared to the previous ones when varying the phase-field interface thickness. 
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6. Conclusions 
We perform phase-field simulations to describe the flat electrode evolution during metal (lithium) 

electrodeposition. We solve the coupled equations describing electrochemical interactions during the 

battery charge cycle using a finite element implementation in an open-source package. We use a 

sigmoid smoothing function to obtain more robust simulations and significantly reduce the 

computational cost as an alternative to the widely used polynomial function. 

We demonstrate the validity of the current model by comparing the simulation results with theoretical 

Faradic reactions and the kinetics of the sharp-interface Butler-Volmer model. The comparison 

analysis between simulations using a phase-field model derived from either a free energy functional 

or a grand canonical approach allows us to assess each model’s sensitivity to the simulation and 

physical parameters and their robustness. In short, we obtain more consistent results (with 

comparable position differences under various charging conditions) for the conventional free energy 

approach. This model shows less sensitivity to changes in the phase-field interface thickness and under 

different applied voltages than the results obtained using the grand canonical formulation. In 

particular, we required smaller phase-field interface thicknesses (𝛿%&), with higher mesh resolution, 

to capture faster reaction rates under more negative electric potential values using the grand 

canonical formulation. Consequently, the computational cost significantly increases, making this class 

of models intractable for applications in two- or three-dimensions under large negative applied 

voltages involving dendrite growth under fast battery charge. 

Additionally, the spatial convergence analysis shows that the mesh-induced errors of up-to 5% for the 

grand canonical approach, and 1.5% in case of the free energy functional become grid independent 

(99.99% agreement) after sufficient refinement. Interestingly, these mesh-induced errors have a 

significantly lower impact in the electrodeposition rate, than those computed by varying the interface 

thickness (up to 47.2% and 168% relative position differences for the free energy and grand canonical 

approaches, respectively). 

Finally, beyond lithium electrodeposition, this class of phase-field models can appropriately describe 

other metal deposits in metal-anode batteries, such as zinc anode batteries. The use of one-

dimensional simulations as a tool to quantify the resolution requirements of the model under study is 

an effective strategy, that allows us to set ground rules for further 2D and 3D simulations. 
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