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Abstract—With the adoption of the 5G network, the exponen-
tial increase in the volume of data generated by the Internet
of Things (IoT) devices, pushes the system to learn the model
locally to support real-time applications. However, it also
raises concerns about the security and privacy of local nodes
and users. In addition, the approach such as collaborative
learning where local nodes participate in the learning process
of global model also raise critical concern regarding the
cyber resilience of the network architecture. To address these
issues, in this article, we identify the research gaps and pro-
pose a blockchain and federated learning-enabled distributed
secure and privacy-preserving computing architecture for
IoT network. The proposed model introduces the lightweight
authentication and model training algorithms to build secure
and robust system. The proposed model also addresses the
reward and penalty issues of the collaborative learning with
local nodes and propose a reward system scheme. We con-
duct the experimental analysis of the proposed model based
on various parametric metrics to assess the effectiveness of
the model. The experimental result shows that the proposed
model is effective and capable of providing a cyber-resilience
system.

Index Terms—Blockchain, Federated Learning, Cyber Secu-
rity, Security and Privacy, Internet of Things

1. Introduction

With the adoption of network technology such as 5G,
the legacy network architecture molds towards to acceler-
ate to support real-time applications such as autonomous
vehicles, industrial automation, augmented reality (AR)
and virtual reality (VR), massive wearable devices, etc.
[1] [2]. Due to the massive growth in volume of data
generated by Internet of Things (IoT) devices around the
world, traditional cloud-based network architecture is not
sufficiently capable of delivering the features of 5G and
support real-time applications [3] [4]. Edge computing
network architecture has proven to be effective approach
to address the limitations imposed by traditional cloud-
based networks [5] [6]. With the increasing computing
power of IoT devices, the model could run locally on
edge server or gateway, or even on the local node itself,
and the ability to process and store data faster for real-time
applications that are essential for businesses. However, the
5G network also raises concerns about the security and

privacy of local nodes and users. The network enables
faster data transfer from large number of heterogeneous
IoT devices to mobile operators with lower latency and
higher bandwidth compared to the legacy network. The
network will have to ensure that the organization or the
intermediate servers are transparent with the way the data
generated at the local nodes is processed and used in real
time [7] [8]. Recently, the concept of federated learning
makes it possible to preserve the privacy of sensitive data
of local nodes and train the global model using collabora-
tive learning by sharing only the parameters of the local
model [9] [10]. In some cases, user’s data at the edge
network is limited by various policies and regulations and
cannot be shared due to a privacy breach. The federated
learning approach facilitates the learning of the global
model without even recognizing and sharing the specific
data of each user. However, federated learning also raises
potential concerns such as a model poisoning attack, se-
cure aggregation, a malicious local node participant, free
riding attack, etc. [11] [12] [13] [14]. The integration of
blockchain technology and federated learning has recently
attracted a lot of attention to address the aforementioned
problems. Many researchers are embracing the unaltered
features of blockchain, federated learning, and differential
privacy to secure the IoT network [15] [16] [17]. State-
of-the-art methods also designed the incentive mechanism
to reward local nodes and encourage participation in
the learning process. However, there are issues such as
lightweight authentication of the local participant node,
reward and penalty system, the auditability of the success-
ful participation of local model updates, etc. which are un-
touched and open. In addition, cyber resilience is another
critical concern that we should take into account when de-
signing a secure distributed architecture for a scalable IoT
network. In this article, we propose a distributed, secure,
and privacy preserving-oriented computing architecture
for IoT network by leveraging the strength of blockchain
technology and federated learning. In the proposed model,
we design a learning approach to train the global model
securely using lightweight authentication scheme. We also
present reward system to encourage participation of local
node in the learning process and make the system more
secure and robust. We summarize the research contribution
of this article as follows:

• Based on our literature review, we identify the
research gaps and present the open issues and



design requirements to build a secure and robust
distributed computing architecture for IoT net-
work.

• We propose a blockchain and federated learning-
enabled distributed secure and privacy-preserving
computing architecture for IoT network. The pro-
posed model introduces the lightweight authen-
tication and model training algorithms to build
secure and robust system.

• We also propose a reward system to reward and
penalty the participating local node based on its
accuracy of local model updates. The system in-
troduce feedback-based reward policy to facilitate
the global model to achieve high accuracy.

• To evaluate the feasibility of the proposed system
and support the proof-of-concept, we perform the
experimental analysis based on various parametric
metrics. The experimental result shows that the
proposed system outperform compared to base
model and capable to mitigating cyber-attacks.

The structure of the article is as follows: In Section II, we
discuss the approach of federated learning, state-of-the-art
methods, and identify the research gaps; We discuss the
proposed model, authentication scheme, model learning
process, and reward system in Section III; Section IV
presents the system analysis of the proposed model; In
Section V, we present the experimental analysis and results
of the proposed model; Finally, Section VI concludes the
article.

2. Preliminaries

Federated learning allows the system to perform pro-
cessing on the device without sharing its dataset with an
intermediate node / server. However, it has many limita-
tions due to its centralized nature model. On the other
hand, the features of Blockchain technology complement
the limitation of federated learning to design a secure
distributed computing architecture that preserves privacy
of the IoT network. In this section, we discuss the concept
of federated learning, related works in blockchain-enabled
federated learning, and open issues.

2.1. Federated learning

To address key challenges such as data exists in frag-
ments at the local node and privacy leaks while sharing
local data, the federated learning ensures collaborative
learning preserving privacy by performing a device-centric
approach. In the federated learning approach, each local
node learns the model on its own device and shares
model updates instead of learning after aggregating data
on the server. The federated learning aggregator node
collects model updates from each local node and combines
all models using the federated averaging algorithm. The
aggregator node sends the aggregated model to each local
node and the process will repeat until the aggregated
model achieves optimal accuracy. Suppose there are local
node nodes selected to participate in the model learning
process with their own local datasets. The aggregate model
in federated learning can be defined as follows [18]:

ωt+1 =
1

N

∑
n∈Mt

ωt+1
k (1)

Where Mt is subset of local nodes N , ωt+1
n is update

received from local nodes.

2.2. Related works

Nagar, A. [19] presents how the distributed learning
architecture preserves privacy by integrating blockchain
technology and federated learning with differential data
sharing. They discussed the idea of adopting a federated
learning ecosystem with existing technologies to support
integration with Blockchain. To build a federated learning
architecture without an aggregator, Ramanan, P. et al. [20]
studied the potential characteristics of Blockchain technol-
ogy. They argued that the operational and computational
advantages of federated learning without an aggregator
have significant potential for solving IoT network issues.
To alleviate the challenges in fog computing such as local
autonomy, latency and network congestion, a bloclachain-
based federated leaning system is proposed by Qu, Y [21].
In the proposed system, the fog servers will generate and
store the global model uploaded from each local devices.
They presented the access control, verification and identity
generation approaches in the proposed system to allow
decentralized protection of privacy while preventing the
failure of a single point. Hieu, N. Q. et al. [22] addresses
the latency of training issue in the federated learning
system enabled by the blockchain and presented a deep
reinforcement-learning scheme for resource management.
They formulated the stochastic optimization problem for
managing the resources of the owner of the machine-
learning model in order to minimize training latency and
energy consumption. Pokhrel, S. R. and Choi, J. [23]
proposed a design for autonomous blockchain-enabled
federated learning in the vehicular network. They assigned
each autonomous vehicle as a local node where the local
model will train and will be exchanged and verified in a
distributed manner. For the home appliance manufacturer
industries, a reputation-based federated learning system
is designed to help manufacturers develop a smart home
system [24]. The proposed system can be used to train
model in order to predict the needs and consumption
behavior of customers in the future. They integrated feder-
ated learning, blockchain and mobile computing to create
a secure decentralized system with differential confiden-
tiality to protect the confidentiality of customer data. Lu,
Y. et al [25] presented a secure data sharing architecture
using blockchain and federated learning. They formulated
the problem of sharing data in the distributed system by
incorporating federated learning approach to reduce the
risk of data leakage. Preuveneers, D et al. [26] conducted
a case study on a machine learning model for anomaly
detection using blockchain and federated learning. They
argued that nodes participating in federated learning could
be held responsible for auditing model updates.

2.3. Open issues and design requirements

Based on the above literature review, we have iden-
tified unresolved issues and design requirements for the



secure distributed computing architecture in the IoT net-
work. The unresolved issues and design requirements are
as follows:

• Light weighted authentication scheme: Local
nodes collect sensitive environmental information
and provide local model updates based on a local
dataset. Updates from the local node will be used
to train the global model, therefore the security
solution to provide secure interaction should be
lightweight due to resource constraints.

• Auditable local model updates: The system must
ensure auditability so that any stakeholder can
determine if the resulting local node updates have
been manipulated. Because a malicious participant
may try to inject fake local model updates to
deliberately reduce the performance of the global
model.

• Feedback based reward system: The feedback-
based reward system indicates that the system
will reward the local participating node based on
its accuracy of local model updates during the
learning process of the global model. The network
architecture with a feedback-based reward policy
facilitates the global model to achieve high ac-
curacy and motivates local nodes to participate in
the learning process. At the same time, the system
should also penalize the local participant nodes
if local model updates reach lower performance
to avoid malicious participants, and other cyber-
attacks.

• Contribution-based rewards: It can still be argued
that the system should share the profit (i.e. re-
wards) equally at all participating local nodes.
In some scenarios, this approach is unfair and
arguable. Suppose there are two local participat-
ing nodes with their own dataset with a different
data size. Even if the two model updates of the
local node model achieve the same accuracy rate,
the reward system must all take into account the
size of each local node dataset. The local node
with large data storage is more likely to upgrade
the performance of the global model compared
to another local node. In addition, maintaining
a large dataset also increases the overall cost of
the local node. Therefore, the system should con-
sider contribution-based rewards when designing
the computing network architecture.

• Cyber resilience: In the cyber world, cyber re-
silience in the architecture of computing networks
is of utmost importance. The system should have
the ability to prepare for, react to and recover from
cyber-attacks such as data poisoning attacks, free
riding attacks, malicious participants, etc.

3. System modeling

In this section, we present a new distributed, secure,
and privacy preserving-oriented computing architecture
based on Blockchain and federated learning for the IoT
network. Subsequently, we define the secure authentica-
tion, model training and reward system modules of the
proposed system.

3.1. System design

Fig. 1 illustrate the proposed blockchain and federated
learning-enabled distributed secure and privacy-preserving
computing architecture for IoT network. The proposed
model compose of four modules: local nodes, edge nodes,
blockchain-enabled distributed fog network, and core dis-
tributed cloud. Local nodes can be edge network devices
such as smartphones, smart gateways, smart vehicles, etc.,
which have computing resources and storage capacity to
participate in the model learning process. Each local node
uses its own local dataset, storage and compute resources
to participate in the model learning process. The edge
node consist of set of miner nodes and is responsible for
the secure aggregation of the global model. At edge node
level, each time a new block is created to add the global
train model to the distributed network, it is first validated
from peer-edge nodes. Each edge node also maintains
an individual off-chain to store the intermediate models
while training global model in the iterative process. We
use a distributed fog network using consortium blockchain
for our crowdsourcing system to store global models
permanently and the core distributed cloud is responsible
for initial authentication and key distribution. We discuss
the proposed model in detail in the following subsections.

3.2. Secure authentication

Each local node ni consist of Physical Unclonable
Function (PUF) ID to provide unique identity of physi-
cal object, device-unique data security and authentication
solution for the cyber network. To register the local node
into the distributed network to securely patriciate in the
training process of the model, PUF symmetric key ki (s) is
generated for each local node at the edge of the network.
Once the local node symmetric key is generated, we use
the generated symmetric key to derive public and private
key pairs (kpu, kpv) via True Random Number Generators
(TRNGs).

In the PyPuf simulator, the uniqueness of two different
PUFs responses measure using hamming distance [27].
The hamming distance of the responses of two PUFs can
be calculate as:

Distance (PUFRi, PUFRj) =
k∑

l−0

PUFRia ⊕ PUFRja

Where PUFRia is the response of PUFRi. For each
index, we can acquire a vector that contains zeroes where
two response vectors were equal. We use the hamming dis-
tance of the responses two PUFs to calculate the unique-
ness. The uniqueness function different PUFs responses
of can be defined as:

Uniqueness (PUFRi, PUFRj) =

2

m(m− 1)

∑∑ Distance (PUFRi, PUFRj)

k

Where, m is the arbiter physical unclonable functions
chains, and n is number of bits.

To register the local node into the core distributed
cloud (CDC), the node ni initiate request Reqni

:



Figure 1. Proposed system architecture: Integrating blockchain and federated learning for distributed secure and privacy-preserving computing
architecture

{kpu, h(kpu)} through a secure channel. Here we lever-
age the strength of LAAP authentication protocol pro-
posed by Gope [28]. Likewise in LAAP scheme, the
CDC maintains a global counter to generate sequence
number Tseq, shared key ks, and a set of un-linkable
pseudo IDs PID = {pid1, pid2, pid3, . . . , pidn}. The
global counter is incremented by one each time the CDC
receives a request from the local node. By keeping a copy
in its database, the CDC provides these parameters to
the local node ni through secure channel. In addition,
CDC generates a smart contract along with all parameters,
including generated public key by the PUF ID of the local
node, and is deployed in the blockchain enable distributed
network. Note that the proposed model uses two different
key pairs for communications: the key pairs generated by
CDC is use for secure communications and data exchange;
while the key pairs generated at local node using PUF
ID is use for communication when participating in the
training model.

3.3. Model training

To initiate the training model using federated leaning
in distributed network, at t = 0, the distributed network
initialize the parameters of global model based on the
proxy data available at CDC. The CDC create a block
consists of proxy global model, and its parameters and add
into the blockchain network. As mentioned in previous
section, each local node consist of two key pairs. The
key pairs generated from PUF ID of each local node is
use for secure aggregation during training model. First,
local node sends request for participation to train the
model based on their available local data. Let suppose
the edge node receive N participants request from local
nodes{preq1, preq2, preq3, . . . , preqn}. To achieve optimal
accuracy and prevent security attacks, edge node is cal-
culate score of each requested local nodes and select M
participants to train the model using federated learning
scheme. The score of each local can be calculated as

follows:

Weightpreqi
= SDi +

1

LT i
+

1

Stacki

Scorepreqi =
N(N − 1)

2
×Weightpreqi

Where N is the number of participants request from
local nodes, Stacki is the rewards earn by each local
node, and LT irepresents the time at which local node
participated last time to generate train model. Stack is
use in the proposed model to reward the local node for
successfully participate to train the model.SDi represents
the standard deviation of the local node participated last
time to generate train model. SD of each local node is
calculate using shared parameters based on local train
model and aggregated parameters of global train model.
It can be defined as follows:

SDi =

∣∣∣∣yi −
∑n

i−1 |yi − ŷi|
n

∣∣∣∣
Second, to preserve the privacy of the each model of

local node, the edge node generate noise for M selected
participants and send to each local participant node by
encrypting with their respected shared public key. In the
proposed model, we use parallel composition differential
privacy technique [29]. We consider the all the local
dataset of M selected participants is a single dataset which
is further partitioned into M disjoint subsets. If there are
M independent mechanism {M1, M2, . . . , Mm} with
privacy guarantee {ϵ1, ϵ2, . . . , ϵm}, the differential of
the function f (M1, M2, . . . , Mm) is

∑M
i=1 ϵi. In case

of parallel composition, the function f is maxi ϵi . Let
suppose LocalDS1 and LocalDS2 are two local training
datasets at local node LT 1 and LT 2 then parallel com-
position differential privacy theorem follows following
property:

Pr [M (LocalDS1) = Subsetn] =∏m
l=1 Pr [Ml (LocalDS2) ;Subset1, Subset2, . . . ,



Subsetl−1 = Subsetl]

≤ exp (ϵ)Pr [Mk (LocalDS2) ;Subset1, Subset2, . . . ,

Subsetk−1 = Subsetk]

m∏
l ̸=k

Pr [Mk (LocalDS1) ;Subset1, Subset2, . . . ,

Subsetk−1 = Subsetk]

= exp (ϵ)Pr [M (LocalDS2) = Subsetn]

Third, all of the selected participating nodes train the
model locally based on their locally available datasets. In
this phase, each selected participating node adds noise in
the parameters of the locally trained model and shares with
the edge node by encrypting with their own private key.
Each shared local parameter is validated within the minor
node at the edge node level and adds a new block with
model parameters aggregated at the edge node off-chain.
The edge node iterates the process to train the aggregate
global model until the accuracy rate reaches the threshold
value or the optimal rate. Once the aggregate global model
achieves an optimal accuracy rate, the edge mode sends
the newly created block with aggregated model parameters
for validation on the peer network. If the block is validated
on the peer network, the edge node sends the newly
created block to add to the distributed blockchain network.
Algorithm 2 presents each of the stages of model forma-
tion. In the proposed model, the edge node also rewards
to each local node for their successfully participation in
the model training process. We discuss the reward model
in the next subsection.

3.4. Reward system

In the proposed model, Stacki represents the rewards
earn by each local node (ni). In the reward system, the
system assign stack to local node for each successfully
participation in the model training process. A reward can
be positive or negative in the proposed system to deal
with the cyber-attacks and make system more robust. In
case of negative reward, the system corresponds to penalty
during the model training process. The system calculates
the reward for each local node participant as follows:

Rewardi =

Size(LocalDSi)Count(preq1,preq2,preq3,...,preqn)×RewardPool//

+ ϑσi

σi =

∣∣∣∣∣yi − 1

m

m∑
j=0

yj

∣∣∣∣∣



ϑ =

{
1If |yi − y| ≤ threshold value

−1Else

Where, Size (LocalDSi) represents the size of the
local dataset of node (ni); RewardPool represents
the reward pool for each successful training model;
threshold value is the value set for penalty. RewardPool

is also depend on the rate of accuracy achieve by the
global model and can be calculated as follows:

RewardPool = ActualRewardPool×Rate of Accuracy

Finally, the stack of each local node update as follows:
Stacki = Stacki + Rewardi. The size of the local
dataset is one of the crucial factors that we have taken
into account in the reward system. The node with a high
volume of local data is more likely to contribute during
the learning model to achieve high accuracy of the global
model.

4. System analysis

4.1. Secure and Robustness

• Secure authentication: The secure authentication
and key exchange are the important issues for
the security of the distributed computing net-
work for IIoT. One of the very first security
requirements for IoT devices is authentication,
that is to say making sure the unit is genuine.
The proposed model to achieve the auditability,
security and the privacy preserving during con-
structing transactions. We use the PUF ID in
the proposed model, which relies on the unpre-
dictability of its response for a given challenge
based on complex interactions with a physical
function. Authentication of IoT device using PUF
ID is secure if for the two input challenges
Challenge1, Challenge2 ∈ (0, 1)

n generate two
responses Response1, Response2 ∈ (0, 1)

n with
at least k variations. Mathematically, the authen-
tication of IoT device using PUF ID is secure it
satisfies the following properties:

Pr [Distance (PUF i (Challenge1) ,

PUFi (Challenge2) > k = 1− τ

Pr [Distance (PUF i (Challenge1) ,

PUFj (Challenge1) > l = 1− τ

Where k and l are the error tolerance thresholds,
τ is a negligibly small value, and Distance rep-
resents the hamming distance.

• Decentralized privacy protection: By integrating
blockchain, federated learning, and differential pri-
vacy in the distributed IIoT network, the pro-
posed model allows decentralized privacy protec-
tion and prevents single point failure. As algo-
rithm 2 shows, with each iteration of processing
of model training, the noise is added to the local
model using a differential privacy technique.

• Decentralized trust and structurally scalable: The
potential features of blockchain technology in the

proposed model remove the high risk of data leak-
age, which is very likely to incur in centralized
trust. In addition, the federated learning feature
to share the parameters of the locally train model
instead of sharing local data improves trust of the
proposed model. It also facilitates the architecture
structurally more scalable by requiring only the
exchange of training updates.

• Secure aggregation : At single point entity, aggre-
gation at a single node is likely to compromise
during a cyber-attack. If the single-node aggrega-
tor is compromised, the attacker can easily control
and poison global model. In the proposed model,
the edge node consists of set of minor nodes to
aggregate the update of the local learning model
received from the local nodes.

• Incentive and profit sharing: As discussed in the
previous section, the reward will be given to each
participant in the proposed model who has suc-
cessfully participated in the training of the global
model. Rewards will be distributed to each partici-
pating node based on the scores of their submitted
updates.

4.2. Security Attacks

• Data poisoning attack: In federated learning, the
resource constrained local node train the model
locally and share model updates while retaining
local training data can allow data privacy and secu-
rity. However, the local node could be exploited by
attackers and inject poisoned data to degrade the
performance of the global model. In the proposed
model, each local node updates is validated with
minor nodes at the edge node. If the local node
updates is drastically different from other local
node updates, the minor nodes at edge node will
not approve model updates. Let suppose if the
attackers compromise the multiple local nodes, it
may difficult to identify the data poisoning attack
at edge node. To address this scenario, when the
edge node create a new block, it must send for
validation to peer network, as indicated in Algo-
rithm 2. The new global model will not update
in the distributed network until the peer network
approves it. If the newly created block is rejected
from peer network, the model will drop from the
off-chain at the edge node and impose a penalty
on each participating local node using the reward
system function.

• Free riding attack: Each local node participant
in federated learning should contribute to train
the global model to achieve a high accuracy rate.
There may be a scenario in which each partici-
pating node could get a reward by pretending to
contributing to train global model. In free riding
attacks, the participating node submits fake up-
dates for a reward, either it does not have enough
data (or cares about data privacy), or it may want
to save local computing resources. In the proposed
model, the reward system function will only re-
ward the participating node when the accuracy rate
of the individual node meets the reward criteria.



If the participating node attempts to launch free
riding attacks by providing false updates, a penalty
will be imposed.

• Malicious participant attack: Sometimes, a mali-
cious participant node submits incorrect informa-
tion to poison the global model and gets lower
performance. In the proposed model, the partici-
pant node will be selected to train global model
based on Scorepreqi

of each node requested. The
model calculate the Scorepreqi

according to the
weight function defined in the previous section.
To deal with the malicious participant attack, the
proposed model will allow a list of limited node
to participate in the training phase of the global
model.

• Model poisoning attack: The main challenges of
the model poisoning attack are how to secure the
local models sent from the local node to the edge
node and how to prevent the model from being
exposed to unauthorized devices and from poi-
soning. In the proposed model, each local model
updates will be send by encrypting with its own
private key generated from their individual PUD
ID. As defined in Algorithm 1, each local node
will keep two pairs of keys: one is use for secure
authentication and data exchange; and the other is
use to participate in the training phase of global
model.

5. Experimental Analysis

5.1. Experimental Setup

In this section, we assess the proposed model to show
the effectiveness and how the model is efficient enough
to provide secure and robust system. We perform the
evaluation of our model on a real world dataset [30]. To
simulate the proposed model prototype, we install Jupyter
notebook, Python 3.7, and Tensorflow 2.0. We consider
the various attack scenarios such as free riding attack,
data poisoning attack, malicious participant, etc. to assess
the effectiveness of the model. To perform the activities
of minor nodes at the local node level, we simulate the
authorization Blockchain on top of a private Ethereum
blockchain network. To configure the local edge node,
we used go-ethereum and installed Mist. We discuss the
different experimental scenarios and the results in the
following subsection.

Figure 2. Rate of accuracy achieved by the proposed model at edge node

Figure 3. Rate of loss of the aggregated model at LR 0.01

Figure 4. Accuracy rate during free riding attack

5.2. Experimental Results

Initially, we created 100 different local nodes and ran-
domly partition the dataset among 100 local nodes. Also,
we generate a proxy dataset based on the dataset available
at local nodes. In the first scenario, we trained the global
model at edge node by considering all the local nodes with
their own local dataset in attack-free environment. We set
the value of hyper leaning rate (LR) at 0.01 and observed
the accuracy and loss of the aggregated model at edge
node. Fig. 2 shows the result of accuracy rate achieved
by the proposed model at edge node. The results indicate
that the aggregated model achieved 0.986 accuracy rate
in 50 iterations (we repeated the steps 10 times to check
the precision of the result). We also present the observed
rate of loss of the aggregated model at LR 0.01 in Fig.
3. As shown in the Fig. 2 and Fig. 3, based on the size
and nature of the dataset at local nodes, we set the initial
threshold value 5 in our experimental analysis. This is a
critical parameter that we need to take into account due
to the distributed and heterogeneous nature of the dataset
at the local node level in real-time application scenarios.

In the second scenario, we assess the effectiveness of
the proposed model in free riding attack scenario. We
randomly select 20 clients and generate values of the
gradient updates matrix to launch free riding attack. We
defined 20 local nodes as clients and assign generated
gradient updates matrix to pretend that they have their own
local dataset that could be used to train the global model.
We observed the accuracy and loss of the aggregated
model at edge node in free riding attack scenario with
LR at 0.01 and initial threshold at 5. Fig. 4 shows the
result of accuracy rate achieved by the proposed model
and base model during free riding attack. As we can see



in Fig. 4, in the base model the accuracy rate fluctuates
with each iteration due to fake updates and achieved a
low rate of accuracy. While in the proposed model, using
the proposed Algorithm 2, the model can mitigate the free
riding attack and achieve a high stable accuracy rate with
each iterations. We also observed the rate of loss of the
aggregated model in Fig. 5.

Figure 5. Rate of loss during free riding attack

Figure 6. Response of proposed model during data poisoning attack

We considered the data poisoning attacks and ma-
licious participants in third scenario. In this scenario,
attacker participate in the training process to submits
incorrect information to poison the global model and
gets lower performance. In our experimental analysis, we
assigned some random clients as malicious participants
and injected poisoned data to launch data poisoning attack.
We observed the behavior of the proposed model in terms
of accuracy rate. We considered two different cases: first,
we selected all the requested local nodes to participate in
the process of training global model; and secondly, we
selected M participants from all requested local nodes
{preq1, preq2, preq3, . . . , preqn} based on the calculated
score of each local requested node. Fig. 6 shows the
result of accuracy rate achieved in both cases. As shown
in Fig. 6, in the first case, where all requested local
nodes participated in the training process, the accuracy
rate highly fluctuates with each iteration and attacker
has successfully lowered the performance of the model.
Whereas, in the second case where the proposed model
selected M participants from all requested local nodes,
succeeded in mitigating the data poisoning attacks without
degrading the performance of the model.

To evaluate the reward system in the proposed model,
we also observed the score received all local node for
successful participation in the model training process. As

we discussed earlier, the reward score of each local node
can be positive or negative based on their contribution in
the model training process. Fig. 7 shows the reward score
received by each local node who participated successfully.
In the experimental analysis, we assigned the value of
ϑ 0.10 to calculate the reward and penalty of each local
node. As shown in Fig. 7, some local nodes have obtained
a negative reward score calculated based on the proposed
reward scheme. This results in ensuring the proposed
model to improve the performance of the global model
and to mitigate the system against cyberattacks such as
free riding, data poisoning, and malicious participants, etc.

Figure 7. Reward score received by each local node who participated
successfully in learning process

Experimental results show that the efficiency of the
proposed model and the reward system allow the system
to be safer and more robust. Furthermore, the global
model updates are validated and stored in the distributed
Blockchain network rather than on a single central server,
which makes the system more secure, transparent, and
robust compared to the legacy network architecture.

6. Conclusion

The integration of the blockchain technology and col-
laboration learning approach such as federated learning
has attracted considerable attention in recent years and is
a promising a way to build secure and robust computing
architecture for IoT network. But, cyber resilience be-
comes a critical obstacle and needs to addressed to realize
the system capable of handling real-world application
scenarios. In this work, we proposed distributed com-
puting architecture using the features of blockchain and
federated learning to build secure and robust system. The
model introduced an efficient lightweight authentication
scheme and learning methods to train the global model
by participating the local nodes in the learning process.
The model also proposed reward system to reward and
penalize the participating nodes in order to obtain high
performance of the global model. The experimental results
are promising and effective in mitigating cyber-attacks.
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