
ar
X

iv
:2

20
1.

02
52

9v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

4 
M

ar
 2

02
2

Frozen dynamics of a breather induced by an

adiabatic invariant

Antonio Politi1, Paolo Politi2,3, Stefano Iubini2,3

1 Institute for Complex Systems and Mathematical Biology & SUPA University
of Aberdeen, Aberdeen AB24 3UE, United Kingdom
2 Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via
Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
3 Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1
I-50019, Sesto Fiorentino, Italy

E-mail: a.politi@abdn.ac.uk, paolo.politi@cnr.it, stefano.iubini@cnr.it

Abstract. The Discrete Nonlinear Schrödinger (DNLS) equation is a
Hamiltonian model displaying an extremely slow relaxation process when discrete
breathers appear in the system. In [Iubini S, Chirondojan L, Oppo G L, Politi A
and Politi P 2019 Physical Review Letters 122 084102], it was conjectured that the
frozen dynamics of tall breathers is due to the existence of an adiabatic invariant
(AI). Here, we prove the conjecture in the simplified context of a unidirectional
DNLS equation, where the breather is “forced” by a background unaffected
by the breather itself. We first clarify that the nonlinearity of the breather
dynamics and the deterministic nature of the forcing term are both necessary
ingredients for the existence of a frozen dynamics. We then derive perturbative
expressions of the AI by implementing a canonical perturbation theory and via
a more phenomenological approach based on the estimate of the energy flux.
The resulting accurate identification of the AI allows revealing the presence and
role of sudden jumps as the main breather destabilization mechanism, with an
unexpected similarity with Lévy processes.
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1. Introduction

The dynamical slowing down of relaxation in a macroscopic system has received great
attention in the literature since the pioneering numerical experiments of Fermi, Pasta,
Ulam and Tsingou (FPUT) [1]. In this case, the low-temperature slow dynamics and
the related ergodicity-breaking mechanism can be attributed to the vicinity of the
FPUT model to the integrable Toda chain [2]. In the opposite high-temperature limit,
energy concentration on a single or few lattice sites has been found to produce similar
slowing down effects. These are due to effective decoupling between the localized hot
spot and the rest of the system. As an example, in the rotor chain, it was found
that in this limit, ergodization time becomes anomalously larger than the Lyapunov
time, i.e. the characteristic chaotic time scale [3]. Similar nonergodic behavior was
also found in the Klein-Gordon lattice [4] and in a harmonic model with hard-walls
pinning potential [5].

In this paper, we focus on the Discrete Nonlinear Schrödinger (DNLS)
equation [6], a classical Hamiltonian model used to study nonlinear propagation
in discrete media when dissipation is negligible. This includes electronic transport
in biomolecules, wave propagation in photonic crystals, trapped ultracold gases,
and magnetic systems. The presence of two conservation laws (mass density a
and energy density h, see Sec. 2 for a precise definition) determines a non trivial
microcanonical phase diagram, characterized by an infinite temperature-line at finite
energy, hc(a) = 2a2. The first study of the equilibrium properties of the DNLS
equation is due to Rasmussen et al. [7], who discuss the statistical mechanics for
h ≤ hc within the grandcanonical ensemble (more recent studies can be found in
Refs. [8, 9, 10, 11]).

Below hc, standard equipartition and equivalence of ensembles occur and
equilibrium states are characterized by a positive temperature 0 ≤ T < ∞. Above hc,
equipartition is broken by the emergence of spatially localized discrete breathers on
top of a chaotic background. In this region, the system is expected to relax towards
an equilibrium state where a finite fraction of the whole energy, equal to (h− hc)/h,
is localized on a single site [12, 13, 14, 15]. Hence, it is natural to interpret hc(a)
as a condensation transition-line. Numerical microcanonical simulations, however,
have revealed the existence of a region above hc, characterized by a negative
microcanonical temperature, where breathers are continuously born and die [16]. The
very existence of this seemingly stationary behavior, although confirmed in Ref. [17], is
challenged by the theoretical analysis performed in the limit of a negligible interaction
energy [18, 19]. In fact, by means of equilibrium large-deviations techniques, it has
been proven that stationary delocalized states persist up to h∗ = 2a2 + c1/N

1/3

(c1 being a positive constant). Accordingly, stationary ergodic states are a finite-
size effect nevertheless observable for large system sizes and associated to negative
microcanonical temperatures.

If the equilibrium properties of the DNLS equation are more or less understood,
nonequilibrium dynamics and relaxation processes are much less so. Simplified
stochastic versions of the DNLS equation show a condensation process occurring via a
coarsening dynamics [20] where the “extra energy” is concentrated in a certain number
of localization sites, whose density ρ decreases as a power-law with a subdiffusive
exponent [21]. On the other hand, numerical simulations of the full DNLS equation,
performed above the critical line show an almost frozen state rather than a coarsening
process.
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Studying dynamics for h > hc is not easy because of the strong finite-size
corrections, which induce a delocalized phase up to h∗. Since the slowness of the
relaxation processes is essentially due to the weak exchange of energy of the breathers
with the surroundings, it is more convenient to analyze the relaxation of a breather
interacting with a thermal background in the region 0 < T < ∞. Using this setup, i.e.
studying the relaxation time τb0 of a single breather of initial mass b0, it was found [22]
that τb0 increases exponentially with b0, τb0 ≃ exp(cb0). Long breather life-times in
the DNLS equation are known since a long time [23], but the earlier studies focused
exclusively on a setup where the background is very small and thereby characterized
by a regular dynamics. Hence the breather stability is controlled by entirely different
mechanisms.

In Ref. [22], it was conjectured that the slow relaxation follows from the presence
of an adiabatic invariant (AI), i.e. of a quasi-conserved quantity. The idea is natural,
since we are in the presence of a Hamiltonian system with two well separated time
scales: that of the chaotic background activity and the fast rotation of the breather.
However, in Ref. [22] we were unable to substantiate our conjecture because we limited
to identify the lowest-order approximation of the AI with the breather energy.

In this paper we revisit the problem, by considering a simplified setup where
the coupling between the breather and the rest of the system, i.e. the incoherent
background at T > 0, is unidirectional (UC model): this means that the breather
feels the evolution of the background but not vice-versa. The UC model has the
same frozen dynamics as the full DNLS, therefore reassuring about the generality
of its results. More precisely, using the UC model we are able to demonstrate that
slow dynamics appearing in DNLS is due to the presence of an AI. This result is
obtained in two steps: first, we clarify the role of the stochastic-like dynamics of the
background, as well as the nonlinear nature of the breather rotations; second, we
perform a rigorous perturbative analysis, deriving explicit expressions of the AI at
higher orders of approximation. This analysis is also possible because we can perform
faster simulations, allowing a precise test of our predictions.

A summary of the content of the paper follows. In Sec. 2 we introduce the full
DNLS model and its unidirectional counterpart, and we justify the UC model. In
Sec. 3 we show that the nonlinear as well as the deterministic character of the model
are necessary ingredients to ensure frozen dynamics. In Sec. 4 we present two methods
to derive perturbative expressions of the AI in the UC model. The former one is based
on the canonical perturbation theory. The latter is based on the reformulation of the
energy flux (out of the breather) as the time derivative of a stationary function. In
Sec. 5 we analyze the different perturbative orders of the AI and make use of the
AI expression to analyse numerically the diffusion of the breather energy. In the last
Sec. 6 we discuss the main results and mention the open questions.

2. From the full DNLS model to its unidirectional version

The DNLS equation is a phenomenological model having the form

iżn = −2|zn|2zn − zn+1 − zn−1 ≡ − ∂H

∂z∗n
, (1)

where zn are complex variables, n is the index of the lattice site, and

H =
∑

n

(

|zn|4 + z∗nzn+1 + znz
∗
n+1

)

(2)
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is the total energy, which is conserved. There is a second exactly conserved quantity,
the total mass A =

∑

n |zn|2, because of the invariance of H under global phase

rotations (zn → zne
iφ̄).

If h = H/N and a = A/N (N being the total number of sites) are respectively
the energy and mass densities, it is known that h = h0 ≡ a2 − 2a corresponds to
zero-temperature states, while along the line h = hc ≡ 2a2 the temperature is infinite.
Finite, positive temperatures are found in between the two lines. The relationship
between mass-energy (a, h) and chemical potential-temperature (µ, T ) representation
is discussed in [7, 8].

In this paper we study the unidirectional coupling model, UC-DNLS, assuming
that the breather placed on site n = 0 feels the neighbouring sites n = ±1, whereas
the latter do not feel the breather, see Fig 1(a). This amounts to modify Eq. (1) in
such a way that the coupling term zn−1 (zn+1) is removed for n = 1 (n = −1). More
precisely, the evolution equations are

iż0 = −2|z0|2z0 − z1 − z−1 (a) n = 0, breather dynamics
iż±1 = −2|z±1|2z±1 − z±2 (b) n = ±1
iżn = −2|zn|2zn − zn+1 − zn−1 (c) |n| ≥ 2

(3)

Accordingly, while the original DNLS model, Eq. (1), is globally a Hamiltonian
system, the UC-DNLS model is composed of two subsystems that interact
unidirectionally. In detail, the breather dynamics is governed by a time-dependent
Hamiltonian, see Eq. (3a), where z±1(t) are external forcings. On the other hand, the
background, which has the standard DNLS form, is decoupled from the site n = 0
hosting the breather, see Eqs. (3b,c). Altogether, this is a so-called master-slave
configuration.

We can study the problem of breather relaxation in both full- and UC-DNLS,
by assuming that a breather of mass b0 is initially present at site n = 0, i.e.
|z0(t = 0)|2 = b0, and that the chain ends n = ±N0 are attached to thermal reservoirs.
In this study we have implemented a single Langevin heat bath [24] on site n = N0

and assumed periodic boundary conditions at the chain ends, i.e. zN0
= z−N0

. Hence,
for given (T, µ)-values, we have modified Eq. (3) for site N0 as follows,

iżn = (1 + iγ)
[

−2|zn|2zn − zn+1 − zn−1

]

+ iγµzn +
√

γTη(t) (n = N0), (4)

where γ is the coupling strength of the reservoir and η(t) is a complex Gaussian white
noise with zero mean and unit variance. Simulations were performed with γ = 1 and
the chain half-length (N0 = 15) was chosen to be sufficiently large to avoid spurious
effects of the stochastic heat bath dynamics on the breather site ‡. In the following we
assume that the background is thermalized with a mass density a ≃ 1 and that b0 ≫ 1.
Notice that the finite value of a does not allow one to approximate the background
as a harmonic chain. In other words, the breather interacts with a fully nonlinear,
chaotic DNLS system [25], whose dynamics is not analytically treatable.

In the UC model, the background activity can be safely integrated by using a
standard time step, thus allowing for much faster simulation times: the only point that
needs to be treated with care is the “synchronization” of the background dynamics

‡ As clarified in section 3, a direct interaction (N0 = 0) of the breather with a stochastic signal, as
for example the reservoir, destroys the freezing effect. In Ref. [22] it was verified that for N0 ≥ 9 this
effect is negligible and that breather lifetimes are independent of N0.
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Figure 1. (a) A typical mass profile displaying a breather on site n = 0
(cyan bar) and an incoherent background (n 6= 0, grey bars). Left and right
insets depict exact and unidirectional couplings between the breather site and
the neighboring ones, respectively. (b) Example of evolution of the mass of a
breather with exact (blue line) and unidirectional coupling (red line) and same
initial conditions. Simulations are performed with T = 10, µ = −6.4 and N0 = 15.

with that breather rotation, which requires smaller time steps. The numerical
approach is discussed in Appendix A.

Before discussing the model, we wish to show that it is indeed able to reproduce at
least qualitatively the freezing observed for large breathers in the original DNLS model.
Two time traces of the breather mass corresponding to simulations of the DNLS
equation (blue line) and of the UC equations (red line) are reported in Fig. 1(b) for
the same thermodynamic configuration of the background. Given the relatively large
time spanned in this figure, one has the qualitative impression that the feedback of
the breather towards the background is negligible in this regime. Strictly speaking, we
must expect differences. For instance, within the UC model, the breather is not allowed
to jump on the neighbouring sites, whereas breather jumps can occur in the original
DNLS model when the background amplitude is occasionally comparable to that of
the breather itself. The sporadic formation of “dimers” (i.e. transient bound states
where the breather is delocalized over two lattice sites) [26] is another phenomenon
that cannot emerge in the UC setup. Nevertheless, it was already argued [22] that
both phenomena become super-exponentially rare for increasing b0, therefore they
are not the most important ingredients of the breather relaxation dynamics. In this
sense using the UC model even has the advantage to get rid of processes (jumps and
dimer formations) that are asymptotically irrelevant but that can mix with other,
more relevant processes when the system size is finite. Further considerations on the
correspondence between the UC and DNLS are discussed in the conclusions.
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3. Necessary ingredients for frozen dynamics

In the UC model the breather is a nonlinear rotator (its frequency depends on its mass)
which feels the external signal w(t) = z−1(t)+ z+1(t), where z∓1(t) is the background
signal at fixed temperature 0 < T < ∞. To better understand the role of breather
nonlinearity, we discuss a simplified version of the problem in Eq. (3) in which the
breather dynamics is linearized

ż = iω0z + w(t), (5)

where ω0 = −2|z0|2 represents the frequency of the breather, now assumed to be
constant and determined by the initial condition for the breather mass |z0|2 = |z(t =
0)|2. The solution for z(t) is trivial,

z(t) = z(0)eiω0t +

∫ t

0

dt′eiω0(t−t′)w(t′) , (6)

from which we obtain the time dependence of the mass,

m(t) = |z(t)|2 = |z(0)|2 +
∫ t

0

dt′
∫ t

0

dt′′eiω0(t
′′−t′)w(t′)w∗(t′′) +

+ z(0)

∫ t

0

dt′eiω0(t−t′)w(t′) + c.c. (7)

The quantity of interest is
∆m(t) ≡ m(t)−m(0) (8)

which should be averaged over espite it neitherthe external signal w(t). Since w(t)
has no preferential orientation, 〈w(t)〉 = 0 and we obtain

〈∆m(t)〉 =
∫ t

0

dt′
∫ t

0

dt′′eiω0(t
′′−t′)C(t′′ − t′), (9)

where C(t) ≡ 〈w(0)w∗(t)〉.
Taking the time derivative of both sides, we obtain

∂

∂t
〈∆m(t)〉 =

∫ t

0

dt′′eiω0(t
′′−t)C(t′′ − t) +

∫ t

0

dt′eiω0(t−t′)C(t− t′) =

=

∫ t

−t

dτeiω0τC(τ) → S(−ω0). (10)

Therefore, for large times
〈∆m(t)〉 = S(−ω0)t. (11)

In conclusion, in the linear rotator model, the breather mass feels a drift whose
coefficient is the component of the power spectrum of the external signal at the
breather frequency, S(−ω0) = S(2|z0|2). It is therefore useful to determine the power
spectrum of the background signal w(t) = −z1 − z−1 sampled at equilibrium in the
absence of breathers.

The spectrum for T = 10 and µ = −6.4 (these thermodynamical parameters
set a ≃ 1 for the background chain) is shown in Fig. 2. First of all we note that
the spectrum is not symmetric, S(ω) 6= S(−ω), because z(t) is not real and the
single oscillators rotate on average anti-clockwise. Second, and most importantly,
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Figure 2. Power spectrum of w(t) = z1(t) + z−1(t) for T = 10 and µ = −6.4.
(a) It decays exponentially for ω < ωc. (b) For larger values of ω it decays as a
power law, S(ω) ∼ 1/ω2, see the full red line. The dotted black curve corresponds
to the background spectrum for the full DNLS model, see the main text.

S(ω) decays exponentially until a crossover frequency ωc numerically found to be
around 30, then it decays as a power law with exponent equal to two.

This means that for large masses the dynamics of the linear model slows down as a
power law and therefore this model cannot explain the observed frozen dynamics. For
the sake of openness, one should expect that in the original framework the background
activity in the vicinity of the breather may be affected by the breather itself (even
though as a first approximation the breather can be replaced by a boundary condition
with an empty site). To clarify this point, in Fig. 2(b) we have added the corresponding
power spectrum for the full DNLS model (see the dotted black curve with spikes),
which is, in fact, very close to the UC one, except for a few localized features. The
most valuable deviation is the peak at the breather frequency (the double of the
breather mass, set to be b0 = 26). In spite of its height, its power is less than 1%
of the total power and so, essentially irrelevant. Moreover, we cannot expect that an
additional frequency component can slow down the breather dynamics. If it is going
to play a role is by facilitating the energy transfer. A second yet minor deviation
is the peak at twice the breather frequency: it is an expected harmonic, due to the
nonlinearity of the background dynamics. Finally, notice the small peak at a lower
frequency (≈ 11). It may be due to the sporadic formation of localized states which
involve the breather (e.g. dimers) [22]. Anyway, this is a minor deviation which does
not modify the overall general scenario. Altogether we can conclude that we cannot
approximately treat the breather as a linear oscillator and it is thereby necessary to
reintroduce its nonlinear character as from Eq. (3) for n = 0.

In order to identify those elements that are strictly necessary to induce a frozen
dynamics, we considered yet another approximate model by replacing the forcing
term w(t) = z1(t) + z−1(t) with a purely stochastic signal characterized by the same
power spectrum. This has been done by computing the Fourier Transform of w(t),
randomizing the phases of the Fourier modes, and anti-transforming it.§ As shown in
Fig. 3, the breather dynamics resulting from the stochastic model (see the red curve)
is significantly more erratic than the deterministic one (black curve). We can therefore

§ More precisely, in order to generate very long signals, the transformation has been computed
separately in sequential intervals, and consecutive samples have been thereby reconnected to make
them sufficiently smooth.
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Figure 3. Time evolution of a breather of initial mass b(0) = 26 and initial
energy equal to b2(0) = 676 for the deterministic model (black full line) Eqs. (3),
and for the nonlinear stochastic model (red dotted line), see the main text.

conclude this section saying that both the nonlinearity of the breather site and the
nonstochastic character of the background are essential to induce frozen dynamics.

4. Derivation of adiabatic invariants

4.1. Canonical adiabatic theory

The main message of this subsection is that the dynamical evolution of the breather
can be rewritten into an Hamiltonian form, thus allowing for the application of the
canonical perturbation theory and thereby deriving the first three orders of the AI.

The UC dynamics of the breather, see Eq. (3a), can be derived from the following
time-dependent Hamiltonian,

Hb = |z0|4 + z0(z
∗
1 + z∗−1) + z∗0(z1 + z−1), (12)

where z±1 depend on time and represent the external signal acting on the breather.
Using the canonical representations z0 =

√
beiθ (the mass b is p−type and the phase θ

is q−type), z±1 = (p±1 + iq±1)/
√
2, and defining the quantities λ and α through the

relations λ sinα = (p1 + p−1) and λ cosα = (q1 + q−1), we can rewrite

Hb = b2 + λ(t)
√
2b sin(θ + α(t)), (13)

where λ and α encode the time dependence of the “external” signal.
If we define the rescaled variable J = b/b(0) ≡ b/b0, the new Hamiltonian is

K = Hb/b0, i.e.

K = b0

[

J2 +
1

b
3/2
0

λ
√
2J sin(θ + α)

]

. (14)

By now introducing the smallness parameter ǫ ≡ 1/b0, we obtain

K =
1

ǫ

[

J2 + ǫ3/2λ
√
2J sin(θ + α)

]

≡ 1

ǫ
H. (15)
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By then rescaling time, t0 = t/ǫ, we can write the Hamilton equations as

∂θ

∂t0
=

∂H

∂J
,

∂J

∂t0
= −∂H

∂θ
. (16)

For ease of notation and without risk of confusion, we redefine the time t0 as t, so we
finally have to analyze the Hamiltonian

H = J2 + ǫ3/2
√
2Jλ(ǫt) sin(θ + α(ǫt))

≡ H0(J) + ǫ3/2H1(J, θ, ǫt), (17)

which has the standard form to be treated perturbatively. Before proceeding, let
us remind that the true breather Hamiltonian is Hb = H/ǫ2 = b20H and that in
Eq. (17) there are two time scales, t and ǫt: the former (t) corresponds to the breather
rotation and to the consequent oscillations of the breather mass (because the model
is nonlinear); the latter (ǫt) is the “old” time t and corresponds to the dynamics of
the background, therefore to the forcing λ(ǫt) and α(ǫt).

According to the canonical adiabatic theory [27], the goal of the perturbative
approach is to find a canonical transformation

(J, θ) → (J̄ , θ̄) (18)

such that the new Hamiltonian H̄ is independent of θ̄ up to some order in ǫ. The
corresponding action variable J̄ will be the sought after adiabatic invariant AI. We
should stress that the series defining the AI is asymptotic [27]. This means that for a
given (initial) mass of the breather, i.e. for fixed ǫ, the series defining the AI improves
up to a certain order n∗, getting worse afterwards.‖ The details of the calculation up
to the second perturbative order are given in Appendix B. Here we limit to sketch the
method and to give the final expression.

Since H0 does not depend on θ, see Eq. (17), at zero order J̄ = J , and we
need to use a canonical transformation which reduces to the identical transformation
for ǫ = 0. Therefore, the starting point is the generating function of such identical
transformation, SI(J̄ , θ) = J̄θ. As shown in Appendix B, once we restore all the
physical quantities, the final expression of AI at the second perturbative order is

b0J̄ = b+ λ
1√
2b

sin(θ + α) +
1

(2b)3/2
∂

∂t
[λ(t) cos(θ + α(t))] . (19)

It is useful and also preparatory to the next section to take the square of the AI,
obtaining

Q ≡ (b0J̄)
2 = b2 + λ

√
2b sin(θ + α) +

1√
2b

∂

∂t
[λ(t) cos(θ + α(t))] + o

(

1√
b

)

. (20)

To avoid complicated notations we simply use the quantity Qk to mean Q up to terms
of order ǫk ∼ b−k. So, for example,

Q−2 = b2 (21)

Q−1/2 = Q−2 + λ
√
2b sin(θ + α) (22)

Q1/2 = Q−1/2 +
1√
2b

∂

∂t
[λ(t) cos(θ + α(t))] . (23)

‖ This is the way the physical system is telling us that an exact invariant exists only for ǫ → 0. If
the series was convergent for ǫ < ǫc there would be a new conserved quantity for finite ǫ.
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We remark that Q−2 is the square of the mass, i.e. the self-energy of the breather,
while Q−1/2 is the full energy of the breather,¶ see Eq. (13) for Hb.

4.2. Energy flux estimation

Despite the procedure to go beyond k = 1/2 within canonical adiabatic theory is
well defined, calculations quickly become arduous. To overcome this problem, we
implement here a more efficient method based on the derivation of better and better
approximations of the energy flux at the breather site.

It is natural to refer to an energy-like variable, since this is the physical dimension
of the square of the AI J̄ (called Q). Moreover, Q−1/2 = Hb because when the
parameters λ, α are constant Hb is trivially conserved, dHb/dt = 0.

The idea is to decompose the time derivative Ḣb into the sum of a leading
term, expressed as the time derivative of a suitable observable L and a higher-order
correction term,

Ḣb = L̇+R, (24)

so that Hb−L fluctuates less than Hb and it is a better approximation of the AI. One
can then repeat this approach by decomposing R and so on – see [28] for a rigorous
discussion of analogous techniques. This way, we obtain the various Qk approximants
for increasing k, which coincide with the canonical adiabatic expressions (21,23) for
k ≤ 1

2 . The mathematical details of the method are illustrated in Appendix C, here
we limit to write explicitly the next order of Q,

Q3/2 = Q1/2 +

[

i

4
√
2b3/2

eiθ
∂2

∂t2
(

λeiα
)

+ c.c.

]

, (25)

because Q3/2 will be used to produce most of the results of this paper.+

As a preliminary, qualitative result, in Fig. 4 we compare the time fluctuations of
Q−1/2, Q1/2, and Q3/2 for a breather with initial mass b0 = 27 and a background chain
with T = 10. Clearly, despite the presence of the incoherent background dynamics,
we obtain a manifest reduction of fluctuations for increasing orders of approximation
of Qk.

5. Quantifying frozen dynamics

A quantitative analysis of the scaling of the fluctuations of Qk with the breather mass
b0 is presented in Fig. 5, where we plot the maximal variation of Qk(t) over a time
interval equal to the ratio between slow and fast scales [29], namely 1/ǫ = b0. More
precisely, we plot

∆k ≡
〈

maxt∈(t0,t0+b0)|Qk(t)−Qk(t0)|
|w|

〉

(26)

where the angular brackets denote an average over different realizations, while the
overline in the denominator means an average over the time interval [t0, t0 + b0].

¶ This result was obtained in Ref. [22] for the full, bidirectional DNLS model with the caveat that in
such case the term proportional to λ was 1/2 of this, because in the full model the coupling between
the breather and the neighbouring sites appears twice.
+ Notice that the evolution equations of the background chain allow expressing the time derivatives
of the external signal ∂n

t λ(t), α(t) appearing in Qk in terms of the background variables
[

z±1(t), z±2(t), · · · , z±(n+1)(t)
]

and of their complex conjugates.
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Figure 4. From top to bottom: Q−1/2(t), Q1/2(t), and Q3/2(t) (Q−2 is not
plotted because its fluctuations are too large). Q1/2(t) and Q3/2(t) have been
vertically shifted for clarity. The time evolution refer to a breather of initial mass
b(0) = 27. Simulations correspond to T = 10 and µ = −6.4.

∆k appears to decrease as b−χ
0 where χ is in principle the order of the successive

term to k in the perturbative expansion. This is approximately true for ∆−1/2

(χ = 0.4) and for ∆1/2 (χ = 1.34). It is no longer true for ∆5/2 which, although
being smaller than ∆3/2, decreases with the same rate, if not slower. We comment
more on this issue in the following section.

Once clarified the behavior of Qk’s for increasing k, we can focus on their long-
term fluctuations to determine whether and how they grow in time. In the following we
will make reference to Q3/2, which provides an accurate approximation of the adiabatic
invariant for the breather masses investigated in this paper and is computationally less
expensive than Q5/2.

Let δQ3/2(t, τ) = Q3/2(t + τ) − Q3/2(t) denote the variation of Q3/2 from t to
t+ τ . Upon assuming that the evolution of Q3/2(t) is a stationary process (this point
will be discussed later), we consider the second moment

Σ2
3/2(τ) =

(

δQ3/2(t, τ)
)2

= (Q3/2(t+ τ)−Q3/2(t))2 , (27)

where the overbar denotes again an average over time t. In practice, Σ2
3/2(τ) is a

measure of the accuracy of our approximate AI expression as a function of time. Due to
the absence of exact additional conservation laws arising from the breather dynamics,
one expects Σ2

3/2(τ) to grow with τ , as shown in Fig. 6(a) from simulations performed

for b0 = 22. More precisely, after an initial transient, where Σ2
3/2(τ) rapidly increases

from zero towards an approximately constant value (see the inset), we have a diffusive
regime, testified by a clean linear behavior as reported in the main panel (a). We can
therefore extract the diffusion coefficient D3/2 = Σ2

3/2(τ)/(2τ) and thereby investigate

its dependence on the breather mass. The results are reported in Fig. 6(b), where we
see that the diffusion coefficient decreases exponentially with b0, D2 ≃ D∗ exp(−cb0),
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Figure 5. The maximal variation of Qk(t) over a time interval b0 versus b0,
scaled with respect to the average value of the forcing signal (see the main text).
From top to bottom: k = −1/2, 1/2, 3/2, 5/2. Each point is an average over 600
temporal blocks, sampled any dt = 0.4. Dashed lines are best fits whose slopes
are given in the legend.

with c ≃ 1.07. From a numerical point of view this is the most convincing evidence of
the frozen dynamics of the UC model.

In order to shed some light on the underlying diffusion mechanism, in Fig. 7 we
plot Q3/2(t) over a time interval much longer than in Fig. 4 (see the upper black
curve). The fluctuations are strongly asymmetric and characterized by several spikes,
but the most relevant feature is the presence of jumps, which are the main source
of the diffusion process. A priori, one might qualitatively expect the jumps to be
associated with occasional large w-values, since these bursts likely have a stronger
impact onto the breather amplitude. It is not however easy to transform this natural
feeling into something quantitative. The best proxy we have found is the ratio between
the background and the breather instantaneous frequency ωbg/ωbr = |w(t)|2/|b(t)|2
(see the lower curve in Fig. 7, suitably scaled to allow for a clear comparison with
the behavior of Q3/2). The comparison confirms the intuition that jumps and spikes
are correlated with the occurrence of large fluctuations in the background. Moreover,
this explains the asymmetry: only a large background can reduce significantly the
separation of time scales required for the existence of an AI.

A more complete characterization of the diffusion process is obtained by looking
at the probability distribution of δQ3/2(τ). Three distributions (properly rescaled
to the same width) detected at different times are presented in Fig. 8. The average
is statistically indistinguishable from zero, suggesting that if a drift is present, it is
negligible.

Instead of resembling Gaussians (as expected for a genuine diffusive process),
they resemble more Lévy distributions. In fact, by looking at the evolution of Q3/2 in
Fig. 7, it is natural to see it as a series of jumps followed by steady quiescient periods.
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Figure 6. (a) The variance of the fluctuations of Q3/2 over an increasing time
interval τ , for b0 = 22. Inset: detail for τ . 10 (notice that the horizontal scale is
logarithmic). The variance initially increases to attain an approximately constant
value. Main: 10 ≪ τ ≤ 20000. The variance has a neat linear increase (the solid
line is a fit) which allows to define a precise diffusion coefficient D3/2(b0) through

the relation Σ2
3/2

(τ) = 2Dτ . (b) The diffusion coefficient D3/2(b0), derived for

different initial masses of the breather. The fitted slope is -1.07.
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Figure 7. Upper curve (black): the quantity Q3/2(t). Lower curve (cyan): the

ratio ωbg/ωbr = |w(t)|2/|b(t)|2. The initial mass of the breather is b(0) = 27.
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Figure 8. The probability distribution function P (δQ3/2) for the variation of
Q3/2 over a time τ for three different values of τ (full lines, see legend). Dashed
line: probability distribution function for δx ≡ xn+1 − xn and α = 2.2, see the
main text.

Accordingly, one can think of the following schematization: a discrete-time stochastic
process

xn+1 = xn + ξn (28)

where ξn is a random variable distributed as ξ−α in the range [1,∞). The resulting
distribution for α = 2.2 is presented in Fig. 8: it overlaps very well with the curves
obtained from the UC model over three decades.

Without pretending that such a toy model exemplifies the diffusion of the
AI, we can nevertheless observe that the exponent α being larger than 2 implies
that a standard diffusion is eventually expected (as indeed suggested by the direct
simulations). The deviations from a Gaussian are simply finite-size effect: much longer
times would be required to see a normal distribution. This slow convergence represents
a further obstacle to a more accurate comparison with Lévy-like processes.

6. Discussion and open problems

The presence of a breather in the system induces the existence of two distinct time
scales in the problem: (i) a slow time scale of order one for the dynamics of the
background; (ii) a fast time scale of order 1/b, i.e. the rotation period of a breather
of mass b. The ratio between these time scales defines a smallness parameter ǫ = 1/b,
which allows to approach the relaxation dynamics perturbatively. In Ref. [22] we
considered the full DNLS Hamiltonian H and searched for an approximate constant
of motion Q, imposing that their Poisson bracket vanishes, {Q,H} = 0. However, we
were unable to go beyond the first perturbative order at which Q coincides with the
breather energy Hb. For this reason, in this paper we have approached the problem
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with a simplified unidirectional model, where the interpretation of slow dynamics
in terms of an AI is more transparent. In this model, the background has its own
dynamics, and it does not feel the breather, while the latter feels the dynamics of the
background which acts as an external signal. The AI comes into play when otherwise
constant parameters acquire a slow time dependence. In our case, the “constant
parameters” are the z±1-amplitudes in the breather neighbouring sites. Meanwhile,
the breather is a nonlinear rotator whose rotational frequency equals two times its
mass.

If z±1 are constant, the breather mass oscillates periodically at the same high
frequency of its rotation. If z±1 slowly depend on time (slowly with respect to the
intrinsic frequency of the breather) it is natural to conjecture that an AI exists much
in the same way it exists either for a pendulum with slowly varying length [30], or for
a free particle in a box of slowly varying size [29]. Here, with the help of canonical
perturbation theory, we have been able to determine different approximations of the AI
which, as usual, can be identified with a suitable action variable. Equivalent results
have been obtained by following a perhaps more intuitive approach, based on the
analysis of the energy flux. The very existence of an AI provides a solid foundation
for a full understanding of the frozen breather dynamics in the DNLS equation.

An exact AI cannot exist for a finite ǫ, as this would imply the existence of
stationary breathers over infinite time scales. Mathematically, this is a consequence
of the asymptotic nature of the perturbative expansion of the AI, i.e. the fact that
the expression of Q (the AI) can be improved only up to a certain order n∗: going
beyond n = n∗ makes Q more fluctuating. Our simulations (see Fig. 5) show that
the improvement obtained in passing from k = 2 to k = 5/2 does not advance
upon increasing b (decreasing ǫ), as if n∗ was independent of ǫ. This result sounds
anomalous, since it suggests that the “quality” of the expansion does not improve when
the breather amplitude increases. Performing simulations for significantly larger values
of the breather mass might clarify this point but they would require exceedingly long
computation times.

A better understanding of the AI violation may come from a detailed identification
of the mechanisms responsible for the jumps observed in Fig. 7. In our previous study
of the full DNLS model [22] we identified a possible mechanism in the formation of
bound states such as dimers, induced by rare mass fluctuation in a site close to the
breather. Dimers are almost decoupled from the rest of the system, and its two sites
exchange periodically mass and energy. At a certain point the dimer breaks and may
release energy towards the background. However, as argued in [22], the frequency of
this phenomena is so small that the breather lifetime would be super-exponential with
its mass rather than simply exponential as numerically observed. In the UC model,
dimers cannot form at all (they need a bidirectional coupling between breather and
background) and yet, we have seen that the breather life-time is exponentially long,
confirming the previous intuition that the basic mechanisms should be searched for
elsewhere. Fig. 7 suggests the AI jumps are due to anomalously large value of the
frequency in the neighbouring sites. The distribution of δQ displayed in Fig. 8 reveals
a similarity between the evolution of the AI and a Lévy process at the borderline
between normal and anomalous diffusion. However, we have not been able to identify
in a quantitative way the specific nature of the events which induce AI-variations; this
is still an open problem.

Another open issue concerns the drift of the breather mass. In the full DNLS
model, it is clear that in the thermal region (h < 2a2), the breather amplitude
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is expected to decrease, because the equilibrium state does not present breathers
at finite, positive temperature. Once we pass to the UC model, the Hamiltonian
is time-dependent, and breather relaxation is not necessarily induced by general
thermodynamic principles. In the stochastic models discussed in [20, 21] it is possible
to prove that the breather is still absorbed in the case of unidirectional coupling. For
the deterministic UC-DNLS model herein studied numerics is not convincing. The
average value of the distribution displayed in Fig. 8 is not distinguishable from zero.
Simulations performed for a smaller amplitude (b = 20) suggest a weak negative drift
(around −2× 10−6). A more refined analysis is necessary.

Finally, among the possible open perspectives, it would be interesting to
investigate whether a similar freezing mechanism involving AI’s arises also in other
classes of oscillators models, as the already mentioned Klein-Gordon model or the rotor
chain. Indeed, despite their different symmetries and the absence of an equilibrium
condensed phase, these models can sustain stable breather states for large enough
energy densities, as in the DNLS equation.
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Appendix A. Integration algorithm

In this Appendix we present the optimized integration method employed for numerical
evolution of breathers with very large mass in the UC model. In this limit, standard
integration routines such as the Runge-Kutta algorithm become quickly very inefficient
due to the large separation of time scales between breather and backgrounds. On the
one hand, the integration of the breather site would require a very small time step dtb
in order to sample accurately the fast dynamics. On the other hand, the background
dynamics is essentially frozen over this timescale.

To overcome this problem, we derive here a specific integration scheme which
exploits the unidirectional nature of the breather-background interaction. The
background is evolved with a time step dt suitably chosen to ensure a desired accuracy
of the integration over the background degrees of freedom. For the regimes explored
in this paper, one has dt ≫ dtb. The unidirectional breather evolution is thereby
implemented as a suitable symplectic integration.

More precisely, we perform a piecewise constant approximation of the external
background signal w(t),

w(t) = wn ndt ≤ t < (n+ 1)dt, n ∈ N (A.1)

where wn = w(ndt) is the generated external signal.
Within each interval Tn = [ndt, (n+1)dt] the equations of motion of the breather

with unidirectional coupling read

iż0 = −2|z0|2z0 + wn . (A.2)

Since wn is constant in Tn, we can introduce the Hamiltonian

H = |z0|4 + z0w
∗
n + z∗0wn , (A.3)
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which generates Eq. (A.2) limited to Tn through the Hamilton equations ż0 =
−∂H/∂(iz∗0). A symplectic integration scheme over the interval Tn can be now
introduced according to Ref. [31]. In detail, we decompose H = H1 + H2, where
H1 = |z0|4 and H2 = z0w

∗
n + z∗0wn. The equation of motion generated separately by

H1 reads
iż0 = −2|z0|2z0 (A.4)

and corresponds to a pure rotation of z0 in the complex plane

z0(t) = z0(0) exp(iω0t) , (A.5)

where ω0 = 2|z0(0)|2 is the breather frequency. Notice that ω0 is a conserved quantity
of the dynamics in Eq. (A.4). The evolution generated by H2 reads

iż0 = wn (A.6)

and identifies the translation

z0(t) = z0(0)− iwnt . (A.7)

Denoting formally by exp(H1t) and exp(H2t) the two propagators associated
respectively to H1 and H2, the simplest (second order) integration scheme reads

P (t) = exp(H1t/2) exp(H2t) exp(H1t/2) , (A.8)

where P (t) is the overall propagator of the breather degrees of freedom.
Altogether, the integration scheme in the time interval Tn amounts to the

following steps:

(i) Consider the initial state z0(ndt) and external forcing wn;

(ii) compute ω0 = 2|z0(ndt)|2 and perform a pure rotation by an angle ω0dt/2
according to Eq. (A.5);

(iii) update z0 according to Eq. (A.7);

(iv) update ω0 and perform another pure rotation by ω0dt/2.

At the end of this procedure, one updates the external forcing and starts again
with n → n + 1. In our simulations we have adopted the above scheme and verified
that for the parameters considered in this paper dt = 10−5 allows to reach sufficient
numerical precision. We finally remark that the precision of the breather dynamics can
be further improved by implementing higher order symplectic schemes as in [31]. The
overall computational cost of such an improvement usually turns out to be modest, as
it affects the breather site only.

Appendix B. Details of the canonical perturbative approach

We start from the breather Hamiltonian given in Eq. (17) and reproduced here for
completeness,

H = J2 + ǫ3/2
√
2Jλ(ǫt) sin(θ + α(ǫt))

≡ H0(J) + ǫ3/2H1(J, θ, ǫt),
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and the following perturbation expansion for the generating function of the canonical
transformation,

S(J̄ , θ, t) = J̄θ + ǫ3/2S1(J̄ , θ, ǫt) + ǫ5/2S2(J̄ , θ, ǫt), (B.1)

which allows to obtain the old action variable J and the new angle variable θ̄,

J =
∂S

∂θ
= J̄ + ǫ3/2

∂S1

∂θ
+ ǫ5/2

∂S2

∂θ
(B.2)

θ̄ =
∂S

∂J̄
= θ + ǫ3/2

∂S1

∂J̄
+ ǫ5/2

∂S2

∂J̄
. (B.3)

After the canonical transformation, the new Hamiltonian reads

H̄(J̄ , θ̄, t) = H0(J(J̄ , θ̄)) + ǫ3/2H1(J(J̄ , θ̄), θ(J̄ , θ̄), ǫt) +
∂S

∂t
. (B.4)

Limiting to order ǫ5/2 we find

H0(J) = H0

(

J̄ + ǫ3/2
∂S1

∂θ
+ ǫ5/2

∂S2

∂θ

)

(B.5)

= H0(J̄) + ω(J̄)

(

ǫ3/2
∂S1

∂θ
+ ǫ5/2

∂S2

∂θ

)

(B.6)

where ω = ∂H0

∂J is the frequency of the fast rotation.
Furthermore,

H1(J, θ, ǫt) = H1(J̄ , θ̄, ǫt) (B.7)

and
∂S

∂t
= ǫ3/2

∂S1

∂t
= ǫ5/2

∂S1

∂(ǫt)
. (B.8)

Putting different terms together we obtain

H̄ = H0(J̄) + ǫ3/2
[

ω(J̄)
∂S1

∂θ̄
+H1(J̄ , θ̄, ǫt)

]

+ ǫ5/2
[

ω(J̄)
∂S2

∂θ̄
+

∂S1

∂(ǫt)

]

. (B.9)

Now all terms must be independent of θ̄. Since the average value of H1 over the
angle vanishes,

〈H1〉θ =
1

2π

∫ 2π

0

dθH1(J, θ, ǫt) = 0, (B.10)

we must require that

ω(J̄)
∂S1

∂θ̄
+H1(J̄ , θ̄, ǫt) = 0, (B.11)

so that
∂S1

∂θ̄
= − 1

ω(J̄)
H1(J̄ , θ̄, ǫt). (B.12)

Once we have derived S1 from previous relation we can impose that

ω(J̄)
∂S2

∂θ̄
+

∂S1

∂(ǫt)
= 0. (B.13)

We can easily obtain that

S1 =
1

ω(J̄)

√

2J̄λ cos(θ̄ + α) (B.14)
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and
∂S2

∂θ̄
= − 1

ω2(J̄)

√

2J̄
∂

∂(ǫt)

[

λ cos(θ̄ + α)
]

. (B.15)

In conclusion,

J̄ = J − ǫ3/2
∂S1

∂θ̄
− ǫ5/2

∂S2

∂(ǫt)
= +J + ǫ3/2

1

ω(J)
H1(J, θ, ǫt)

+ ǫ5/2
1

ω2(J)

√
2J

∂

∂(ǫt)
[λ cos(θ + α)] . (B.16)

Since ω(J) = 2J , J = b/b0, ǫ = 1/b0, and restoring the old time, we finally obtain
the adiabatic invariant

b0J̄ = b+
1√
2b

λ sin(θ + α) +
1

(2b)3/2
∂

∂t
[λ(t) cos(θ + α(t))] , (B.17)

given also in Eq. (19).

Appendix C. Energy-flux approach

In this appendix we describe the recursive procedure to determine the expressions of
Qk based on the energy-flux approach outlined in Section 4. Instead of using action-
angle variables as for the canonical approach (see Appendix B), here we adopt the
complex notation as in Eq. (3). Accordingly, the breather state is represented by the
complex variable z0(t) while the external signal is w(t) = z−1(t)+z1(t). The mapping
between the two sets of variables is

z0 =
√
beiθ

w =
λ√
2
sinα+ i

λ√
2
cosα, (C.1)

while the evolution equation for the breather site is

ż0 = 2i|z0|2z0 + iw . (C.2)

Given the breather energy

Hb = |z0|4 + z0w
∗ + z∗0w , (C.3)

the energy flux is
Ḣb = z0ẇ

∗ + z∗0ẇ. (C.4)

If w is constant, then Hb is conserved; otherwise Hb can be considered as the lowest-
order approximation of the AI. In fact, Eq. (C.4) can be considered the first step of a
recursive procedure based on the dynamical equation

Q̇k = Xk , (C.5)

that allows to interpret Qk as a suitable approximation of the AI (Xk denotes yet
unaccounted fluctuations). The subindex k in Qk (Xk) means that its smallest
(largest) term is of order ǫk ≡ |z0|−2k. By setting k = −1/2 in Eq. (C.5), we recover
Eq. (C.4) (i.e., Q−1/2 = Hb, see the main text).
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The recursive procedure consists in decomposing Xk as the sum of two terms,

Xk = q̇k+1 +Xk′ k′ > k (C.6)

in such a way that the first term in the r.h.s. captures the leading order-k behavior of
Xk.

∗ In practice, qk+1 is built by integrating Xk only with respect to the fast variable
z0.

Once qk+1 has been identified, one can rewrite Eq. (C.5) as

Q̇k′ ≡ Q̇k − q̇k+1 = Xk′ (C.7)

with the same structure as Eq. (C.5) but involving a smaller residue Xk′ , since k′ > k.
By progressively increasing k, one can obtain increasingly accurate estimates of

the AI as
Qk = Hb −

∑

m≤k

qm . (C.8)

Before illustrating the various steps, it is necessary to distinguish different harmonics

of the fast breather frequency. This is done by introducing the notation q
(l)
k , where

the superscript l identifies the oscillating (fast) frequency in units of the breather
frequency ω = 2|z0|2. Given that this frequency arises from the presence of the fast
term z0(t) = |z0|e(iωt+φ0) and its complex conjugate, it turns out that for a given

index l, q
(l)
k takes the form q

(l)
k = f(|z0|)z|l|0 + c.c., where f is a generic real function.

The derivation of the first four qk is reported in the next subsections.

Appendix C.1. The q1/2 term

The first step is made by decomposing X−1/2. In this case it is sufficient to consider
a single harmonic,

q
(1)
1/2 = −i

ẇ∗

2z∗0
+ c.c. . (C.9)

Its time derivative can be expressed as (by invoking the complex conjugate of
Eq. (C.4))

q̇
(1)
1/2 =

(

z0ẇ
∗ +

w∗ẇ∗

2(z∗0)
2
+ c.c.

)

−
(

iẅ∗

2z∗0
+ c.c.

)

. (C.10)

Since (z0ẇ
∗ + c.c.) coincides with Ḣb, we can rewrite this equation as

Q̇1/2 ≡ Ḣb − q̇
(1)
1/2 = X

(1)
1/2 +X

(2)
1 (C.11)

where

X
(1)
1/2 =

iẅ∗

2z∗0
+ c.c. (C.12)

and

X
(2)
1 = − w∗ẇ∗

2(z∗0)
2
+ c.c. (C.13)

∗ Although qk+1 is of order k + 1, its time derivative is of order k, because of the multiplicative
factor due to the fast rotation.
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Appendix C.2. The q3/2 term

For k = 3/2 one harmonic again suffices, although higher harmonics appear in the

expression of the remainder. Having in mind X
(1/2)
1 , we introduce

q
(1)
3/2 = − ẅ∗

4z0z∗20
+ c.c. (C.14)

Its time derivative can be expressed as

q̇
(1)
3/2 =

iẅ∗

2z∗0
− iwẅ∗

4z20z
∗2
0

+
iw∗ẅ∗

2z0z∗30
+

...
w∗

4z0z∗20
+ c.c. (C.15)

Since the first term (plus its c.c.) in the r.h.s. is equal to X
(1)
1/2, we can rewrite the

equation as

X
(1)
1/2 = q̇

(1)
3/2 +X

(0)
2 +X

(2)
2 +X

(1)
3/2 (C.16)

where

X
(0)
2 =

iwẅ∗

4z20z
∗2
0

+ c.c. (C.17)

X
(2)
2 = − iw∗ẅ∗

2z0z∗30
+ c.c. (C.18)

X
(1)
3/2 = −

...
w∗

4z0z∗20
+ c.c. (C.19)

By finally replacing the previous orders,

Q̇3/2 = X
(2)
1 +X

(1)
3/2 +X

(0)
2 +X

(2)
2 (C.20)

Appendix C.3. The q2 term

For k = 2 two harmonics must be accounted for. With reference to X
(2)
1 we introduce

q
(2)
2 = i

w∗ẇ∗

8z0z∗30
+ c.c. (C.21)

Its derivative is

q̇
(2)
2 = −w∗ẇ∗

2z∗20
+ i

(ẇ∗)2 + w∗ẅ∗

8z0z∗30
+ c.c. (C.22)

The first term in the r.h.s. coincides with X
(2)
1 and can thereby be rewritten as

X
(2)
1 = q̇

(2)
2 + Y

(2)
2 (C.23)

where

Y
(2)
2 = −i

(ẇ∗)2 + w∗ẅ∗

8z0z∗30
+ c.c. (C.24)

Hence, the flux equation becomes,

Ḣb − q̇
(1)
1/2 − q̇

(1)
3/2 − q̇

(2)
2 = X

(1)
3/2 +X

(0)
2 +X

(2)
2 + Y

(2)
2 (C.25)
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Corrections of the same order arise from X
(0)
2 . In this case, it is convenient to

introduce

q
(0)
2 = i

wẇ∗

4z20z
∗2
0

+ c.c. (C.26)

Its derivative yields

q̇
(0)
2 =

w2ẇ∗

2z30z
∗2
0

− ww∗ẇ∗

2z20z
∗3
0

+ i
wẅ∗ − ẇẇ∗

4z20z
∗2
0

+ c.c. (C.27)

The second addendum in the third term does not contribute since it is purely imaginary
(including the imaginary unit in front of the fraction). Hence the third term coincides

with X
(0)
2 and we can write

X
(0)
2 = q̇

(0)
2 +X

(1)
5/2 + Y

(1)
5/2 (C.28)

where

X
(1)
5/2 = − w2ẇ∗

2z30z
∗2
0

+ c.c (C.29)

Y
(1)
5/2 = +

ww∗ẇ∗

2z20z
∗3
0

+ c.c. (C.30)

The flux equation is finally

Q̇3/2 = X
(1)
3/2 +X

(2)
2 + Y

(2)
2 +X

(1)
5/2 + Y

(1)
5/2 (C.31)

Appendix C.4. The q5/2 term

We now consider X
(1)
3/2 and introduce

q
(1)
5/2 = i

...
w∗

8z20z
∗3
0

+ c.c. (C.32)

Its derivative is

q̇
(1)
5/2 = −

...
w∗

4z0z∗20
+

w
...
w∗

8z30z
∗3
0

− 3w∗...w∗

8z20z
∗4
0

+ i

....
w ∗

8z20z
∗3
0

+ c.c. (C.33)

The first term is X
(1)
3/2 and can thereby be rewritten as

X
(1)
3/2 = q̇

(1)
5/2 +X

(0)
3 +X

(2)
3 + Z

(1)
5/2 (C.34)

where

X
(0)
3 = − w

...
w∗

8z30z
∗3
0

c.c (C.35)

X
(2)
3 =

3w∗...w∗

8z20z
∗4
0

+ c.c. (C.36)

Z
(1)
5/2 = −i

....
w ∗

8z20z
∗3
0

+ c.c. (C.37)

Finally, the flux equation at this order of approximation can be written as

Q̇5/2 = X
(2)
2 + Y

(2)
2 +X

(1)
5/2 + Y

(1)
5/2 +X

(0)
3 +X

(2)
3 + Z

(1)
5/2 (C.38)
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