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Abstract. We describe a phase-field model for the electrodeposition process that forms dendrites within

metal-anode batteries. We derive the free energy functional model, arriving at a system of partial
differential equations that describe the evolution of a phase field, the lithium-ion concentration, and an

electric potential. We formulate, discretize, and solve the set of partial differential equations describing the

coupled electrochemical interactions during a battery charge cycle using an open-source finite element
library. The open-source library allows us to use parallel solvers and time-marching adaptivity. We

describe two- and three-dimensional simulations; these simulations agree with experimentally-observed
dendrite growth rates and morphologies reported in the literature.
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2 DENDRITE FORMATION IN LI-METAL BATTERIES

1. Introduction

Conventional lithium-ion batteries (LIB) that use intercalated graphite electrodes have dominated the
rechargeable battery market over the past three decades; nevertheless, this battery technology is reaching its
theoretical limit of 250 Wh/kg [1, 2]. Therefore, our society has a strong need for new chemistries and designs
to achieve commercial implementation of ultra-high energy density batteries of around 500 Wh/kg [3].

Currently, metallic lithium (Li) is the most prominent negative electrode material due to its combined
high theoretical energy density (3860 mAh/g) and low reduction potential (-3.04 V vs. standard hydrogen
electrode). However, despite recent successful operation reports for lithium metal batteries (LMBs), all
reported short life cycles due to uneven and unstable lithium deposition leading to dendrite formation [4, 5].
Therefore, developing a stable rechargeable lithium metal anode is crucial to attaining higher energy density
rechargeable technologies, such as Li-air, Li-S, and Li-flow batteries [6, 7].

Lithium dendrites form during the battery charge cycle and can disconnect from the anode, generating
“dead lithium” compounds that stop participating in the electrochemical reaction, resulting in loss of
Coulombic efficiency [8]. Ultimately, the uncontrolled growth of these lithium dendrites can cause the
battery to short-circuit when they become large enough to contact the cathode electrode after penetrating
through the separator [9–11]. These critical shortcomings of dendrite formation during electrodeposition
processes triggered efforts to control the dendritic pattern formation and improve the electrochemical
performance of metal-anode batteries. Different strategies exist, including modifications in the electrode
structure, porosity, and defect engineering [12–17], pulsed charge-discharge cycle [18–20], electrode surface
morphology modification (roughness and wavenumber) [21], solvent and electrolyte composition [22–28],
ionic mass transport and electrolyte management [29–35], controls of internal temperature and
pressure [36–38], and stable interfacial coatings [39–41].

The formation of dendrites in Li anodes has been noted to vary considerably from one system to the other.
Bai et al. [42] noted the formation of mossy/whiskers-like morphologies at current densities lower than the
intrinsic diffusion-limited current density (reaction limited regime, where lithium grows from the base). On
the other hand, at higher current densities (greater than the diffusion-limited current density, i.e. transport
or diffusion limited regime, where lithium grows from the tip), fractal dendritic morphology or finger-like
structures are obtained. Transition from base-controlled mossy structure to tip-controlled dendrite growth
was also observed experimentally when under limiting current condition. Further, various 2D numerical
simulations have found the formation of spike-like or tree-like structures where dendrite growth was found
to occur on multiple branches and in multiple directions. These types of formation, however, have not
been observed widely experimentally due to instabilities at the branch structures and mass transfer rate
limitations at these regions [43].

The experimental investigation of the lithium dendrite formation in rechargeable metal batteries is
challenging [44]. Thus, the combined insights from experiment and simulation enhance our understanding
of the mechanisms of dendrite formation and growth in lithium anodes [43, 45, 46]. Within these
computational models, the thermodynamic ones include several surface nucleation models based on density
functional theory (DFT) that explore the mechanisms of lithium electrodeposition and dendrite
suppression. Considering lithium dendrite growth as an inherent property of the metal, these models invoke
surface energies and diffusion barriers as keys parameters in determining the specific metal structures
growing on electrodes [47–49]. Dynamic models describe the electrochemical propagation of dendrites; for
example, the space-charge (migration-limited) models violate the electroneutrality at the dendrite tips
leading to high overpotentials and the subsequent formation of ramified electrodeposits [50]. Furthermore,
stress and inelastic deformation models simulate the dendrite’s surface-tension mitigated growth [51, 52].
Additionally, film growth models apply classical film-growth theory within the lithium anode
battery [53, 54], and diffusion-limited aggregation models (DLA) develop fractal shapes using random-walk
statistics [20]. The latter successfully modeled extremely low currents without considering surface energy.

Moreover, several phase-field (diffuse-interface) models simulate the morphologic evolution of lithium
electrodeposits as a result of reaction-driven phase transformation within the metal anode batteries and
describe the dendrite morphologies observed experimentally for low, high and pulsating applied current
densities [55–76]. The phase-field method describes and predicts the mesoscale microstructural evolution
by implicitly tracking the boundaries and interfaces using an auxiliary function (i.e., the order parameter).
These models rigorously incorporate interfacial energy, interface kinetics, and curvature-driven phase
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boundary movement. The evolution of the phase-field variables satisfies local equilibrium [77] and free
energy minimization [78], leading to nonlinear partial differential equations (PDE’s). Different phase-field
models of the electrochemical dendrite deposition describe the phase-field evolution using the Cahn-Hilliard
equation [79, 80], the Allen-Cahn equation [81], or a modified non-linear Allen-Cahn reaction equation [60].
In [82], the authors present a comprehensive review of the existing phase-field simulations in rechargeable
batteries.

Despite continuous efforts, there are several open issues related to the evolution of dendritic patterns in
lithium metal electrodes. Most published models solve two-dimensional problems to rationalize the
dendritic patterns and suppress their growth [65–68, 70, 74, 77]. Nevertheless, the lithium dendrite
morphologies are inherently three dimensional [69, 83, 84]. Thus, simulation tools to study and understand
the three-dimensional effects triggering pattern formation are essential. Its application includes enhancing
our understanding of the differences between 2D and 3D simulations on the free space effect on the Li-ion
diffusion to the anode surface, the surface anisotropy, the electric field distribution, the nuclei distribution,
the interaction between neighboring dendrites; and assessing control strategies to prevent the dendrite
formation (e.g., 3D porous current collectors hosts) [85–88].

Nevertheless, few attempts to simulate three-dimensional lithium dendrite growth exist in the literature.
For instance, [89] develops a 3D growth model for the electrode–electrolyte interface in lithium batteries in the
presence of an elastic prestress; the model assesses the linearized stability of planar interface growth. Later,
Jang et al. performed stochastic modeling of the three-dimensional effect of applied voltage and diffusion
constant on the growth of lithium dendrites [90]. Recently, Yangyang et al. [70] presented a phase-field model
to study the three-dimensional effect of the exchange current density on the electrodeposition behavior of
lithium metal; however, without focusing on dendritic morphologies. The scarcity of three-dimensional
phase-field results is evidence of the complexity and large computational cost involved in solving the highly
non-linear set of equations describing coupled electrochemical interactions during a battery charge cycle.

In this paper, we present a 3D phase-field framework to describe the dendritic electrodeposition of lithium.
This work constitutes a step toward the physics-based, quantitative models to rationalize hazardous three-
dimensional dendritic patterns needed to achieve the commercial realization of Li-metal batteries. Herein,
we use several computational efficiency improvements to deliver the 3D simulations at a reasonable cost,
such as time step adaptivity strategy, mesh rationalization, parallel computation, and balanced phase-field
interface thickness to mesh resolution ratio.

We organize the paper as follows: Section 2 presents the basic equations describing the lithium-battery
dendrite growth process. Then, we derive the weak variational statement and its numerical implementation
in Section 3. We describe the time-adaptive strategy and the parameters that deliver convergence in Section 4
and detail its implementation in Section 5. We discuss numerical simulations of lithium-battery dendrites
growth in Section 6, where we validate a two-dimensional model in terms of dendrite propagation rates
and spatial distribution analysis of the system’s variables in comparison with phase-field simulation results
reported in the literature. Furthermore, we simulate three-dimensional spike-like lithium structures that grow
under high current density [69, 83, 84] (fast battery charge); these structure’s growth is dangerous for battery
operation. We perform single and multiple nuclei numerical experiments to study the 3D distribution of the
electric field and the lithium-ion concentration to understand the mechanism behind tip-growing lithium
morphologies better. Finally, we draw conclusions in Section 7.

2. Governing partial differential equations

We model a battery cell composed of a solid pure Lithium metal anode and a binary liquid electrolyte.
The variables of interest are the lithium concentration, ζ, and the electric potential, φ. Under an electro
potential difference ∆φ, the battery charges and the electrolyte dissociates in Li+ cation and A− anion
species; Faradic reactions occur, the current passes through the electrode-electrolyte interface, the Li+ cation
gains an electron and deposits on the anode surface (Li+ +e− → Li). Thus, the physical processes involved in
the electrochemical deposition of Lithium are charge and mass transport. The Butler-Volmer kinetics (1) is a
standard phenomenological model that describes the charge and mass transport at the electrode-electrolyte
interface [91, 92], known as the current-overpotential equation:

(1) i = i0

(
e−

αnFη
RT − e

(1−α)nFη
RT

)
,
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where i is the current density and i0 is the exchange current density, identified as an intrinsic kinetic
parameter and assumed constant in this case [70]. The applied overpotential η (ζ, φ) is the total free energy
change per charge transferred [60]. The first and second term in brackets represent the oxidation and
reduction reactions, respectively, whereas α is the charge transfer coefficient that characterizes the forward
and reverse reactions [93]. R, T, n, and F represent the gas constant, temperature, valence, and Faraday’s
constant, respectively. The lithium electrodeposition rate depends on the applied current density via a
Faradic reaction [94],

(2) v =
∂λ

∂t
=

i

FnCsm
,

where λ represents the electrodeposited film thickness over a time t, and Csm is the site density of Lithium
metal (inverse of molar volume) (e.g., see [60, 95] for further details).

2.1. Phase-field. We introduce a continuous phase-field variable ξ that corresponds to a dimensionless

lithium atom concentration ζ̃ = ζ/Csm, with ζ normalized against Csm. Thus, ξ = 1 and 0 represent the pure
electrode and electrolyte phases. Superscripts “s” and “l” represent the solid-electrode and liquid-electrolyte
phases. We assume the electrode phase is a pure solid and, thus, neglect the presence of a solid-electrolyte
interface (SEI). Consequently, neither species nor charge can be stored at the electrode-electrolyte interface.
Therefore, ξ is a non-conserved order parameter in our model [61], satisfying the Allen-Cahn reaction (ACR)

model: ∂ξ
∂t = R

(
δΨ
δζi

)
, where Ψ is the total free functional, expressed as the summation of the Helmholtz

free energy density fch, surface energy density fgrad, and electrostatic energy density felec [56, 60, 79, 80]

(3) Ψ =

∫
V

[
fch (ξ, ζi) +

1

2
κ (ξ) (∇ξ)2

+ felec (ξ, ζi, φ)

]
dV ,

where ζi represents the set of concentrations of all the ionic species, e.g., lithium cation ζ+, and anion ζ−,
respectively. felec = ρφ is the electrostatic energy density, where ρ =

∑
i niFζi is the charge density. The

Helmholtz free energy density relative to the standard state is [60, 67],

(4) fch = Wξ2 (1− ξ)2
+ C0RT

(
ζ̃+ ln ζ̃+ + ζ̃− ln ζ̃−

)
,

with ion concentrations, ζ̃+ = ζ+/C0 and ζ̃− = ζ−/C0, being normalised against the initial bulk concentration
of Lithium in the electrolyte C0. We model the equilibrium states using a double-well function g (ξ) =

Wξ2 (1− ξ)2
, where W/16 acts as a barrier between the states [64].

The surface energy anisotropy plays an important role in the morphology of the electrodeposit [65], which
we implement using a standard approach [63, 96] with κ (ξ) = κ0 [1 + δaniso cos (ωθ)], where κ0 relates to the
Lithium surface tension γ; δaniso and ω, are the strength and mode of anisotropy, respectively [97, 98]. θ is
the angle between the surface normal and the crystallographic orientation of the lithium dendrite; aligned
with the “x” direction of the cell stack for simplicity, as Figure 1 shows. We use four-fold anisotropy (ω = 4)
in agreement with lithium body centred cubic crystal structure [65]. We make use of trigonometric identities
to arrive to cos (4θ) = 8n4

1 − 8n2
1 + 1, where n1 = ∇xξ/||∇ξ||. Therefore, the 2D gradient coefficient is,

(5) κ (ξ) = κ0

[
1 + δaniso

(
8n4

1 − 8n2
1 + 1

)]
.

Figure 1 sketches (5), showing its preferred growth directions of a lithium electrodeposit (θ = 0◦, 90◦, 270◦)
due to four-fold surface energy anisotropy, tending to grow fractal or branched dendrites. In 3D, we use
version of (5) (four-fold anisotropy) derived by William et al. [99, 100] to simulate crystal growth

(6) κ (ξ) = κ0 (1− 3δaniso)

[
1 +

4δaniso

1− 3δaniso

(
n4

1 + n4
2 + n4

3

)]
,

where n2 =
∇yξ
||∇ξ|| and n3 = ∇zξ

||∇ξ|| , with “y” and “z” defined orthogonal to “x” as depicted in Figure 2a

Following [64], we calculate the variational derivative of the free energy functional (3). Thus, the phase-
field Butler-Volmer equation matches the velocity of the sharp interface limit of the phase-field equation,
with the current-overpotential (1) as follows [59, 65, 101]

(7)
∂ξ

∂t
= −Lσ

[
∂g (ξ)

∂ξ
− κ (ξ)∇2ξ

]
− Lη

∂h (ξ)

∂ξ

[
e(

(1−α)nFφ
RT ) − ζ̃+ e(

−αnFφ
RT )

]
,
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𝜃
𝜅 𝜉

Anode			(𝜉 = 1)

Cathode
x

y0

Figure 1. 2D schematic of Lithium electrodeposit, with four-fold surface energy anisotropy
κ (ξ) as a function of θ, defined as the angle between the surface normal and the
crystallographic orientation “x”.

where we adjust the interface mobility Lσ value (constant for each simulation) for the selected voltage
charging the battery. These mobility values balance the phase-field interface energy and the electrochemical
reaction contribution [95]. The electrochemical reaction kinetic coefficient is [66]

Lη =
γi0

nFκCsm
,

where the quantities of Li surface energy γ and the phase-field interfacial thickness δPF relate to the model
parameters according to δPF = 2κ0

3γ [102]. The interpolation function h (ξ) smooths the diffuse interface in the

current implementation; we use a sigmoid interpolation function [95, 103], which has better computational
efficiency than the popular choice of polynomial interpolation function [104]:

(8) h(ξ) =
eς(ξ−

1
2 )

1 + eς(ξ−
1
2 )

,

where ς is a parameter that determines the interface thickness of the interpolation function; we use ς = 20,
to adjust for interpolation between ξ = 0 and ξ = 1.

2.2. Diffusion-migration process. A diffusion-migration equation describes the motion of charged

chemical species (lithium-ion) in the fluid electrolyte. The temporal evolution of ζ̃+, satisfies the modified
Nernst-Planck diffusion equation that describes the flux of Li-ions under the influence of a concentration

gradient ∇ζ+ and an electric field ∇φ [50]. We add the term
Csm
C0

∂ξ
∂t to the Nernst-Planck diffusion equation

to account for the eliminated lithium ion from the electrolyte solution, due to electrodeposition on the solid
phase (metal electrode). Thus, the diffusion equation becomes:

(9)
∂ζ̃+
∂t

= ∇ ·
(
Deff (ξ) ∇ζ̃+ +Deff (ξ)

nF

RT
ζ̃+∇φ

)
− Csm
C0

∂ξ

∂t
,

where we interpolate the effective diffusivity by Deff (ξ) = Dsh (ξ) + Dl [1− h (ξ)], with Ds and Dl as the
electrode and electrolyte diffusivities, respectively.

2.3. Electrostatic Potential. We account for the electrostatic potential distribution φ using the charge
continuity equation [56]

(10)
∂ρ

∂t
= −∇ ·~i ,

where~i is the current density and ρ = ΣiniFζi is the charge density. Experimental observations support the
assumption that space-charge effects do not affect the stability of electrodeposits [105]. Therefore, we ignore
the effects of the double-layer structure and assume electroneutrality, that is,

ζ̃+ = ζ̃−,
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where we use Ohm’s law in the continuity equation, ~i = σ ~E, and σ is the conductivity and ~E = −∇φ is the
electric field. Thus, we arrive at a Poisson equation, including a source term to represent the charges that
enter or leave the system due to the electrochemical reaction [64]

(11) ∇ ·
[
σeff (ξ) ∇φ

]
= nFCsm

∂ξ

∂t
.

We interpolate the effective conductivity using

σeff (ξ) = σsh (ξ) + σl [1− h (ξ)] ,

where σs and σl are the electrode and electrolyte phase conductivity, respectively.
We collect the system of equations that models the physical process in the following box.

Box 1: Dendrite growth model

Lithium-battery dendrite growth process based on phase-field theory. Find Ξ =
(
ξ, ζ̃+, φ

)
fulfilling

∂ξ

∂t
= −Lσ

[
∂g (ξ)

∂ξ
−∇ · (κ (ξ)∇ξ)

]
− Lη

∂h (ξ)

∂ξ

[
e(

(1−α)nFφ
RT ) − ζ̃+ e(

−αnFφ
RT )

]
, in V × I

∂ζ̃+
∂t

= ∇ ·
[
Deff (ξ) ∇ζ̃+ +Deff (ξ)

nF

RT
ζ̃+∇φ

]
− Csm
C0

∂ξ

∂t
, in V × I

nFCsm
∂ξ

∂t
= ∇ ·

[
σeff (ξ) ∇φ

]
, in V × I

ξ = ξD, on ∂VD × I

ζ̃+ = ζ̃+D, on ∂VD × I
φ = φD, on ∂VD × I

∇ξ · n = 0, on ∂VN × I

∇ζ̃+ · n = 0, on ∂VN × I
∇φ · n = 0, on ∂VN × I
ξ (x, t0) = ξ0, in V

ζ̃+ (x, t0) = ζ̃+0, in V

φ (x, t0) = φ0, in V

where V is the problem domain with boundary ∂V = ∂VN ∪ ∂VD, the subscript N and D related to
the Neumann and Dirichlet parts, with outward unit normal n, and I is the time interval.

3. Weak variational formulation and space-time discretization

3.1. Weak formulation. We now state the weak variational formulation [106, 107] of the system of

equations as: Find Ξ =
(
ξ, ζ̃+, φ

)
such that ∀V = (v, w, p)

(12)

〈
v, ξ̇
〉
V

+
〈
w,

˙̃
ζ+

〉
V

+

〈
w,

Csm
C0

ξ̇

〉
V

+
〈
p, ξ̇
〉
V︸ ︷︷ ︸

M(V,Ξ̇)

= a
(
v, ξ, ζ̃+, φ

)
+ b

(
w, ξ, ζ̃+, φ

)
+ c (p, ξ, φ)︸ ︷︷ ︸

A(V,Ξ)
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where •̇ = ∂•
∂t denotes the time derivative of the variable • = ξ, ζ̃+, 〈u,w〉V =

∫
V
wu dV expresses the inner

product, and the functions on the right-hand side are

(13)

a (v,Ξ) =−
∫
V

Lσ

[
∂g (ξ)

∂ξ
v + κ∇ξ · ∇v

]
dV −

∫
V

Lη
∂h (ξ)

∂ξ

[
e(

(1−α)nFφ
RT ) − ζ̃+ e(

−αnFφ
RT )

]
v dV ,

b (w,Ξ) =−
∫
V

[
Deff (ξ) ∇ζ̃+ · ∇w +Deff (ξ)

nF

RT
ζ̃+∇φ · ∇w

]
dV ,

c (p,Ξ) =− 1

nFCsm

∫
V

σeff (ξ)∇φ · ∇p dV.

We use standard finite element spaces where each function and its gradient are square integrable.

3.2. Time semi-discretization. We use a second-order backward-difference (BDF2) time marching scheme
with an adaptive time step size. BDF2 is an implicit time marching method that requires the solution at
two previous time instants; the initial step uses a first-order backward-difference method (BDF1). BDF2 has
second-order accuracy and numerically damps the highest frequencies of the solution, unlike the conservative
Crank-Nicolson method [106]. Liao et al. [108] showed that BDF2 is an effective time integrator for the
phase-field crystal model, especially when coupled with an adaptive time-step strategy.

We discretize the time interval into t0 < t1 < ... < tn < ... < tf and define the time-step size as

∆tn = tn − tn−1, approximate ξ (tn), ξ̇ (tn), ζ̃+ (tn) and
˙̃
ζ+ (tn), respectively, as ξn, ξ̇n, ζ̃+n and

˙̃
ζ+n, and

express the time increments as ∆• = •n+1−•n for • = ξ, ξ̇, ζ̃+,
˙̃
ζ+. We use a second-order approximation of

the time derivative at tn+1 as follows [109],

(14)
∂•n+1

∂t
=

(
1 + 2ωn+1

1 + ωn+1

) •n+1 − (1+ωn+1)2

1+2ωn+1
•n +

ω2
n+1

1+2ωn+1
•n−1

∆tn+1
, with ωn+1 =

∆tn+1

∆tn
, and • = ξ, ζ̃+ .

Then using this definition and letting Vv = (v, 0, 0), we define the ξ-residual as

(15)

0 = Rξ (Vv,Ξn+1) = M
(
Vv, Ξ̇n+1

)
−A (Vv,Ξn+1)

= 〈v, ξn+1〉V +

〈
v,

(1 + ωn+1)
2

1 + 2ωn+1
ξn −

ω2
n+1

1 + 2ωn+1
ξn−1

〉
V︸ ︷︷ ︸

`ξ(v) (known at tn)

−βn+1∆tn+1 a (v, ,Ξn+1)

with βn+1 = 1+ωn+1

1+2ωn+1
. We now approximate a (v,Ξn+1) as a Taylor series expansion from Ξn to obtain

(16) a (v,Ξn+1) = a (v,Ξn) + a′ξ (v,∆ξ; Ξn) + a′
ζ̃+

(
v,∆ζ̃+; Ξn

)
+ a′φ (v,∆φ; Ξn) +O

(
∆t2n+1

)
where O

(
∆2
)

represents neglected higher-order terms in the expansion and

(17) f ′• (v,∆•; •n) =
d

dε
f (v, •n + ε∆• )|ε=0

represents the directional Gâteaux derivative of the functional f in the direction •. Combining (15) and (16),
we obtain a linear equation system to solve, that is

(18) 0 = Rξ (Vv,Ξn) + 〈v,∆ξ〉V + βn+1∆tn+1

[
a′ξ (v,∆ξ; Ξn) + a′

ζ̃+

(
v,∆ζ̃+; Ξn

)
+ a′φ (v,∆φ; Ξn)

]
Similarly, we define the weighting functions Vw = (0, w, 0) and Vp = (0, 0, p); the residuals R• with • = ζ̃+, φ
and linearize the resulting residuals to obtain the linearized system of equations to update the Newton
iteration. We collect the linearized system of equations that models the physical process in the following
box.
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Box 2: Linearized equation system

Discrete linearized equations for lithium-battery dendrite growth process based on phase-field theory.

Find Ξn+1 =
(
ξn, ζ̃+n, φn

)
+
(

∆ξ,∆φ,∆ζ̃+

)
such that

(19)



0 = Rξ (Vv,Ξn) + 〈v,∆ξ〉V
+ βn+1∆tn+1

[
a′ξ (v,∆ξ; Ξn) + a′

ζ̃+

(
v,∆ζ̃+; Ξn

)
+ a′φ (v,∆φ; Ξn)

]
0 = Rζ̃+ (Vw,Ξn) +

〈
w,∆ζ̃+ +

Csm
C0

∆ξ

〉
V

+ βn+1∆tn+1

[
b′ξ (w,∆ξ; Ξn) + b′

ζ̃+

(
w,∆ζ̃+; Ξn

)
+ b′φ (w,∆φ; Ξn)

]
0 = Rφ (Vp,Ξn) + 〈p,∆ξ〉V + βn+1∆tn+1

[
c′ξ (p,∆ξ; Ξn) + c′φ (p,∆φ; Ξn)

]
We only expand c in the directions ∆ξ and ∆φ as it is independent of ∆ζ̃+, see (13)3.

For completeness, we summarize the Gâteaux derivatives in (19) in the following box.

Box 3: Gâteaux derivatives

(20)

a′ξ (v,∆ξ; Ξn) =

∫
V

Lσ

[
∂g2 (ξ)

∂ξ2

∣∣∣∣
ξn

∆ξ v +

(
κ (ξn)∇∆ξ +

∂κ (ξ)

∂ξ

∣∣∣∣
ξn

∆ξ ∇ξn

)
· ∇v

]
dV

+

∫
V

Lη
∂h2 (ξ)

∂ξ2

∣∣∣∣
ξn

[
e(

(1−α)nFφn
RT ) − ζ̃+n e(

−αnFφn
RT )

]
∆ξ v dV

a′
ζ̃+

(
v,∆ζ̃+; Ξn

)
=

∫
V

Lη
∂h (ξ)

∂ξ

∣∣∣∣
ξn

e(
−αnFφn
RT )∆ζ̃+v dV

a′φ (v,∆φ; Ξn) =

∫
V

Lη
∂h (ξ)

∂ξ

∣∣∣∣
ξn

nF

RT

[
(1− α) e(

(1−α)nFφn
RT ) + αζ̃+n e

(−αnFφn
RT )

]
∆φ v dV

b′ξ (w,∆ξ; Ξn) =

∫
V

∂Deff (ξ)

∂ξ

∣∣∣∣
ξn

∆ξ

(
∇ζ̃+n +

nF

RT
ζ̃+n∇φn

)
· ∇w dV

b′
ζ̃+

(
w,∆ζ̃+; Ξn

)
=

∫
V

Deff (ξn)

(
∇∆ζ̃+ +

nF

RT
∆ζ̃+∇φn

)
· ∇w dV

b′φ (w,∆φ,Ξn) =

∫
V

Deff (ξn)
nF

RT
ζ̃+n∇∆φ · ∇w dV

c′ξ (p,∆ξ; Ξn) =
1

nFCsm

∫
V

∂σeff (ξ)

∂ξ

∣∣∣∣
ξn

∆ξ ∇φn · ∇p dV

c′φ (p,∆φ; Ξn) =
1

nFCsm

∫
V

σeff (ξn)∇∆φ · ∇p dV

3.3. Space discretization. We discretize the domain V ⊂ R3 with Dirichlet boundary condition ∂VD
and Neumann boundary condition ∂VN using finite elements. We express the domain as the union of non-

overlapping elements, Ki; thus, Vh =
⋃M
i=1Ki. We define continous piecewise polynomial functions over the

discrete domain. In particular, we use linear functions over simplexes (i.e., triangles in 2D, tetrahedra in 3D).
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Since the three variables share the spatial distribution of the boundary conditions, we use the shape functions
NA (x) for each degree of freedom •nA at tn satisfying the Dirichlet boundary conditions to discretize each

degree of freedom • = X,Z, Y corresponding to the variables ξ, ζ̃+, φ, respectively; thus, we have

(21)

ξhn =

S∑
i=1

NA (x)Xn
A ζ̃h+n =

S∑
i=1

NA (x)ZnA φhn =

S∑
i=1

NA (x)Y nA

∆ξh =

S∑
i=1

NA (x) ∆XA ∆ζ̃h+ =

S∑
i=1

NA (x) ∆ZA ∆φh =

S∑
i=1

NA (x) ∆YA

where S corresponds to the total number of unknowns in each solution variable. We define the weighting
spaces using test spaces using the same functions but restricting those with support on ∂VD to be zero, thus

(22) vh ∈ span {NB}WB=1 wh ∈ span {NB}WB=1 ph ∈ span {NB}WB=1

where W corresponds to the total number of weighting functions for each variable.
Using these spatial discretizations, we obtain the fully discrete algebraic problem:

(23)


∆Rξ
∆Rζ̃+
∆Rφ

︸ ︷︷ ︸
∆R

=

Mξξ 0 0
Mζ̃+ξ

Mζ̃+ζ̃+
0

Mφξ 0 0

+ βn+1∆t

 Kξξ Kξζ̃+ Kξφ
Kζ̃+ξ Kζ̃+ζ̃+ Kζ̃+φ
Kφξ 0 Kφφ


︸ ︷︷ ︸

J

·

∆X
∆Z
∆Y

︸ ︷︷ ︸
∆X

.
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Box 4: Matrix blocks

The mass matrix blocks are

(24) Mξξ
AB = Mζ̃+ζ̃+

AB = Mφξ
AB =

M∑
k=1

∫
Kk

NANB dKk and Mζ̃+ξ
AB =

M∑
k=1

∫
Kk

Csm
C0

NANB dKk

while stiffness matrix blocks are

(25)



KξξAB =

M∑
k=1

∫
Kk

Lσ

[
∂g2

∂ξ2

∣∣∣∣
ξhn

NA NB +

(
κ
(
ξhn
)
∇NA +

∂κ

∂ξ

∣∣∣∣
ξhn

NA ∇ξhn

)
· ∇NB

]
dKk

+

M∑
k=1

∫
Kk

Lη
∂h2

∂ξ2

∣∣∣∣
ξhn

[
e

(
(1−α)nFφhn

RT

)
− ζ̃h+n e

(
−αnFφhn
RT

)]
NA NB dKk

Kξζ̃+AB =

M∑
k=1

∫
Kk

Lη
∂h

∂ξ

∣∣∣∣
ξhn

e

(
−αnFφhn
RT

)
NANB dKk

Kξφ =

M∑
k=1

∫
Kk

Lη
∂h

∂ξ

∣∣∣∣
ξhn

nF

RT

[
(1− α) e

(
(1−α)nFφhn

RT

)
+ αζ̃h+n e

(
−αnFφhn
RT

)]
NA NB dKk

Kζ̃+ξAB =

M∑
k=1

∫
Kk

∂Deff

∂ξ

∣∣∣∣
ξhn

NA

[
∇ζ̃h+n +

nF

RT
ζ̃h+n∇φ

h
n

]
· ∇NB dKk

Kζ̃+ζ̃+ =

M∑
k=1

∫
Kk

Deff
(
ξhn
) [
∇NA +

nF

RT
NA∇φhn

]
· ∇NB dKk

Kζ̃+φAB =

M∑
k=1

∫
Kk

Deff
(
ξhn
) nF
RT

ζ̃h+n ∇NA · ∇NB dKk

KφξAB =
1

nFCsm

M∑
k=1

∫
Kk

∂σeff

∂ξ

∣∣∣∣
ξhn

NA ∇φh
n · ∇NB dKk

KφφAB =
1

nFCsm

M∑
k=1

∫
Kk

σeff
(
ξhn
)
∇NA · ∇NB dKk

4. Time-adaptive strategy

Time step adaptivity is highly useful in this problem, where the time step requirements vary significantly
at different simulation stages. For example, initially, the simulation requires small time steps to achieve
convergence during the development of the phase-field interface and thereon, their size grows a few orders
of magnitude (i.e., from ∆t = 10−6 [s] up to ∆t = 10−1 [s]) depending on the parameters (e.g., mesh size,
electrodeposition rate).

Following [110, 111], we express the local truncation error for BDF2 using Taylor expansions as follows

(26) τBDF2 (tn+1) =
∆t2n+1 (∆tn + ∆tn−1)

6

...
u (tn+1) +O

(
∆t4

)
,

where u = ξ, ζ̃+, since φ’s time derivative does not appear explicitly in the formulation. We use the solutions
un+1, un, un−1 and un−2 from the BDF2 scheme to estimate the truncation error of (26) using the third-order
backward difference formula (BDF3)

(27)
...
u (tn+1) ≈ 1

∆t2n+1

[
un+1 − un

∆tn+1
−
(

1 +
∆tn+1

∆tn

)
un − un−1

∆tn
+

∆tn+1

∆tn∆tn−1
(un−1 − un−2)

]
.
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Thus, we estimate BDF2’s local truncation error by substituting (27) into (26) to obtain

(28) τBDF2 (tn+1) ≈ ∆tn + ∆tn−1

6

[
un+1 − un

∆tn+1
−
(

1 +
∆tn+1

∆tn

)
un − un−1

∆tn
+

∆tn+1

∆tn∆tn−1
(un−1 − un−2)

]
,

Finally, we compute the weighted local truncation error as an error indicator [112]

(29) Eu (tn+1) =

√√√√ 1

N

N∑
i=1

(
τBDF2
i (tn+1)

ρabs + ρrel max (|un+1|i, |un+1|i + |τBDF2 (tn+1) |i)

)2

,

where ρabs and ρrel are user-defined parameters that define the absolute and relative tolerances, respectively.
In our examples we set these parameters to ρabs = ρrel = 102. The time error is computed using the
maximum time error of time-dependent variables

(30) E (tn+1) = max
(
Eξ (tn+1) , Eζ̃+ (tn+1)

)
,

and the time-step adaptivity simply follows [113, 114]

(31) ∆tk+1
n+1 (tn+1) = F

(
E (tn+1) ,∆tkn+1, tol

)
= ρtol

(
tol

E (tn+1)

) 1
2

∆tkn+1,

where k is the time-step refinement level and ρtol is a safety factor parameter set to 0.9 in our simulations.
We summarize the time-adaptive scheme in Algorithm 1, where we define two tolerances tolmax and tolmin
that limit the range of reduction or increments of the time-step size.

5. Implementation details

This section briefly discusses the implementation aspects and details the step-by-step calculations. We
perform all the numerical experiments using the open-source FEniCS environment [115] using the FIAT
package [116] to integrate numerically and assemble the matrices and vectors. We use four-node
quadrilateral elements in 2D and eight-node hexahedral elements in 3D,; in all cases, we use consistent
Gaussian quadrature. We use a passing interface package MPI4py [117–120] for parallelization and solve
nonlinear using SNES combined with BiCGStab for each linear system, including a Nonlinear Additive
Schwarz methods (NASM) for parallel solution [121]. Table 1 summarizes the parameters we use.

Table 1. Numerical parameters summarize

Description Symbol Value

Max. iteration number for SNES itmax 8
Relative tolerance for SNES tol 10−8

Max. iteration number for Krylov itKr 1000
Relative tolerance for Krylov tolKr 10−22

Max. tolerance for time-adaptive scheme tolmax 10−5

Min. tolerance for time-adaptive scheme tolmin 10−7

Safety factor for time-adaptive scheme ρtol 0.9
Relative scale factor for time-error computation ρrel 102

Absolute scale factor for time-error computation ρabs 102

We compute the time increment by gathering the unknown vectors at the master core, estimating the
error for the current time step, adapting the time step size, and broadcasting its value to the other cores.
This straightforward implementation is practical given the small number of processors used. We initialize
the simulations using a first-order backward difference formula (BDF1) until •n−2 is different from null. We
perform the simulations using a laptop with a 2.4 GHz processor with 8-core Intel Core i9 and 16 GB 2667
MHz DDR4 RAM, obtaining satisfactory results using a regular computer. Algorithm 1 sketches the time
marching scheme, where rank is the core number, and master is the master core used as the communicator.
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Algorithm 1: Dendrite growth model based on phase-field theory with time adaptivity

Data: •n, •n−1 , •n−2, •̇n, ∆tn+1, ∆tn, ∆tn−1

Result: updated variables •n+1, •̇n+1, ∆tn+1

1 Initialize •n = •0, with • = ξ, ζ̃+, φ ;

2 while tn+1 ≤ tf do
3 Solve non-linear problem (23) ;

4 Gather ∆X in master core and calculate temporal error τBDF2 (tn + ∆tn+1) with (28) ;

5 if rank == master then
6 Calculate Eu (tn + ∆tn+1) with (29) ;

7 Take the maximum error with (30) ;

8 if E (tn + ∆tn+1) ≤ tolmax then
9 Update current time step tn+1 ← tn + ∆tn+1;

10 Update •n+1 and •̇n+1 ;

11 Update •n−2 ← •n−1, •n−1 ← •n, •n ← •n+1 and •̇n ← •̇n+1;

12 if E (tn + ∆tn+1) < tolmin then
13 Increase delta step for next time increment ∆tn+1 ← F (E (tn+1) ,∆tn+1, tolmin)

using (31) ;

14 end

15 Broadcast to rest of ranks all variables ∆tn+1, •n−2, •n−1 and •n ;

16 else
17 Reduce time-step size∆tn+1 ← F (E (tn+1) ,∆tn+1, tolmax) using (31) ;

18 Broadcast to rest of ranks only ∆tn+1 ;

19 end

20 end

21 end

6. Simulations of lithium-metal dendrite formation

We present several studies that evaluate the performance of the proposed electrodeposition model for metal
anode battery simulations. These studies consist of 2D and 3D simulations of dendritic electrodeposition of
lithium metal during battery charge status.

6.1. System layout and properties. Generally, the computational domain for a battery simulation
comprises the anode and cathode regions as well as the space between the electrodes filled with
electrolyte [122]. However, in most phase-field simulations of metal electrodeposition, including those we
perform, the cathode region reduces to a current collector boundary condition on the electrolyte side of the
domain (see Figure 2). We model a battery cell with a traditional sandwich architecture, undergoing a
recharging process under fixed applied electro potential. We represent this cell as an lx × ly rectangular
domain in 2D and as an lx × ly × lz hexagonal domain in 3D. The initial perturbation (dendrite nuclei)
significantly impacts the simulation outcome. These nuclei are usually part of the problem’s initial
conditions. Some models include initial seeds (artificial deformation on the electrode surface) combined
with surface anisotropy to propagate the dendrite shape [45, 58, 61]. Alternatively, other models combine
surface anisotropy with Langevin noise at the phase-field interface to generate a random nucleation
pattern [65, 67, 68, 77]. In our experience, the shape of the initial seed and the noise levels have a major
influence on the resulting dendrite morphology.

We study two different initial structures. The first structure consists of a 5µm-thick metal anode (l0 =
5 [µm]), made up of pure Lithium, separated from the liquid electrolyte by a smooth interface, as Figure 2-a
depicts. The initial condition drives from the equilibrium solution for a one-dimensional transition zone

between solid (ξ = 1) and liquid (ξ = 0), where our variables
(
ξ, ζ̃+, φ

)
vary in the “x” spatial direction

according to ξ (x) = 1
2

[
1− tanh

(
x
√

W
2κ0

)]
[104].
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In the second structure we assume that artificial nucleation regions, ellipsoidal protrusions (seeds) with
semi-axes rx, ry, rz, and center

(
l0x , l0y , l0z

)
, exist at the surface of the anode undergoing electrodeposition

(see Figure 2-b). This is a widely-used strategy in phase-field simulations of electrodeposition [63, 64, 67, 68];
since it reduces the computational cost as the lithium metal is only able to electrodeposit on the same nuclei,
enhancing dendrite growth and allowing for detailed study of its morphology. For the artificial nucleation

case, we modify the initial condition formula, replacing “x” by

[(
x−l0x
rx

)2

+
(
y−l0y
ry

)2

+
(
z−l0z
rz

)2

− 1

]
within

the hyperbolic tangent argument, to account for a smooth transition between the solid seed (lithium metal
anode) and the surrounding liquid electrolyte region.

We assume the cell’s electrolyte to be 1M LiPF6 EC/DMC 1:1 volume ratio solution [66]; we compute the
electrolyte’s site density (Clm) using its density (1.3

[
g/cm3

]
) and molar mass (90 [g/mol]) and electrode’s

site density Csm using the density (0.534
[
g/cm3

]
) and molar mass (6.941 [g/mol]) of pure Lithium [66].

We model the anode boundary as a Dirichlet boundary condition ξ = 1 at x = 0 for the phase-field
parameter (solid electrode phase). In contrast, we use a no-flux Neumann boundary condition at x = lx
(cathode) to allow the electrodeposition process to take place (ξ changing from 0 to 1) when the reaction
front approaches the short-circuit condition [95]. For the Li-ion concentration, we apply Dirichlet boundary

conditions setting ζ̃+ = 0 and ζ̃+ = 1 at the anode (x = 0) and cathode (x = lx) boundaries, respectively.
These boundary conditions allow the Li-ion flux into the battery (electrolyte side), ensuring that the Li
deposited at the electrode-electrolyte interface equals the amount of Li+ supplied to the electrolyte. Thus,
these boundary conditions avoid the quick Li-ion depletion and keep the electrodeposition process running
for the full simulation [95]. Finally, we apply periodic boundary conditions on the remaining faces; these are
(x, 0, z), (x, ly, z), (x, y, 0), and (x, y, lz). Figure 2 summarizes the boundary conditions we apply.

Additionally, Table 2 presents the phase-field model parameters. The normalization constants for length,
time, energy and concentration scales are set as h0 = 1 [µm], t0 = 1 [s], E0 = 2.5 × 106

[
J/m3

]
, and

C0 = 1 × 103
[
mol/m3

]
, respectively [66]. Table 2 also shows that although the electrode and electrolyte

materials can exhibit Li/Li+ dependent conductivities and diffusivities, their values are set to constants
across each phase for simplicity [65, 66].

Table 2. Simulation Parameters

Description Symbol Real Value Normalized Source

Exc. current density i0 30
[
A/m2

]
30 [123]

Surface tension γ 0.556
[
J/m2

]
0.22 [124, 125]

Phase-field interface thickness δPF 1.5× 10−6 [m] 1.5 [95]

Barrier height W W = 12γ
δPF

= 4.45× 106
[
J/m3

]
1.78 computed

Gradient energy coefficient κ0 κ0 = 3γδPF
2 = 1.25× 10−6 [J/m] 0.5 computed

Anisotropy strength δaniso 0.044 0.044 [97, 125]
Anisotropy mode ω 4 4 [97, 98]
Kinetic coefficient Lη Lη = i0

γ
nFCsm

= 1.81× 10−3 [1/s] 1.81× 10−3 computed

Site density electrode Csm 7.64× 104
[
mol/m3

]
76.4 [66]

Bulk Li-ion concentration C0 103
[
mol/m3

]
1 computed

Conductivity electrode σs 107 [S/m] 107 [64]
Conductivity electrolyte σl 1.19 [S/m] 1.19 [126]
Diffusivity electrode Ds 7.5× 10−13

[
m2/s

]
0.75 [64]

Diffusivity electrolyte Dl 3.197× 10−10
[
m2/s

]
319.7 [126]

6.2. Lithium dendrite propagation rate: Consistency with experimental data. Validation of phase-
field models with experimental results is a well-known challenge of electrodeposition simulations [65]; partly
due to the computational cost of simulating the detailed lithium electrodeposition at the whole-cell scale [67].
One limiting factor is the domain size, defined by the inter-electrode separation distance in experimental
cells, which ranges from 1 to 10mm [94, 127, 128].
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(a) Planar electrode.
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(b) Artificial nucleation.

Figure 2. Boundary conditions for planar electrode (a) and artificial nucleation (b) simulations.

We perform 2D simulations to directly compare our simulations against experimental results obtained from
thin-cell geometries. We use 2D simulation results to validate the predicted lithium dendrite propagation
rates, assuming that the electrodeposition rates are not significantly affected by the problem’s size.

We achieve large simulation sizes through several computational efficiency improvements. We use a
sigmoid interpolating function [95] instead of the popular polynomial interpolating function [61, 63, 64]. We
use time-step size adaptivity and mesh mapping in the region of interest (close to the electrode-electrolyte
interface). We also use parallel solution strategies and carefully select the phase-field interface thickness
(δPF ), given the interface thickness effect on the electrodeposition rate, which ultimately determines the
evolution dynamics (motion) of the lithium electrodeposits [95].

We compare the simulated lithium dendrite propagation rate against the experimental measurements of
Nishikawa et al. [94]. Nishikawa et al. studied the dendritic electrodeposition of lithium as a function of total
charge (electric current passed over time) using microscope observations. They reported dendrite growth
rates of 0.01 − 0.06

[
µms−1

]
[37] using a 1M LiPF6 electrolyte, establishing upper and lower bounds for

comparison with our simulation results. The wide range of values reported in many studies [32, 94, 129] may
be caused by the uneven current distribution on the electrode surface [94].
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Figure 3. 2D phase-field simulation of lithium electrodeposition process at a current
density of i = 10

[
mA/cm2

]
with a distance of lx = 5000 [µm] between electrodes.
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We simulate a lithium electrodeposition process at an applied current density of i = 10
[
mA/cm2

]
[94].

We use a 2D rectangular domain lx = 5000 [µm] long (distance betweenelectrodes), and ly = 50 [µm] wide
(sufficient width to allow dendrite formation). We use a mesh 8, 000× 140 elements, with mesh distribution
that guarantees an x-spatial resolution of approximately 0.35 [µm] (h < 4δPF ) in the region of interest
of the domain with square elements. We apply a charging electro potential of φb = −0.45 [V ] to the cell
(a common value in the literature [64–66]), well above the threshold overpotential for dendrite growth
φb = −0.37 [V ] [66]. We perturb the initial electrode surface by (±0.5 [µm]) in x-direction according to

0.4 sin (0.44y + π) e−0.004(y−0.5ly)2 , consisting of a periodic function combined with a Gaussian distribution

to promote dendrite formation at the center of the domain (
ly
2 = 25 [µm]).

Figure 3 shows the initial conditions (t = 0 [s]) and the evolution of the system’s variables
(
ξ, ζ̃+, φ

)
.

We zoom in the phase-field variable ξ at each instant to emphasize the growth of the lithium dendrite
and show the instantaneous dendrite length measurement. Figure 4 shows the evolution of the simulated
lithium dendrite length over time (blue). While in the range of experimental data (green), the results are
sensitive to differences between the transport and kinetic properties and those of the experiments [94] and
our simulator. Therefore, further well-controlled experimental studies, with detailed characterization of the
system parameters, combined with modeling will be necessary to improve the correlation [37].
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Figure 4. Comparison between 2D phase-field simulations of lithium dendrite growth at
a current density of i = 10

[
mA/cm2

]
(blue), experimental data taken from Nishikawa et

al. [94] (green), and the Akolkar analytical model predictions [37] (red). 1D planar electrode
phase field simulation for reference (black).

Additionally, Figure 4 includes analytical dendrite propagation results for the tip current density developed
by Akolkar [37] for comparison. Akolkar’s model calculates the dendrite propagation rate by analyzing
various overpotentials that develop at the dendrite tip and the flat electrode surface, assuming a current
density of i = 10

[
mA/cm2

]
applied and a constant radius of r = 1 [µm] at the dendrite’s tip. This

simplification constitutes departs from our phase-field model, where the dendrite’s tip radius is variable
throughout the simulation. This difference may partly explain the higher growth rate obtained in our
simulations. Furthermore, we also include 1D planar electrode phase-field results using an identical set-up
as to the 2D simulation [95].

6.3. 2D Simulation of lithium dendrite growth. The following 2D numerical experiment compares our
model’s features to other phase-field simulations reported in the literature. This comparison verifies our
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work as a preliminary step to continue with a series of larger and more complex 3D simulations of lithium
dendrite growth in metal anode batteries latter in this paper.

In this case, we use a 2D square domain set as 360 × 360
[
µm2

]
, within the range of typical distances

between electrodes in metal anode batteries [6]. We use a 500 × 720 structured mesh with a mapping in
the x-direction to obtain square elements of size 0.5 × 0.5

[
µm2

]
in the region of interest (see Section 6.4

for details). We apply a charging electro potential of φb = −0.7 [V ] to the cell, with an artificial nucleation
region with 3 protrusions (ellipsoidal seeds), equally spaced, growing from the left boundary, with semi-axes

4 [µm]×1 [µm]. Figure 5 shows the evolution of our system’s variables
(
ξ, ζ̃+, φ

)
at different time steps. The

corresponding temporal-spatial distribution of the phase-field variable ξ depicts the dynamic morphological
evolution of the simulated lithium dendrite.

(a) t = 5 [s]. (b) t = 20 [s]. (c) t = 50 [s]. (d) t = 70 [s].

Figure 5. 2D phase-field simulation of bush-like lithium dendrite formation under φb =
−0.7 [V ] charging potential. The upper row shows the lithium solid-phase evolution ξ; the

second row shows the lithium-ion distribution ζ̃+; and the third row shows the electric
potential field φ. Square domain set as 360× 360

[
µm2

]
.

Figure 5 shows the evolution of bush-like lithium dendrite formation, having morphological resemblance
to the dendritic patterns reported in previous phase-field studies of dendrite growth [67, 75]. The lithium
dendrites grow from each nucleation site and move towards the opposite electrode, following the electric field

( ~E = −∇φ). As the dendrite grows, side branches appear, growing across the electrolyte, in agreement with
lithium dendrite experiments [42]. The computed width range of lithium branches is between 5 and 13 [µm].
These bush-like morphologies grow fast across the electrolyte region and penetrate through porous separators,
becoming potentially dangerous as they can produce battery short circuits [6]. The spatial distribution of

the lithium-ion concentration ζ̃+, and electric potential φ, corresponding to the second and third rows of
Figure 5 respectively, show that they follow the same trend reported in other phase-field models of lithium

dendrite growth [61, 67]. The lithium-ion concentration remains equal to the bulk concentration, ζ̃+ = 1,
through the electrolyte phase and decreases near the dendrite front (solid phase) due to the electrodeposition
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process [64]. The electric potential has a large gradient that spreads over the electrolyte phase and remains
constant and equal to φb at the electrode phase. As the lithium dendrite moves across the electrolyte region,
the gradient of the electric potential (electric field) increases, in agreement with simulation results reported
by Hong et al. [61].
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Figure 6. Performance of time-adaptive strategy in 2D lithium dendrite growth simulation.
Weighted local truncation error (blue) and time-step size (red) vs time.

Figure 6 illustrates the interplay between the weighted truncation error estimate en+1 (30) (blue) and the
time-step size evolution ∆tn+1 (31) (red), throughout the 70 [s] of simulation. The figure shows that the
simulation initially requires a small time-step size of ∆t0 = 10−10 [s] to converge as the phase field develops
its interface thickness and the ion concentration and electro potential distributions achieve equilibrium. The
time-step size increases sharply, achieving a stationary size of ∆tn+1 = 10−2 [s], after 5 [s] of simulation. In
addition, the time-step size starts to decrease slightly after 40 [s], which corresponds with the acceleration of
lithium dendrite propagation rate as it approaches the opposite electrode [61]. The maximum and minimum
tolerances for the time-adaptive scheme are 10−7 and 10−9 in this case, allowing the time-step size to decrease
or increase accordingly when error tolerances bounds are reached.

(a) 3D mesh partition in 8 processors. (b) Simple nucleation.

Figure 7. 3D mesh partition in 8 processors, each one represented by a different color (a),
and geometry of the initial protrusion for the simple nucleation experiment (b).
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6.4. 3D simulation of lithium dendrite growth: Single nucleus experiment. This section describes
3D phase-field simulations of lithium dendrite formation to study three-dimensional highly branched ”spike-
like” dendritic patterns, commonly observed experimentally. These patterns form under high current density
loads, which correspond to fast battery charge [69, 83, 84]. We select a geometrical unit that characterizes a
real cell structure [67, 122]. We choose a computational domain of 80× 80× 80

[
µm3

]
. Consequently, given

the domain size, we expect growth rates up-to two orders of magnitude faster-than-normal, due to the short
separation between electrodes lx = 80 [µm].

We use a 3D structured mesh with eight-node hexahedral elements. We distribute the mesh to focus the
node’s mapping on the area of interest (see Figure 7a). In particular, in the x-direction xr = (2/π) arcsin(xu);
where xu is the node’s x coordinate normalized by lx, before mapping (uniform distribution), and xr is the
node’s mapped coordinate. The arcsin function transitions smoothly, inducing a relatively small variation in
the mesh size within 50% of the physical domain where the lithium electrodeposit process occurs [67, 68, 76].
The mapping produces a finer mesh to properly capture the phase-field interface thickness (4 elements in

the interface [95]) and the steepest gradients of ζ̃+ and φ. We use a 1203 tensor-product mesh with a mesh
size of 0.4 [µm] in the region of interest (bottom half of the domain). We partition the mesh into eight
processors. Figure 7a identifies each core with a different color, showing that the tensor-product mesh can
efficiently allocate resources in the region of interest (more resources/colors allocated to the bottom half of
the domain). As in the previous 2D simulation, we apply a charging electro-potential value of φb = −0.7 [V ]
to the cell, with an artificial nucleation region formed by a single protrusion (ellipsoidal seed), with its center
at (0; ly/2; lz/2), and semi-axes 4 [µm]× 2 [µm]× 2 [µm] as Figure 7b shows. For visualization purpose, here
we rotate the 3D figures to depict a vertical x-axis, showing an upright lithium dendrite growth, in agreement
with the convention used for lithium dendrite experiments [83, 84, 94].

Figure 8 shows the morphological evolution of the simulated lithium dendrite (isosurface plot of the phase-
field variable ξ). The simulation forms a spike-like, symmetric, and highly branched pattern, consisting of
the main trunk and sets of four equal side branches growing in each horizontal direction. A result consistent
with the body-centered cubic (bcc) crystallographic arrangement of lithium metal [67]. Our model includes
the four folded surface anisotropy (6). In-situ optical microscopic investigations [83, 84] report spike-like
lithium dendrite formation. These dendritic patterns grow when high (over-limiting) current densities are
applied to the cell (> 20

[
mA/cm2

]
) [6]. In such cases, the rate of lithium deposition overcomes the rate

of solid-electrolyte interface formation, allowing the lithium deposit to grow almost free from the influence
of the interface [6]. The enrichment of lithium-ion concentration appears in the vicinity of dendrite tips,

reaching peak values of up to ζ̃+ = 2.1, and triggering tip-growing dendritic lithium. Electrolyte regions

with higher lithium-ion concentration (ζ̃+ > 1) are represented by orange volumes in Figure 8. It is worth
mentioning that this phenomenon was previously reported by Hong et al. [61] in 2D simulations of lithium
dendrite formation, proposing a compositionally graded electrolyte, which could potentially suppress the
dendrite initiation.

We calculate the electric field distribution by differentiation of the resolved electric potential ~E = −∇φ.
The magnified view in Figure 9 shows how the electric field localizes in the vicinity of the dendrite tip, leading
to an enriched concentration of the lithium-ion it induces due to the strong migration from the surrounding
regions (see (9) and [61]).

Figure 10 shows the performance of the time-adaptive scheme, throughout the 0.6 [s] of simulation.
Starting with a small time-step of ∆t0 = 10−7 [s] to achieve convergence, followed by a rapid increase in
size, until reaching a stationary value of about ∆tn+1 = 10−3 [s]. The evolution of the weighted truncation
error en+1 (blue) stays close to the minimum tolerance limit (10−7) during 0.3 [s] of simulation; beyond this
point, the error estimate increases due to the acceleration of lithium dendrite propagation rate as the
dendrites approach the positive electrode. The time-step size remains unchanged since the error estimate
remains within the error bounds.

The construction of phase-field models satisfies an a priori nonlinear stability relationship, expressed
as a time-decreasing free-energy functional; nevertheless, standard discrete approximations do not inherit
this stability property. Thus, Figure 11 shows the evolution of the Gibbs free energy of the system Ψ,
see (3), using our adaptive time integration scheme. We plot the total energy curve (black), as well as three
additional energy curves that correspond to each one of its terms, namely, the Helmholtz (chemical) free
energy

∫
V

fchdV (blue), surface energy
∫
V

fgraddV (green), and electrostatic energy
∫
V

felecdV (red), as the
figure indicates. Figure 11 shows that the total systems’ discrete free energy does not increase with time.
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(a) t = 0.1 [s]. (b) t = 0.2 [s]. (c) t = 0.3 [s].

(d) t = 0.4 [s]. (e) t = 0.5 [s]. (f) t = 0.6 [s].

Figure 8. Spike-like lithium dendrite formation under φb = −0.7 [V ] charging potential.
The electrodeposited lithium is represented with a yellow isosurface plot of the phase-

field variable ξ. Electrolyte regions with enriched concentration of lithium-ion (ζ̃+ > 1)
represented with orange volumes. Cube domain set as 80× 80× 80

[
µm3

]
.

0.1	 V/µm

5	𝜇𝑚

Figure 9. Overlay of electric field distribution (blue streamlines and vectors) with dendrite
morphology at time t = 0.5 [s]. Streamline plane set at y = 40 [µm].
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Figure 10. Time adaptivity for 3D spike-like dendrite growth simulation.
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Figure 11. Energy time series for 3D spike-like dendrite growth simulation. The inset
plots the increasing surface energy in smaller scale for better appreciation.

Therefore, we obtain discrete energy stable results using our second-order backward-difference (BDF2) time-
adaptive marching scheme. Alternative, provably unconditionally stable second-order time accurate methods
may deliver larger time-step sizes for phase-field models [110, 130–133], but these are beyond the scope of
this work. Additionally, the system’s chemical and surface energies increase as the lithium surface area grows
as time progresses. In parallel, the electrostatic energy decreases in time. This interaction is consistent with
the electrodeposition process, where the system stores the applied electrostatic energy as electrochemical
energy as the battery charges.

6.5. 3D Simulation of lithium dendrite growth: Multi-nuclei experiment. The lithium dendrite
nucleation depends on local inhomogeneities that may arise from different causes, such as defects and
impurities in the metal anode, imperfect contact between the electrode and electrolyte caused by the
development of a solid-electrolyte interface, and variations in the local concentration or temperature in the
electrolyte [66]. Given the random nature of the nucleation phenomenon, we need to deal with some degree
of randomness and uncertainty when defining the artificial nuclei in the simulation. We study the
simulations’ sensitivity to the artificial nuclei size, shape, and proximity following 2D studies that show this
dependance [62, 64, 67]. Thus, the following 3D numerical experiment tests the simulation’s sensitivity to
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(a) t = 0.0 [s]. (b) t = 0.1 [s]. (c) t = 0.2 [s].

(d) t = 0.4 [s]. (e) t = 0.6 [s]. (f) t = 0.8 [s].

Figure 12. Spike-like lithium dendrite formation from multiple nucleation sites under
φb = −0.7 [V ] charging potential. The electrodeposited lithium is represented with a yellow
isosurface plot of the phase-field variable ξ. Cube domain set as 80× 80× 80

[
µm3

]
.

the nuclei distribution and proximity by comparing four-nuclei morphological results with those previously
obtained with a single artificial protrusion. The simulation setup is similar to the previous 3D experiment
with a different nucleation arrangement. Therefore, we form the artificial nucleation region with four
protrusions (ellipsoidal seeds), with semi-axes 4 [µm] × 2 [µm] × 2 [µm], and centres located at
(y, x, z) = (0, 38, 38), (0, 42, 38), (0, 38, 42) and (0, 42, 42) .

Figure 12 shows the morphological evolution of the simulated lithium dendrite (isosurface plot of the
phase-field variable ξ). In agreement with previous numerical experiments, the simulation forms a spike-like,
symmetric, and highly branched pattern. The dendrite morphology consists of four main trunks growing
from each nucleus, with pairs of orthogonal branches developing to the sides.

The dendrite growth does not occur perpendicular to the stack but at an angle of about 20◦ between
main trunks. The stacks seem to repel each other, showing morphological similarity with dendritic patterns
observed in lithium experiments performed by Ding [83] (see Figure 13a), and by Tatsuma [84] (see
Figure 13b), under charging densities of 10

[
mA/cm2

]
and 3

[
mA/cm2

]
, respectively. As a consequence of

the reduced distance between electrodes (limited by the computational cost), the time scales we simulate
are significantly shorter (∼ two orders of magnitude faster) than the experimental ones [83, 84, 94].

Figure 14a details the simulated dendritic morphology at time t = 0.5 [s], together with the spatial

distribution of the lithium-ion concentration ζ̃+ in the electrolyte region. No side branches form facing the
center of the nucleation arrangement (between the dendrites), where the deposition process depletes the
lithium-ion concentration (shown in blue). Figure 14a also shows how dendrite tips with higher lithium-ion
concentration consume lithium ions from the dendrite valley [61], creating a shadow that inhibits branching
growth in the spatial proximity of more developed adjacent dendrites. As a consequence, the side branches
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100	𝜇𝑚

(a) 10
[
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]
.

25	𝜇𝑚

(b) 3
[
mA/cm2

]
.

Figure 13. Photographs of lithium electrodes with electrochemical deposition of lithium.
The deposition condition for (a), as performed by Ding [83], consist of 10

[
mA/cm2

]
current

density applied for 1 hour in 1M LiTFS/DME/DOL electrolyte, with working distance
between electrodes set about 2 [mm]. The deposition condition for (b), as performed by
Tatsuma [84], consist of 3

[
mA/cm2

]
current density applied for 1 hour in 1M LiClO4

electrolyte, with working distance between electrodes set about 3 [mm].

(a) ζ̃+ at t = 0.5 [s] . (b) φ at t = 0.5 [s].

Figure 14. Spatial distribution overlay of lithium-ion concentration (a), and electric
potential (b), with dendrite morphology at t = 0.5 [s]. Contour plane set at y = 35 [µm].

do not grow dendrites facing the center of the nucleation arrangement (unfavorably oriented dendrites) due
to the 3D interactions with other dendrites (adjacent to the main trunks) [100]. Therefore, 2D phase-field
models of dendrite electrodeposition cannot capture this 3D phenomenon.

Figure 14b shows the spatial distribution of the electric potential φ overlaid with the lithium dendrite at
the same instant t = 0.5 [s]. In agreement with the 2D simulations of Section 6.3, the electric potential has
a steep gradient over the electrolyte phase and its steepness increases as the lithium dendrite grows.

Figure 15 shows the evolution of the electric field ~E = −∇φ and the enriched lithium-ion concentration

(ζ̃+ > 1) in the vicinity of the dendrite tips (red volumes represent enriched concentration). As before, a
larger electric field localizes in the vicinity of the dendrite tips, leading to a higher lithium-ion concentration

with peak values of ζ̃+ = 1.8. The electric migration forces overcome the concentration diffusion gradient
and drive lithium cations from surrounding regions with lower concentrations (i.e., Li-ion depletion of valley
regions) to accumulate around dendrite tips, triggering tip-growth with highly branched dendritic lithium.

We analyze the dendritic patterns’ morphology evolution using single and multiple nuclei. Following Yufit
et al. [128], we characterize the morphology by tracking the dendrites’ volume-specific area ratio (µm2/µm3)
and the branch number evolution in time. Figure 16a plots the growth of the volume versus the surface
area for the 3D lithium patterns we simulate. The volume-specific area average ratios of 0.83 and 0.91
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(a) t = 0.25 [s]. (b) t = 0.50 [s]. (c) t = 0.75 [s].

(d) t = 0.25 [s]. (e) t = 0.50 [s]. (f) t = 0.75 [s].

Figure 15. Simulation of spike-like lithium dendrite formation from multiple nucleation

sites. The upper row shows the overlay of the electric field evolution ~E = −∇φ (blue vectors)

with dendrite morphology; the second row exhibit the lithium ion enrichment effect ζ̃+ > 1
(red volume) surrounding the dendrite tips.

0 1000 2000 3000 4000 5000

Volume

0

1000

2000

3000

4000

S
u
rf

ac
e

A
re

a

Single Nuclei

Multiple Nuclei

[𝜇𝑚!]

[𝜇
𝑚
" ]

Single Nucleus

Multiple Nuclei

(a) Volume vs Surface Area.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec ]

0

5

10

15

20

25

30

35

40

N
u
m

b
er

of
b
ra

n
ch

es

Single Nuclei

Multiple Nuclei

Single Nucleus

Multiple Nuclei

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec ]

0

5

10

15

20

25

30

35

40

N
u
m

b
er

of
b
ra

n
ch

es

Single Nuclei

Multiple Nuclei

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec ]

0

5

10

15

20

25

30

35

40

N
u
m

b
er

of
b
ra

n
ch

es

Single Nuclei

Multiple Nuclei

(b) Side branches vs t.

Figure 16. Morphological comparison between 3D simulations of lithium dendrite growth
(single and multiple-nuclei), in terms of the evolution of volume vs surface area ratio a, and
number of side branches developed over time b.
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Figure 17. Time adaptivity plot for 3D spike-like four-nuclei dendrite growth simulation.

[
µm2/µm3

]
of the single and multiple nuclei simulations, respectively; where a higher surface area/volume

ratio is indicative of a more branched shape. Given the lack of experimental data available in the literature for
quantitative characterization of the spike-like lithium morphologies, we rely on experimental results available
for zinc dendrites. Yufit et al. [128] report values between 0.86 and 1.04

[
µm2/µm3

]
for experimental

formation of dendrites in zinc batteries. These values are slightly higher ratios than the ones we obtain for
lithium. Nevertheless, these values are reasonable since zinc has a hexagonal crystal structure and tends
to grow more branching (fractal) dendrites than lithium, which has a cubic crystal structure (less inherent
anisotropy)and, thus, produces needle (spiky) dendrites [65]. Figure 16b compares the number of branches
developed over time in each case. The simulatilons produce ratios of 48 and 72 branches per second [1/ [s]]
for the single and multiple nuclei simulations, respectively. We compute the number of branches by visual
inspection of the simulated morphologies, where we consider new protuberances as incipient branches under
development. Direct comparison with dendrite experiments was impractical in this case, due to the faster
dynamics of the simulation (small distance between electrodes).

Figure 17 shows the performance of the time-adaptive scheme, throughout the 0.8 [s] of the simulation.
Starting with a small time-step of ∆t0 = 10−7 [s] to initially achieve convergence, followed by a rapid
increase in size, until reaching a stationary value of about ∆tn+1 = 10−3 [s]. The weighted truncation error
en+1 (blue) stays close to the minimum tolerance limit (10−7) during 0.4 [s] of the simulation, after which
the estimated error grows due to the acceleration of lithium dendrite propagation rate as it approaches
the positive electrode. The time-step size remains unchanged since the error estimate remains within the
tolerances

Figure 18 shows the systems’ energy evolution. The total energy curve (black) does not increase with
time, showing energy stable results. As before, the system’s chemical (blue) and surface energies (green)
increase with time as the lithium surface area increases, while the electrostatic energy (red) decreases. This
energy reduction happens as the process transforms electrostatic energy and stores it as electrochemical
energy (battery charge). Figure 18 shows that the surface energy for the four-nuclei simulation is almost
four times larger than the single nucleus surface energy of Figure 11. The proportionately larger surface area
due to the four seeds explains this scaling.
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Figure 18. Energy time series for 3D spike-like four-nuclei dendrite growth simulation.
The inset plots the increasing surface energy in smaller scale for better appreciation.

7. Conclusions

Using a phase-field model, we describe the dendrite formation process during metal (lithium)
electrodeposition. We present the weak variational form of the coupled equations describing
electrochemical interactions during the battery charge cycle and its finite element implementation using an
open-source library. We use a time-adaptive strategy and detail its implementation and parametrization.
The numerical experiments demonstrate numerically that the adaptive strategy produces energy stable
results when we use a minimum tolerance for the time-adaptive scheme of tolmin = 10−7. We reduce the
computational cost of simulating the detailed lithium electrodeposition at the scale of the whole cell
(distance between electrodes of about lx = 5000 [µm]) by using time-step size adaptivity, mesh mapping to
concentrate the mesh in the region of interest, parallel computation, and a careful selection of the
phase-field interface thickness (δPF ) considering the applied electro potential value of φb = −0.45 [V ].

We compare our 2D simulation results (lithium dendrite propagation rate) with experimental
measurements by Nishikawa et al. [94] at an applied current density of i = 10

[
mA/cm2

]
. The growth rates

we predict (∼ 0.04
[
µms−1

]
) are within the range of experimental results (0.01 − 0.06

[
µms−1

]
[94]).

Further, we compare the two-dimensional behavior of our model with previous phase-field simulations from
the literature. The 2D evolution of the phase-field order parameter ξ under φb = −0.70 [V ] applied voltage
depicts the dynamic growth of “bush-like” lithium dendrites. The spatial distribution of the lithium-ion

concentration ζ̃+, and electric potential φ, follow the same trend reported in [61, 67, 75].
We also perform 3D simulations of lithium dendrite formation to explain 3D highly branched “spike-

like” dendritic patterns formed under high current density status (fast battery charge). We study the 3D
morphological evolution of dendritic lithium under φb = −0.70 [V ] applied voltage. We mimic the cubic
crystal structure and surface anisotropy of lithium by using a 3D four-fold anisotropy model (6) of William
et al. [99] to simulate crystal growth.

We analyze the sensitivity of the model to initial conditions by comparing results using different setups
(single nucleus versus a four-nuclei arrangement) for accounting for the random nature of the nucleation
process. We obtain spike-like, symmetric, and highly-branched patterns in both cases. We obtain volume
to specific-area average ratios of 0.83 and 0.91

[
µm2/µm3

]
for the single and multiple nuclei simulations,

respectively; where a higher surface area/volume ratio indicates a more branched dendritic shape.
We study the 3D distribution of the electric field and lithium-ion concentration to better understand the

mechanism behind spike-like dendrite growth. In both simulations, the electric field increases in the vicinity of

the dendrite tips, increasing the lithium-ion concentration that peaks at ζ̃+ = 2.1 for a single nucleus and 1.8
for multiple nuclei. Thus, electric migration forces overcome the concentration diffusion gradient, causing
lithium cations to move from less concentrated surrounding regions (i.e., lithium-ion depletion of valley
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regions) and accumulate around dendrite tips, triggering tip-growing and highly branched dendritic lithium.
In multiple-nuclei simulation we observe that the deposition process depletes the lithium-ion concentration at
the center of the nucleation arrangement. Thus, 3D interactions with other dendrites creates a shadow that
inhibits branching growth in the spatial proximity of more developed adjacent dendrites [100]. Therefore,
2D phase-field models of dendrite electrodeposition cannot capture this 3D phenomenon.

The analysis reveals that dendrite formation is connected to the competition between the lithium cation
diffusion and electric migration forces, generating an uneven distribution of Li+ on the electrode surface. This
fact gives insight into strategies of dendrite suppression. For example, the use of pulse charging in lithium
batteries can shift the competition in favour of cation diffusion (concentration gradient), by allowing resting
times (milliseconds) for lithium cations to diffuse from dendrites’ tips to less concentrated surrounding regions
(valleys), leading to dendrite inhibition [18, 19, 74]. Furthermore, other strategies such as the application of
electrolyte flow, increment of the internal temperature, or improvements in the electrolyte composition, can
enhance the diffusion of lithium ions with the purpose of achieving a more uniform concentration field on
the anode surface, leading to lower dendrite formation propensity [22–35].

Finally, unlike 2D simulations, the 3D simulations performed have a smaller domain size due to the high
computational cost. Consequently, the short separation between electrodes in the 3D model (lx = 80 [µm])
induces faster deposition rates. Thus, future work may explore different meshing strategies to simulate larger
3D domains to achieve realistic simulation time scales.

In conclusion, we demonstrate the proposed phase-field modeling framework’s effectiveness in performing
2D and 3D simulations of dendrite formation in lithium metal batteries with a reasonable computational
cost. Beyond lithium electrodeposition, the framework has the potential to model other metal deposits in
metal-anode batteries, such as zinc anode batteries.
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dendrite growth. Energy & Environmental Science, 12(12):3595–3607, 2019.

[70] Yangyang Liu, Xieyu Xu, Matthew Sadd, Olesya O. Kapitanova, Victor A. Krivchenko, Jun Ban,
Jialin Wang, Xingxing Jiao, Zhongxiao Song, Jiangxuan Song, Shizhao Xiong, and Aleksandar Matic.
Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal.
Advanced Science, 8(5):2003301, 2021.

[71] Pengjian Guan, Lin Liu, and Xianke Lin. Simulation and experiment on solid electrolyte interphase
(SEI) morphology evolution and lithium-ion diffusion. Journal of The Electrochemical Society,
162(9):A1798, 2015.



DENDRITE FORMATION IN LI-METAL BATTERIES 31

[72] Pengjian Guan, Lin Liu, and Yang Gao. Phase-field modeling of solid electrolyte interphase (SEI)
cracking in lithium batteries. ECS Transactions, 85(13):1041, 2018.

[73] Lin Liu and Pengjian Guan. Phase-field modeling of solid electrolyte interphase (SEI) evolution:
Considering cracking and dissolution during battery cycling. ECS Transactions, 89(1):101, 2019.

[74] Dongge Qiao, Xunliang Liu, Ruifeng Dou, Zhi Wen, Wenning Zhou, and Lin Liu. Quantitative analysis
of the inhibition effect of rising temperature and pulse charging on lithium dendrite growth. Journal
of Energy Storage, 49:104137, 2022.

[75] Chih-Hung Chen and Chun-Wei Pao. Phase-field study of dendritic morphology in lithium metal
batteries. Journal of Power Sources, 484:229203, 2021.

[76] Jiawei Zhang, Yuanpeng Liu, Changguo Wang, and Huifeng Tan. An electrochemical-mechanical phase
field model for lithium dendrite. Journal of The Electrochemical Society, 168(9):090522, 2021.

[77] Sybren Ruurds de Groot and Peter Mazur. Non-equilibrium Thermodynamics. Courier Corporation,
1984.

[78] I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende. A
phase field concept for multiphase systems. Physica D: Nonlinear Phenomena, 94(3):135–147, 1996.
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