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Abstract 24 

Soil heterotrophic respiration (Rh) refers to the flux of CO2 released from soil to 25 

atmosphere as a result of organic matter decomposition by soil microbes and fauna. As 26 

one of the major fluxes in the global carbon cycle, large uncertainties still exist in the 27 

estimation of global Rh, which further limits our current understanding of carbon 28 

accumulation in soils. Here, we applied a Random Forest algorithm to create a global 29 

dataset of soil Rh, by linking 761 field observations with both abiotic and biotic 30 

predictors. We estimated that global Rh was 48.8 ± 0.9 Pg C yr-1 for 1982-2018, which 31 

was 16% less than the ensemble mean (58.6 ± 9.9 Pg C yr-1) of 16 terrestrial ecosystem 32 

models. By integrating our observational Rh with independent soil carbon stock datasets, 33 

we obtained a global mean soil carbon turnover time of 38.3 ± 11 yr. Using observation-34 

based turnover times as a constraint, we found that terrestrial ecosystem models 35 

simulated faster carbon turnovers, leading to a 30% (74 Pg C) underestimation of 36 

terrestrial ecosystem carbon accumulation for the past century, which was especially 37 

pronounced at high latitudes. This underestimation is equivalent to 45% of the total 38 

carbon emissions (164 Pg C) caused by global land use change at the same time. Our 39 

analyses highlight the need to constrain ecosystem models using observation-based and 40 

locally adapted Rh values to obtain reliable projections of the carbon sink capacity of 41 

terrestrial ecosystems.   42 



Introduction 43 

Soil carbon sequestration, the process by which carbon dioxide (CO2) acquired by 44 

plants from the atmosphere is transferred and stored into the soil carbon reservoir, can 45 

partially offset anthropogenic carbon emissions (Bond-Lamberty and Thomson, 2010; 46 

Stockmann et al., 2013). The capacity of soil carbon sequestration is mediated partly 47 

by carbon input through plant photosynthesis, and partly by soil carbon turnover 48 

through which the accumulated carbon is depleted by heterotrophic respiration (Rh) 49 

(Chen et al., 2015; Todd-Brown et al., 2013). Many previous studies have reported that 50 

the uncertainty in carbon turnover is greater than the uncertainty in the carbon input, 51 

and this has been proved to be the main reason for the large inter-model spreads of 52 

predicted carbon stock dynamics and their response to future climate change (Anav et 53 

al., 2013; Carvalhais et al., 2014; Todd-Brown et al., 2013; Wu et al., 2018). Thus, an 54 

improved quantification of soil Rh would be a key step towards the reliable prediction 55 

of real-world soil carbon dynamics.  56 

 57 

Rh refers to the release of CO2 from the soil to the atmosphere through the 58 

decomposition of organic matter by soil microbes and fauna (Bond-Lamberty et al., 59 

2018; Chapin et al., 2006; Subke et al., 2006). As one of the major fluxes in the 60 

terrestrial carbon cycle, there is large uncertainty associated with current estimates of 61 

soil Rh. On the one hand, some previous studies estimated global Rh indirectly using an 62 

empirical relationship with soil respiration (Rs), where large uncertainties remain in the 63 

universality of the global constant Rs-Rh relationship (Baggs, 2006; Bond-Lamberty et 64 



al., 2004; Hashimoto et al., 2015; Subke et al., 2006; Warner et al., 2019). For example, 65 

a widely used Rs-Rh equation provided by Bond-Lamberty et al. (2004) was established 66 

using only 54 forest sites, calling into question the applicability to non-forested 67 

ecosystems around the world. On the other hand, although many studies have upscaled 68 

global soil Rh directly based on putative environmental drivers, to our knowledge, the 69 

key role of soil biotic decomposers (e.g., soil microbes and fauna) have not been 70 

considered and investigated (Feng et al., 2022; Moinet et al., 2016; Tang et al. 2020a; 71 

Yan et al., 2018; Ye et al., 2019; Zhang and Zhang, 2016).The emergence of global 72 

gridded soil biotic property datasets has thus provided an opportunity to more 73 

accurately predict soil Rh (He et al., 2020; van den Hoogen et al., 2019).  74 

 75 

In addition, terrestrial ecosystem model development has strongly focused on 76 

photosynthesis processes, whereas the soil carbon dynamics have shown a relatively 77 

weak convergence in modeling results (Carvalhais et al., 2014; Todd-Brown et al., 2013, 78 

2014). For example, global Rh simulated by the MsTMIP models (Tian et al., 2015) 79 

varies from 35 to 69 Pg C yr-1, values from the TRENDY models (Sitch et al., 2015) 80 

varies from 48 to 72 Pg C yr-1, and those from the CMIP5 models (Hashimoto et al., 81 

2015) varies from 42 to 73 Pg C yr-1. Such uncertainty in soil Rh propagated through 82 

the model predictions could cause substantial variation in estimates of soil carbon 83 

sequestration, and further affects global carbon-climate feedbacks (Anav et al., 2013; 84 

Friend et al., 2014; Todd-Brown et al., 2013).  85 

 86 



The primary goal of this study was to constrain the magnitude of simulated carbon 87 

sequestration capacity in terrestrial ecosystem models combined with Rh observations. 88 

Specifically, we first present a new dataset of soil Rh using a Random Forest (RF) 89 

algorithm with comprehensive in situ Rh observations and specific consideration of soil 90 

biotic factors. On this basis, we are then able to generate a new data-driven map of soil 91 

carbon turnover time (τsoil) by adopting previously published soil carbon-stock (cSoil) 92 

datasets and the newly derived Rh. Taking these observation-based Rh and τsoil as 93 

benchmarks, we the evaluate the performance of the terrestrial ecosystem models and 94 

constrained the simulated changes in terrestrial carbon storage during the past century. 95 

The schematic overview of the aforementioned procedures is shown in Figure S1. 96 

 97 

Materials and Methods 98 

Site-level Rh measurements 99 

This work was mainly based on a global soil respiration database (SRDB) 100 

compiled by Bond-Lamberty and Thomson (2010a, b), which is currently on version 5 101 

(https://github.com/bpbond/srdb; Jian et al., 2021). Due to the lack of data records 102 

included in SRDB for China because of language barriers, we additionally collected Rh 103 

observations from the China Knowledge Resource Integrated Database (CNKI; 104 

https://www.cnki.net/, last access: March 2020). We evaluated and filtered all the 105 

observations, retaining only those data records that matched the following criteria: (1) 106 

measurements were made for at least one year; (2) multi-year measurements within the 107 

same site were considered independent; (3) explicit geographic coordinates and the 108 



measurement year were provided; (4) measurements with no experimental 109 

manipulation; (5) measurements based on alkali absorption were excluded because of 110 

the verified low accuracy of the method (Bekku et al., 1997; Bond-Lamberty et al., 111 

2018; Haynes and Gower, 1995; Pumpanen et al., 2004). (6) four extremely high Rh 112 

measurements (lying outside 6 standard deviations of all the data records) were 113 

excluded as outliers from our analysis. In total, we retained a set of 761 site-level Rh 114 

observations from all around the world (Figure S2), including 56 data points from the 115 

tropics, 327 from temperate zones and 376 from boreal zones (Figure S3).  116 

 117 

Predictor variables  118 

In total, 19 predictors, including climate, vegetation, and soil abiotic and biotic 119 

variables, were used for the global up-scaling of soil Rh in our analysis (Table S1). 120 

Specifically, mean annual temperature (MAT) and mean annual precipitation (MAP) 121 

were acquired from the Climatic Research Unit (CRU TS 4.04; Harris et al., 2020), and 122 

dry month length (DryMonth) was defined using the CRU TS v4.04 dataset, as the 123 

number of months per year with monthly potential evapotranspiration larger than 124 

precipitation. Mean annual leaf area index (LAI) and growing season length (GSL) 125 

were derived from the Global Inventory Modeling and Mapping Studies version 4 126 

(GIMMS v4; Zhu et al., 2013). Litter production (Litter) was derived from He et al. 127 

(2021) by upscaling field observations to the global scale. Note that the litter production 128 

data used in our study did not cover cropland; instead, we substituted the litter 129 

production with NPP in cropland areas, which may overestimate the carbon input to the 130 



soil system since a large proportion of NPP is harvested for human use (Haberl et al., 131 

2007). Annual nitrogen deposition (Ndep) was obtained from the North American 132 

Carbon Program Multiscale Synthesis and Terrestrial Model Intercomparison Project 133 

(MsTMIP; Huntzinger et al., 2013). Soil abiotic variables such as soil water content 134 

(SWC) were obtained from The Global Land Evaporation Amsterdam Model (GLEAM 135 

v3; Martens et al., 2016). Sand fractions (Sand), silt fractions (Silt), clay fractions 136 

(Clay), cation-exchange capacity (CEC), soil water PH (PH), and soil organic carbon 137 

content (SOC) in the 0-1m layer were all calculated from the SoilGrids250m project 138 

(Hengl et al., 2017). Total nitrogen density (TotN) and C: N ratio (C:N) were obtained 139 

from the ISRIC-WISE soil profile database (Batjes, 2016). We also applied two global 140 

gridded soil biotic property datasets which included the Fungal: Bacterial ratio (F:B) 141 

and nematode density (Nematode) from previously published upscaling studies (He et 142 

al., 2020; van den Hoogen et al., 2019). Also, we collected all these predictors for each 143 

given site from corresponding studies in the literature; if unavailable, they were 144 

extracted from global-scale gridded productions (Table S1) based on the specific site 145 

geographic coordinates and measurement years. All the predictor variables were then 146 

resampled to a common spatial resolution of 0.5° using the nearest neighbor method. 147 

 148 

The vegetation distribution map used in this study is based on the 17 International 149 

Geosphere ‐ Biosphere Programme (IGBP) vegetation classes derived from the 150 

Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product 151 

(MCD12C1; Friedl et al., 2010) in 2001. These classes consist of 11 natural vegetation 152 



types, 3 unnatural vegetation types and 3 non-vegetated types. Here, the 11 natural 153 

vegetation types were reclassified into 9 categories: Evergreen Needleleaf Forest (ENF); 154 

Evergreen Broadleaf Forest (EBF); Deciduous Needleleaf forest (DNF); Deciduous 155 

Broadleaf forest (DBF); Mixed forest (MF); Shrublands, including Open shrubland and 156 

Closed shrubland (Shrub); Savannas, including Woody Savanna and Savanna 157 

(Savanna); Grassland; Cropland, including Cropland and Cropland/Natural vegetation 158 

Mosaic (Crop). Grasslands, savannas and shrublands north of 55o N were categorized 159 

as Tundra (Figure S2). In addition, bare ground and sparse vegetated areas, defined as 160 

pixels with 1982-2018 annual mean normalized difference vegetation index (NDVI) 161 

lower than 0.1, were masked out.   162 

 163 

Geospatial modelling of Rh 164 

Machine learning algorithms can directly “learn” information from data without 165 

assuming the functional relationship between dependent and independent variables in 166 

advance, and have thus been widely applied in geosciences in recent years, especially 167 

in up-scaling modelling of carbon and water fluxes (Jung et al., 2017; Yao et al., 2018; 168 

Zeng et al., 2012). To predict global Rh, we trained 761 Rh observations using all the 19 169 

selected predictor variables via the RF model (Breiman, 2001). We fine-tuned the RF 170 

model for the following two parameters: ntree (the number of decision trees grown in 171 

RF; ntree = 100, 150 or 200) and mtry (the minimum number of variables randomly 172 

sampled per tree leaf; mtry = 2, 3, 4 or 5). To improve the RF model accuracy, we 173 

developed a stratified 10-fold cross validation, by grouping our dataset into three 174 



climate zone classes (i.e., tropical, temperate and boreal zones) and ensuring each class 175 

was approximately equally represented across each fold. The model performance was 176 

then evaluated based on the goodness of fit (R2), Nash-Sutcliffe efficiency (NSE) and 177 

the root mean squared error (RMSE). Finally, we ranked all the prediction factors based 178 

on the increased node purity and calculated the relative importance of each factor from 179 

the percentage contribution of all the predictors. The average predicted map across the 180 

RF model ensemble was used as the final product, and the standard deviation across all 181 

the RF models was then considered to be an indication of the prediction uncertainty 182 

(Figure S4). All the processes were analyzed using the “RandomForest” package in 183 

RStudio. 184 

 185 

To further detect the combined relative importance of the four predictor groups 186 

(i.e., climate, vegetation, soil abiotic and soil biotic variables), we first conducted a 187 

principal component analysis (PCA) on each group, ensuring the same number of 188 

predictors in each group and removing the correlation between predictors. Note that 189 

vegetation type was excluded from the PCA analysis since it is an unordered categorical 190 

variable. All the predictors were normalized before the PCA analysis. Since there were 191 

only two soil biotic properties used in this study, we used the first two principal 192 

components (i.e., PC1 and PC2) from each group and the corresponding 761 soil Rh 193 

records to reconstruct a new RF model (R2 = 0.58). The relative importance for both 194 

PC1 and PC2 from all the four groups were quantified. Finally, the sums of the relative 195 

importance of each group was regarded as their combined importance (Figure S5).  196 



 197 

Independent observational Rh and soil carbon stock datasets 198 

Four previously derived data-driven global Rh datasets were used for comparison 199 

with the global Rh data produced in this study (Table S2). Specially, Hashimoto et al. 200 

(2015) firstly established a Rs model driven by monthly temperature and precipitation, 201 

and then indirectly derived global Rh based on a globally constant Rs-Rh empirical 202 

relationship. Similarly, Warner et al. (2019) produced two global Rh datasets based on 203 

two separate Rs-Rh empirical relationships. The average soil Rh derived from Warner et 204 

al. (2019) was used here. Tang et al. (2020a) directly upscaled global Rh using the RF 205 

algorithm, based on the SRDBv4 database and nine environmental abiotic variables. As 206 

an alternative, Rh was also estimated from a mass balance approach, using net 207 

ecosystem production (NEP) from atmospheric inversions, gross primary production 208 

(GPP) derived from solar-induced fluorescence, and carbon use efficiency (CUE) from 209 

a model-data fusion system (Konings et al., 2019); however, this method has large 210 

uncertainties stemming from these input datasets.  211 

 212 

Recent advances in observational global soil carbon stock datasets provided us 213 

with a unique opportunity to create a new data-oriented map for τsoil (Batjes, 2016; 214 

Bloom et al., 2016; Hengl et al., 2017; Nachtergaele et al., 2010; Sanderman et al., 215 

2017). We used five different state-of-the-art global cSoil datasets for the 0-1m soil 216 

layer to estimate global τsoil, assuming that all the terrestrial ecosystem models 217 

contained soil organic carbon within the top 1m soil layer (Todd-Brown et al., 2013). 218 



Detailed information for each cSoil dataset is given in Table S3. Since global estimates 219 

of cSoil have large differences which may arise from the different upscaling methods 220 

and in situ observations used to derive global maps (Figure S6), we used the average 221 

estimate of all five cSoil datasets to ensure robustness.  222 

 223 

In addition, the observation-based cSoil does not include the carbon stock of litter 224 

(cLitter), because the sample of soils were sieved and the remaining recognizable litter 225 

detritus were mainly removed before the determination of soil organic carbon. We thus 226 

combined the observation-based cSoil with an independent cLitter dataset from a Data 227 

Assimilation Linked Ecosystem Carbon Model (DALEC2; Bloom et al., 2016) to better 228 

represent the soil carbon dynamics and to be comparable with DGVMs. 229 

 230 

Terrestrial ecosystem models 231 

Global net primary productivity (NPP), Rh, vegetation carbon stock (cVeg) and 232 

cSoil outputs from 16 dynamic global vegetation models (DGVMs) were used in this 233 

study. The model outputs were obtained from the S2 experiments of the TRENDY 234 

(version 9) multi-model inter-comparison project, in which the models were forced by 235 

time-varying climate and CO2 concentrations, while land use and land-use change were 236 

held constant at pre-industrial levels. For the DGVMs that have simulated cLitter pools, 237 

the cSoil value used here was estimated as the sum of cSoil and cLitter. All the DGVM 238 

outputs were harmonized to a common 0.5° grid using the nearest neighbor method. 239 

Detailed information for all 16 DGVMs is given in Table S4. 240 



 241 

Calculation of the vegetation and soil carbon turnover time  242 

At realistic non-steady state, τ is commonly defined as the ratio between the 243 

storage of a carbon pool and its corresponding outflux based upon first-order kinetics 244 

(Koven et al., 2015; Schwartz, 1979). Without considering natural and anthropogenic 245 

induced disturbances, the outflux of the vegetation carbon pool is approximately equal 246 

to litter production, and the outflux of the soil carbon pool is approximately equal to 247 

soil Rh. Thus, the turnover time of vegetation and soil can be calculated as follows: 248 

τveg  =
cVeg

Iveg−△cVeg
=

cVeg

litter
   (1) 249 

τsoil  =
cSoil

Isoil−△cSoil
=

cSoil

Rh
   (2) 250 

where cVeg and cSoil are the size of vegetation and soil (including litter) carbon 251 

pools, respectively; Iveg  and Isoil  refer to the influx of vegetation and soil carbon 252 

pools, respectively; litter represents the litter production, and Rh represents the soil 253 

heterotrophic respiration. When estimating the observation-based τsoil, the uncertainty 254 

range denotes that stemming from the inter-model standard deviation of five 255 

observation-based soil carbon stock datasets.  256 

 257 

Constraining the changes in global terrestrial carbon stocks during 1901-2018 258 

Here, we developed a reduced-complexity model, the 2-box model (2BoxModel), 259 

to approximate the DGVM-based vegetation and soil carbon dynamics during the past 260 

century for each of the 16 terrestrial ecosystem models. The 2BoxModel assumes that 261 

all the output carbon fluxes of the vegetation carbon pool enter the soil carbon pool, 262 



and all the output carbon fluxes of the soil carbon pool are released to the atmosphere 263 

in the form of soil Rh. Therefore, we can simplify the carbon-cycle processes of the 264 

terrestrial ecosystem into the following vegetation-soil carbon turnover theoretical 265 

formulations: 266 

{
   

dcVeg

d𝑡
= NPP(𝑡) −

cVeg(𝑡)

τveg(𝑡)
 

dcSoil

d𝑡
=

cVeg(𝑡)

τveg(𝑡)
−

cSoil(𝑡)

τsoil(𝑡)

  (3) 267 

where,  268 

cVeg(t) denotes the vegetation carbon stock in year t; 269 

cSoil(t) denotes the soil carbon stock (including the litter carbon stock) in year t; 270 

NPP(t) denotes the net primary productivity in year t; 271 

τveg(t) denotes the vegetation carbon turnover time in year t; 272 

τsoil(t) denotes the soil carbon turnover time in year t; 273 

(t represents the year within the period 1902-2018, with t=2, 3, …119) 274 

 275 

Second, we assumed that both the DGVM-simulated τveg and τsoil in 1901 were the 276 

same as the values in 1902, and both the DGVM-simulated cVeg and cSoil were in a 277 

steady state in 1901. Thus, cVeg(1) and cSoil(1) can be estimated as NPP(1) × τveg(1), 278 

NPP(1) × τsoil(1), respectively. We then reconstructed the global terrestrial ecosystem 279 

carbon stocks (i.e., cTotal = cVeg + cSoil) for 1902-2018 for each DGVM using Eq.(3). 280 

As a result, we found that the 2BoxModel could generally emulate the terrestrial carbon 281 

dynamics of the original DGVM outputs (Figures S7a and S8a). 282 

 283 



Third, we replaced the DGVM-simulated τveg and τsoil during 1901-2018 with the 284 

observation-based τveg (10.3 ± 1.4 yr; He et al., 2021) and τsoil (38.3 ± 11 yr), both of 285 

which were then used as constraints, while leaving the modelled interannual variation 286 

and trend of carbon turnover times unchanged in the 2BoxModel. Specifically, since 287 

the DGVM-simulated τveg and τsoil were generally biased compared to observations, we 288 

calculated a correction factor, defined as the difference between observation-based 289 

turnover times and DGVM-simulated turnover times, to adjust the DGVM-simulated 290 

results (Eq.(4) and (5)). The global correction factors for each model were then used to 291 

recalculate τveg and τsoil during 1901-2018. Using these bias-corrected carbon turnover 292 

times, we could thus constrain both the vegetation carbon stock changes (ΔcVeg) and 293 

soil carbon stock changes (ΔcSoil) relative to 1901 from the original DGVM model 294 

outputs via the 2BoxModel (Figures S7b and S8b). The sum of ΔcVeg and ΔcSoil 295 

represents the total terrestrial carbon accumulation (ΔcTotal) relative to 1901 after 296 

constraint. 297 

τ̃veg(t)

sim = (τveg(t0)

obs − τveg(t0)
sim) + τveg(t)

sim (4) 298 

τ̃soil(t)
sim = (τsoil(t0)

obs − τsoil(t0)
sim) +  τsoil(t)

sim (5) 299 

where, 300 

τveg(t0)
obs  and τsoil(t0)

obs  denote the multi-year global mean observation-based vegetation 301 

and soil carbon turnover time during 1982-2018, respectively. 302 

τveg(t0)
sim and τsoil(t0)

sim  denote the multi-year global mean DGVM-simulated vegetation 303 

and soil carbon turnover time during 1982-2018, respectively. 304 

τveg(t)
sim and τsoil(t)

sim denote the yearly global mean DGVM-simulated vegetation and 305 



soil carbon turnover time during 1901-2018, respectively. 306 

 307 

To assess the robustness of the modelled terrestrial carbon stock changes during 308 

the past century implied by the uncertainty of observation-based carbon turnover-time 309 

constraints, we conducted a Monte Carlo sensitivity experiment. Specifically, 310 

observation-based τveg values were randomly drawn from a normal distribution with a 311 

mean equal to 10.3 and standard deviation equal to 1.4 by 100 Monte Carlo bootstrap 312 

samples. Similarly, observation-based τsoil values were randomly drawn from a normal 313 

distribution with a mean equal to 38.3 and standard deviation equal to 11 by 100 Monte 314 

Carlo bootstrap samples. We thus obtained a 10000-strong ensemble of global terrestrial 315 

ecosystem carbon stocks for each model during 1901-2018 from crossing the 316 

combinations of 100 τveg samples and 100 τsoil samples used as constraints in the 317 

2BoxModel. For each model, the average constrained terrestrial ecosystem carbon 318 

stocks from the 10000-strong 2BoxModel ensemble was used as the final prediction, 319 

and the standard deviation was regarded as an indication of the model uncertainty. 320 

 321 

In addition, we repeated the above steps for each vegetation type, rather than the 322 

entire global vegetated area, by replacing the DGVM-simulated τveg and τsoil with the 323 

corresponding observation-based values and tested the contribution of each vegetation 324 

type to the changes of global total cVeg and cSoil after constraint (Figure S9). Cropland 325 

was excluded from this vegetation-specific analysis, as this non-natural vegetation type 326 

is strongly affected by human activities. 327 



 328 

Results 329 

A new global estimate of soil Rh 330 

A new observation-based, global value of Rh for 1982-2018 was estimated at 48.8 331 

± 0.9 Pg C yr-1 (mean ± standard deviation), which is close to the ensemble mean (50.5 332 

± 4.9 Pg C yr-1) obtained by previous studies (Figure 1; Table S2). The global 333 

distribution of Rh has a latitudinal gradient with higher values occurring in the tropics 334 

(Figure S10a). The highest values occur in South and Central America, Africa, and 335 

south and east Asia, while the lowest values are mainly at high latitudes or in arid 336 

regions with low water availability. Specifically, we used a RF model by linking 19 337 

putative predictors with 761 field observations of Rh distributed around the world 338 

(Figure S2): a much larger data set than those used in previous studies (Table S2; see 339 

Materials and Methods). The final stratified 10-fold cross validation revealed good 340 

performance of our RF model in predicting soil Rh, with the goodness of fit (R2), Nash-341 

Sutcliffe efficiency (NSE) and the root mean squared error (RMSE) of 0.62, 0.63 and 342 

152.9 g C m-2 yr-1, respectively (Figure 1a). 343 

 344 



Figure 1. Global distribution of soil heterotrophic respiration (Rh) derived from 345 

observation-based estimates and terrestrial ecosystem models. a. Comparison between 346 

predicted and observed annual mean Rh using Random Forest (RF) algorithm. b. Global 347 

distribution of annual mean Rh predicted by RF during 1982-2018. c. Comparison of 348 

global mean Rh from this study with the other four previous empirical estimates and 16 349 

terrestrial ecosystem models. The horizontal dashed line and the shaded area indicate 350 

our newly estimated global Rh and its uncertainty range over 1982-2018, respectively. 351 

Four previous empirical estimates of global Rh are all recalculated from corresponding 352 

publications to match the temporal extent of this study as closely as possible (details in 353 

Table S2). The error bar on the multi-model mean Rh denotes the inter-model standard 354 

deviation.   355 

 356 

 



Using this observation-based Rh as a benchmark, we evaluated the performance of 357 

16 process-based DGVMs and found that most of them (14 out of 16) overestimated 358 

the global Rh. The multi-model average of global soil Rh (58.6 ± 9.9 Pg C yr-1) was 20% 359 

higher than our observation-based estimate (Figure 1c). Additionally, when the spatial 360 

similarities between our observation-based and the DGVM-simulated Rh were 361 

examined using a Taylor diagram (Taylor, 2001) (Figure S11), we found that the 362 

correlation coefficient (R) ranged from 0.41 (LPJwsl) to 0.72 (LPJ-Bern), the standard 363 

deviation (SD) of the DGVM-simulated values ranged from 154 g C m-2 yr-1 (LPJ-364 

GUESS) to 441 g C m-2 yr-1 (YIBs), whilst the RMSE of the DGVM-simulated global 365 

Rh ranged from 137 g C m-2 yr-1 (LPJ-GUESS) to 385 g C m-2 yr-1 (YIBs). In contrast, 366 

closer spatial agreement between our newly-derived Rh and the other four previous 367 

empirical estimates were observed, with the spatial correlation coefficient ranging from 368 

0.62 (Konings et al., 2019) to 0.87 (Tang et al., 2020a). The SD of the four previous Rh 369 

estimates ranged from 111 g C m-2 yr-1 (Hashimoto et al., 2015) to 312 g C m-2 yr-1 370 

(Konings et al., 2019), while the RMSE of them ranged from 70 g C m-2 yr-1 (Tang et 371 

al., 2020a) to 253 g C m-2 yr-1 (Konings et al., 2019). None of the DGVMs reproduced 372 

the global pattern of the observation-based global Rh well, suggesting poor performance 373 

of the DGVMs in reproducing soil Rh.  374 

 375 

Dominant factors controlling Rh changes  376 

The relative importance of the main factors for predicting soil Rh are displayed in 377 

Figure 2. Here we focused on the six most important factors: Mean annual temperature 378 



(MAT), litter production (Litter), mean annual precipitation (MAP), leaf area index 379 

(LAI), soil Fungal: Bacterial ratio (F:B) and nematode density (Nematode) (Figure 2a). 380 

Generally, climate condition is the most important factor shaping Rh variations (29.4%; 381 

Figure S5). The partial dependence analyses showed that MAT had a strong positive 382 

influence on Rh, with this influence being strongest in the middle range of temperatures 383 

(around 0~20°C; Figure 2b). MAP also exerted a strong positive control on Rh near the 384 

lower end of its range of values, but this gradually decreased towards the higher end of 385 

the range (Figure 2d). The overall effect of vegetation properties played a secondary 386 

role (25.6%; Figure S5), where Litter and LAI are the two most important vegetation-387 

related predictors. Litter had a strong positive control on Rh at relatively low values of 388 

litter and this gradually vanished at higher values (Figure 2c, d). For the case of LAI, a 389 

proxy for vegetation productivity, we found that soil Rh linearly increased with 390 

increasing LAI (Figure 2e).  391 



 392 

Figure 2. The performance of Random Forest (RF) trained with heterotrophic 393 

respiration (Rh) observations and predictors. a. Relative importance of all the predictors. 394 

Values shown are the mean relative importance across all the RF models, with error 395 

bars denoting 1-sigma standard deviation (see Materials and Methods). Climate, 396 

vegetation, soil abiotic and biotic properties are shown in green, red, blue and orange, 397 

respectively. b-g. Partial-dependence plots for the six most important predictors of soil 398 

Rh in the RF model. The y-axis represents the marginal effect of each predictor while 399 

holding all other predictors constant, on the predicted Rh (i.e., f(Rh)). Black lines and 400 

blue lines denote raw and smoothed partial dependence, respectively. Abbreviations: 401 

CEC, Cation-exchange capacity; C:N, C: N ratio; Clay, Clay fractions (Clay); 402 

DryMonth, Dry month length; F:B, Fungal: Bacterial ratio; GSL, Growing season 403 

length; Litter, Litter production; LAI, Mean annual leaf area index; MAP, Mean annual 404 

 



precipitation; MAT, Mean annual temperature; Ndep, Annual nitrogen deposition; 405 

Nematode, Nematode Density; PH, Soil water PH; Veg, Vegetation type; Sand, Sand 406 

fractions; Silt, Silt fractions; SWC, Soil water content; SOC, Soil organic carbon 407 

content; TotN, Total nitrogen density. 408 

 409 

The role of soil carbon decomposers associated with the soil carbon cycle was 410 

identified in our study (Figure 2a, f, g). Compared to soil abiotic variables, the soil 411 

biotic variables (Nematode and F:B) had stronger effects on the spatial variations of 412 

soil Rh (Figure 2f, g). F:B showed generally positive correlations with Rh, although 413 

there were fluctuations detected right across the range of values (Figure 2g). The density 414 

of nematodes showed a negative exponential relationship to the frequencies of Rh with 415 

a sharp decrease in its lower range, indicating little influence of nematodes on soil Rh 416 

when the density of nematodes was greater than 8×106 m-2 (Figure 2f). It’s worth noting 417 

that although the rank of the relative individual influence of soil abiotic properties is 418 

small, their total relative contribution (22.5%) is nearly the same to that of soil biotic 419 

variables (22.6%) (Figure S5). 420 

 421 

A global data-oriented map of soil carbon turnover time 422 

As shown in Figure 3a, global mean τsoil inferred from the observation-based Rh 423 

was 38.3 ± 11 yr (mean ± standard deviation) for the 0-1m soil layer during 1982-2018. 424 

The τsoil value in boreal zones was generally higher than that in tropical zones, varying 425 

as a monotonically-increasing function of latitude (Figure 3 and S10b). Our new 426 



estimate of τsoil was comparable to the other three independent observation-based 427 

estimates (see Materials and Methods) which ranged from 33 yr (Tang et al., 2020a) to 428 

38 yr (Warner et al., 2019). However, the τsoil value of 43 yr based on Konings et al. 429 

(2019) was substantially higher than our estimate (Figure 3). 430 

 431 

An evaluation of the DGVM performance found that all the simulated τsoil were 432 

smaller than our observation-based τsoil. The multi-model mean global τsoil was 23 ± 13 433 

yr, with values from individual models ranging from 13 yr (JSBACH) to 36 yr (ISBA-434 

CTRIP) (Figure 3c). Moreover, the simulated τsoil showed faster carbon turnovers in 435 

tropical forest regions and at high latitudes. Interestingly, the largest inter-model 436 

variability (Figure S10b) and the largest data-model differences were both most 437 

pronounced over the high latitudes of Northern Hemisphere (Figure 3b).  438 

 439 

 



Figure 3. Global distribution of soil carbon turnover time (τsoil) derived from 440 

observation-based estimates and terrestrial ecosystem models. a. Global distribution of 441 

annual mean observation-based τsoil during 1982-2018. b. The difference between the 442 

multi-model mean (τmodel) and observation-based soil carbon turnover time (τobs). c. 443 

Comparison of global annual mean τsoil from this study with the other four previous 444 

empirical estimates and 16 terrestrial ecosystem models. The horizontal dashed line and 445 

the shaded area indicate our newly estimated global τsoil and its uncertainty range over 446 

1982-2018, respectively. The error bar on the multi-model mean τsoil denotes the inter-447 

model standard deviation.  448 

 449 

Constrained terrestrial carbon sequestration by terrestrial ecosystem models  450 

Generally, we concluded that DGVMs exhibit a poor performance in reproducing 451 

soil carbon dynamics (Figures 1 and 3). Driven by soil Rh of organic carbon substrates, 452 

τsoil is largely underestimated by DGVMs, suggesting that soil organic carbon might 453 

decompose too rapidly in model simulations. The vegetation carbon turnover time (τveg) 454 

might also be underestimated. A previous study has verified that there is a general 455 

tendency for DGVMs to have an unrealistically fast turnover of global vegetation 456 

carbon, especially at high latitudes (He et al., 2021). However, the degree to which the 457 

high rates of vegetation and soil turnover may affect the accumulation of terrestrial 458 

carbon in the models remains an unanswered question. It is, therefore, essential to use 459 

observation-based τveg and τsoil to constrain the terrestrial ecosystem models and 460 

ultimately gain a better prediction of the terrestrial carbon sequestration capacity. We 461 



thus applied a reduced complexity 2-box model (2BoxModel) that integrated 16 462 

terrestrial ecosystem models with observation-based τveg (He at al., 2021) and τsoil for 463 

the 0-1m soil layer to constrain global terrestrial ecosystem carbon dynamics during 464 

1901-2018. The results showed that the 2BoxModel could generally emulate the 465 

terrestrial carbon dynamics obtained from the original DGVM outputs (Figures 4, S7 466 

and S8), indicating its reliability (see Materials and Methods). 467 

 468 

Figure 4. Comparison of the changes in ecosystem total carbon stock (ΔcTotal) from 469 

the dynamic global vegetation models (DGVMs) and the corresponding constrained 470 

values based on the 2BoxModel during 1901-2018. a. Reproduction of the modelled 471 

ΔcTotal using DGVM-simulated vegetation and soil carbon turnover times based on 472 

the 2BoxModel. b. Constraining the DGVM-simulated ΔcTotal by correcting the mean 473 

biases of vegetation and soil carbon turnover times based on the 2BoxModel. The 474 

horizontal green and blue dashed lines denote the multi-model mean ΔcTotal before 475 

and after constraint, respectively. The shaded area indicates the uncertainty range (± 1 476 

standard deviation) of the constrained ΔcTotal. 477 

 



 478 

By correcting the biases of τveg and τsoil for each model, we found that the 479 

underestimation of carbon turnover times resulted in a 30% (74 Pg C) underestimation 480 

of the accumulation of terrestrial ecosystem carbon storage changes relative to 1901 481 

(∆cTotal; from 170 Pg C of changes in the original DGVM-simulated ensemble mean 482 

to 244 Pg C of changes after constraint). The underestimation of ∆cTotal is equivalent 483 

to 45% of the total cumulative carbon emissions (164 Pg C, Friedlingstein et al., 2020) 484 

caused by global land use change during 1901-2018. Specifically, the unconstrained 485 

and observational τveg-constrained outputs (99 vs 102 Pg C) showed only minor changes 486 

in the accumulation of vegetation carbon stock (∆cVeg; Figure S7b). In contrast, the 487 

unconstrained and observational τsoil-constrained outputs (71 vs 142 Pg C) showed a 488 

significant difference in the accumulation of soil carbon stock (∆cSoil; Figure S8b), 489 

indicating that underestimated τsoil was the main reason for the underestimation of the 490 

DGVM-simulated ecosystem carbon sink capacity.  491 

 492 

The underestimation of ∆cTotal was particularly pronounced in permafrost regions 493 

with an underestimation of 51% in Tundra and 50% in Evergreen Needleleaf Forest, 494 

respectively (Figure S9). These results suggest that, to accurately simulate future 495 

atmospheric carbon dioxide dynamics and the carbon-concentration feedback, the 496 

representation of carbon decomposition processes and turnover time in DGVMs 497 

requires improvement, particularly in high-latitude regions (Wider et al., 2013; Wider 498 

et al., 2014). Of particular note is that, in the 2BoxModel, the turnover of both soil and 499 



vegetation carbon pools are represented as first-order decay processes, with only one 500 

pool each for the vegetation and soil systems. This approach may be too simplified, and 501 

its applicability to multi-pool systems remains to be evaluated. 502 

 503 

Discussion 504 

Attribution of Rh variations to soil abiotic and biotic factors 505 

Soil respiration involves many complex biogeophysical and biogeochemical 506 

processes that are either directly or indirectly regulated by a variety of factors 507 

(Davidson and Janssens, 2006). Similar to many previous studies, we found that both 508 

climate (e.g., MAT and MAP) and vegetation (e.g., LAI and litter production) 509 

significantly affected soil Rh variations (Hursh et al., 2017; Tang et al., 2020a, b; Wang 510 

et al., 2010), but we also identified the critical role of soil biotic properties on soil 511 

carbon decomposition, which has, in the past, generally been ignored when estimating 512 

soil Rh. 513 

 514 

Specifically, we found that the variation of soil Rh was highly related to the 515 

structure and dynamics of soil microbe and fauna communities, with these soil biotic 516 

factors having a larger influence than any single soil abiotic factors (Figure 2). F:B is 517 

often used as an important indicator of the changes in microbial community structure 518 

and functionality (Bardgett and McAlister, 1999; Gordon et al., 2008; He et al., 2020; 519 

Rousk et al., 2010), characterizing the relative dominance of the two most important 520 

microorganism groups, i.e., fungi and bacteria. Since the carbon utilization strategies 521 



of fungi and bacteria are different, changes in F:B would further affect the 522 

decomposition rate of soil carbon (Strickland and Rousk, 2010). First, there is no doubt 523 

that soil systems under warm and moist climate hold larger soil Rh, since favoruable 524 

hydrothermal environments and abundant plant litter input support microbial growth 525 

and metabolism. In addition, fungi are more abundant in the soils with abundant plant 526 

residues because they are mainly responsible for the initial decomposition of these 527 

residues and are also competent to break and decompose recalcitrant organic 528 

components, whereas bacteria are considered to favour easily decomposed organic soils 529 

with organic matter of low C:N (De Boer et al., 2005; Gao et al., 2018; Högberg et al., 530 

2007; Lauber et al., 2008; Meidute et al., 2008; Schneider et al., 2012). Therefore, as 531 

our results showed, greater soil Rh is accompanied by a higher F:B. This positive 532 

relationship could also be found among vegetation types, as forests characterized by 533 

larger Rh are generally associated with higher F:B, while grasslands characterized by 534 

lower Rh are typically dominated by bacteria (Deng et al., 2018).  535 

 536 

In addition, soil fauna can also regulate soil respiration but via complex pathways. 537 

On the one hand, soil Rh could be increased by accelerated substrates decomposition 538 

through fragmentation (Ohashi et al., 2017), while, on the other hand, Rh could be 539 

indirectly, negatively affected by grazing on microbial biomass (Cragg and Bardgett, 540 

2001; Eisenhauer et al., 2011). Our results show that soil Rh decreased in response to 541 

the increase in nematode density (Figure 2f), that is to say, the decrease of soil Rh 542 

induced by the suppressed decomposition through overgrazing was greater than the 543 



increase caused by the enhanced fragmentation capability of nematodes. Overall, we 544 

found compelling evidence that the soil fauna and the microbial community influence 545 

the broad pattern of decomposition and organic matter turnover in soil, which 546 

emphasizes the need to incorporate and improve soil biotic diagnostics into terrestrial 547 

ecosystem model evaluation in future studies.  548 

 549 

Although none of a single soil abiotic factor rank the top six important predictors 550 

of soil Rh, their combined effect is non-negligible (Figure S5). For example, soil texture 551 

types (proportions of sand, silt and clay content) exert a strong influence in regulating 552 

soil decomposition rate. Soils with a larger percentage of clay content commonly have 553 

larger specific surface area, and thus have a greater ability to hold and retain water and 554 

nutrients, as well as contact with microbes and enzymes (Balogh et al., 2011; Xu and 555 

Shang, 2016). Soil Rh is also affected by N deposition, which favours the rate of 556 

mineralization in N-restricted ecosystems, and thus promoting soil Rh (Allen and 557 

Schlesinger, 2004), while excessive N deposition may lead to soil nutrient imbalance 558 

and soil acidification (Tian and Niu, 2015). In addition, although other substrate quality, 559 

such as litter nitrogen concentration, is also an important determinant of soil Rh, its 560 

spatial gridded information remains unavailable, highlighting that the development of 561 

global databases of such properties is important. 562 

 563 

Poor performance of soil carbon dynamics by terrestrial ecosystem models 564 

Based on 761 observations of soil Rh and 19 predictors, we mapped annual Rh 565 



across the world at 0.5° resolution using a RF algorithm from 1982-2018. Subsequently, 566 

we provided a spatially explicit estimate of τsoil using the newly derived Rh. These 567 

observation-based estimates indicated varying degrees of incapability of the terrestrial 568 

ecosystem models to reproduce the spatial characteristics of both observational Rh and 569 

τsoil. In general, the DGVMs underestimated τsoil due to the overestimation of Rh, as 570 

indicated by the significant correlation between the deviations of the modelled Rh to 571 

the observed Rh and those of τsoil (Figure S12). However, the deviations in modelled 572 

τsoil could be attributed to biases in either the soil carbon pool or Rh or both. Therefore, 573 

for each grid cell over the globe, we estimated the percentage bias of modelled τsoil 574 

dependent on the bias of Rh only, as well as the percentage bias dependent on the bias 575 

of the soil carbon pool only. The results showed that Rh was the dominant factor 576 

affecting the bias of modelled τsoil over 62% of the global vegetated area (Figure S13). 577 

 578 

This large discrepancy between modelled and observed Rh (as well as the resultant 579 

τsoil) is partly a consequence of the incomplete representation of key biogeochemical 580 

processes, e.g. soil biotic activities, in DGVMs. Our results demonstrate that the 581 

variation of soil Rh was strongly related to modifications of soil microbe and fauna 582 

communities. Most DGVMs, however, did not explicitly represent the influence of the 583 

soil microbial and faunal communities on soil carbon decomposition, indicating the 584 

significant challenge facing the modeling of soil organic carbon dynamics (Schmidt et 585 

al., 2011; Wieder et al., 2013, 2014). Instead, they simulate the release of CO2 from soil 586 

to atmosphere based solely on abiotic functions, by linking soil carbon content to the 587 



controlling drivers such as temperature, soil moisture, as well as substrate content (Shao 588 

et al., 2013). The main reason for the exclusion of microbial and faunal physiology in 589 

models is the lack of mechanistic understanding of their complex feedback responses. 590 

It is notable that a growing number of ecologically meaningful and functionally relevant 591 

microbial models have been proposed, but with great differences in expression forms. 592 

For example, Wieder et al. (2015) constrained the decomposition rates of two litter and 593 

three soil organic matter pools based on an introduction of microbial functional groups 594 

(i.e., copiotrophic vs. oligotrophic growth strategies), while Wang et al. (2013) directly 595 

simulated the dynamics of physically measurable soil carbon pools, such as particulate, 596 

dissolved, mineral-associated organic matter and microbial biomass. In addition, soil 597 

fauna also plays a key role in soil carbon dynamics through directly or indirectly 598 

influencing the decomposition of substrates and the structures and activities of 599 

microbial community (Grandy et al., 2016). So far, the feasibility of the microbial-600 

explicit models, let alone the inclusion of soil fauna with more complex food webs, is 601 

largely unknown and warrants further investigation (Bradford et al., 2016). A more 602 

comprehensive understanding of the soil carbon dynamics, especially the faunal-603 

microbial interactions, is thus required, potentially through the continued cooperation 604 

between the experimentalists and modellers, to further provide robust mechanism and 605 

parameterization support for modelling studies. 606 

 607 

Moreover, our results showed that larger uncertainties of both Rh and τsoil occurred 608 

in high latitude regions. This may be related to the poor performance for current 609 



terrestrial ecosystem models in simulating permafrost dynamics, e.g., soil free-thaw 610 

processes which could regulate soil decomposition rates (Koven et al., 2011; Schuur et 611 

al., 2015; Todd-Brown et al., 2013; Yan et al., 2018). In addition, the vertical 612 

distribution of soil organic carbon and associated depth-dependent environmental 613 

controls (e.g., active layer thickness in permafrost areas) have been largely overlooked 614 

in current DGVMs (Tian et al., 2015). Previous studies generally assumed that the 615 

modelled soil carbon storage was contained within 0-1m in order to simplify the 616 

comparison with observation-based cSoil datasets. However, there is a huge amount of 617 

“old carbon” held in deeper soil layers, especially in permafrost regions (Mishra et al., 618 

2021). The Northern Circumpolar Soil Carbon Database (NCSCD) indicated that 619 

permafrost region alone contained 472 Pg C in 0-1m depth, but 1035 Pg C in 0-3m 620 

depth (Hugelius et al., 2014). Given the large temperature increases, along with 621 

dramatically increased decomposition rates of thawed soil carbon at high-latitudes, 622 

further improvements in the representation of permafrost carbon dynamics is a crucial 623 

step toward improving the reliability of predictions of the dynamics of future terrestrial 624 

carbon cycling. 625 

 626 

 627 

In summary, we found that DGVMs have generally overestimated soil Rh, and 628 

consequently underestimated τsoil, especially in high latitude permafrost regions, which 629 

would ultimately translate into an underestimation of 30% in the carbon sink strength 630 

of global terrestrial ecosystems for the past century. Our analysis suggests that 631 



terrestrial ecosystems may have accumulated more carbon than predicted by current 632 

terrestrial ecosystem models over the twenty-first century, implying that there is a 633 

greater possibility of achieving climate mitigation targets through soil carbon 634 

sequestration in the future than previously thought. 635 
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