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Abstract

Recently, dynamic multi-objective optimization has received growing attention due to its
popularity in real-world applications. Inspired by polynomial fitting, this paper proposes a
polynomial fitting-based prediction algorithm (PFPA) and incorporates it into the model-
based multi-objective estimation of distribution algorithm (RM-MEDA) for solving dynamic
multi-objective optimization problems. When an environment change is detected, the main
mission of PFPA is to predict high-quality search populations for tracking the moving Pareto-
optimal set effectively. Firstly, the non-dominated solutions obtained in past environments
are utilized to predict high-quality solutions based on a multi-step movement strategy.
Secondly, a polynomial fitting-based strategy is designed to fit the distribution of variables
according to the obtained search populations, and capture the relationship between variables
in the new search environment. Thirdly, some effective search agents are generated for
improving population convergence and diversity based on characteristics of variables. To
evaluate the performance of the proposed algorithm, experimental results on a set of
benchmark functions, with a variety of different dynamic characteristics and difficulties,
and two classical dynamic engineering design problems show that PFPA is competitive with
some state-of-the-art algorithms.

Keywords: Dynamic multi-objective optimization; polynomial fitting; prediction
mechanism; dynamic engineering design

1. Introduction

Dynamic multi-objective optimization problems(DMOPs) refers to solving multi-objective
optimization problems (MOPs) in dynamic or uncertain conditions, and it has a growing
number of applications [1]. Without loss of generality, considering the following minimization
model of DMOPs.

min
x∈Ω

F (x, t) = (f1(x, t), f2(x, t), ..., fm(x, t))T

s.t. hi(x, t) = 0, i = 1, 2, ..., nh

gj(x, t) ≤ 0, j = 1, 2, ..., ng

(1)

where Ω =
∏D

i=1[Li, Ui] ⊂ RD is the feasible area of the decision space, and F consists of m
time-varying objective functions. x = (x1, x2, ..., xD) defines the decision vector involving D
variables, Li and Uirepresent the lower and upper bounds of the ith variable xi, respectively,
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t is the time instant of the problem. nh and ng denote the number of equality and inequality
constraints at time t, respectively.

Different from static MOPs, DMOPs require to consider two important problems, i.e.,
multiobjectivity and dynamism. the former involves conflicting objectives, which is a
common characteristic of MOPs. The latter involves various changes that can occur in
control parameters, Pareto optimal set (POS) or Pareto-optimal front (POF). They bring
great challenges to the tracking ability of optimization algorithms during the course of search.
It is difficult to obtain optimal tradeoff solutions satisfying the requirements in dynamic
environments. One way to address DMOPs is that DMOPs can be regarded as a sequence
of static MOPs along the time horizon. This means that solving dynamic multi-objective
problems is a process of obtaining a sequence of approximate Pareto-optimal solutions.

Recently, a growing number of effective dynamic multi-objective evolutionary algorithms
(DMOEAs) have been proposed based on various learning mechanisms and models. As
shown in Algorithm 1 for a basic framework of DMOEAs, it is obvious that the overall
course of solving DMOPs consists of two main components: change handling after detecting
a change and multi-objective optimization algorithms.

Algorithm 1 The basic framework of DMOEAs

1: Initialize time instance t = 1;
2: Generate an initial population Popt;
3: While the stopping criterion is not met
4: Change Detection
5: If change is not detected, optimize population using MOEAs;
6: Otherwise, evolve population using DMOEAs;
7: Return 3.

1.1. Change Detection

Change detection is a core part of the framework, since it determines the timing of envi-
ronmental change and whether there is a need to adopt environmental response mechanisms.
Dynamic detection techniques include re-evaluating solutions [2] and checking population
statistical information [3] through sensors. The former is more popular, since it is simple
and easy to implement, but it also suffers from noise sensitivity. On the contrary, the
latter is not sensitive to noise, but it needs some control parameters. Besides, sensors are
placed appropriately for change detection [4] and need to be tested on various problems or
applications. It is difficult to select an appropriate detection technique, since each method
has its advantages and limitations for different DMOPs.

1.2. Multi-objective optimization algorithms

Apart from dynamic detection, multi-objective algorithm is also one of the key components
for solving DMOPs. The existing research on multi-objective algorithms mainly focuses on
three types described as follows. The first category is Pareto dominated-based algorithms,
which utilize the dominance concept to determine whether the obtained individuals can
be retained for next iteration. Various classical and representative algorithms have been
proposed recently years, such as non-dominated sorting genetic algorithm II (NSGA-II)
[5], NSGA-III [6] and strength Pareto evolutionary algorithm (SPEA2)[7]. In addition,
some swarm intelligence algorithms are also adopted for multi-objective optimization, such
as multi-objective grasshopper optimization algorithm (MOGOA) [8], and multi-objective
multi-verse optimizer (MOMVO) [9], and so on. Pareto-dominance strategies perform well in
different applications, but suffer from the risk of generating excessive boundary individuals
in some cases.

The second category is indicator-based algorithms, which are designed according to
performance metrics. The hypervolume [10], the epsilon indicator and the R2 have been



widely employed to design optimization algorithms, such as indicator-based EA (IBEA)
[11], approximation-guided EMO (AGE) [12]. The last category is decomposition-based
algorithms, which are designed by decomposing an MOP into several sub-problems and
solving them simultaneously. Typically, MOEA based on decomposition (MOEA/D) [13] and
multi-objective particle swarm optimization algorithm based on decomposition (MPSOD)
[14]. This kind of algorithm is effective, but depends heavily on weight vectors.

In addition, the research on complicated real-world problems is also important for
evaluating the algorithmic effectiveness and guiding the algorithmic design. Some practical
applications in various areas are described briefly as follows. Mirjalili et al [15] assessed
the performance of algorithms by solving several popular engineering design problems
including four-bar truss design, speed reducer design, disk brake design, welded beam design,
cantilever beam design and brushless DC wheel motor. Wang et al [16] investigated urban
bus scheduling problem considering route, number of vehicles and drivers. Besides, there
exist many different optimization models, such as change detection in SAR images [17],
elevator group control[18] and so on.

1.3. Dynamic multi-objective optimization algorithms

Influenced by the frequency or severity of change, diverse difficulties may appear in
different forms, such as intensive computation, changing feasible region, irregular Pareto
fronts and constraints. This requires that the optimization algorithm keep a good balance
between diversity and convergence during the search of solutions. Research on dynamic
multi-objective optimization algorithms can be classified into four categories: diversity-based
algorithms, memory based algorithms, multi-population based algorithms, and prediction
based algorithms. Firstly, diversity-based algorithms aim to employ different effective
strategy for keeping the diversity of population after change detection. Respectively, Li
[19] proposed a basic framework for generating subpopulations with good diversity using
hierarchical linkage clustering. Chang [20] proposed a query-based mechanism for producing
some individuals for diversity. Ye [21] employs multiple source transfer learning for DMOPs.
In addition, immigration-based techniques are also introduced for diversity, such as memory-
based immigration [22], elitism-based immigration [23]. Deb [24] proposed two different
versions of DMOEAs by combining NSGAII with diversity-increase mechanisms.

In memory-based algorithms, some promising historical individuals are recorded and
reused for guiding search when a change is detected. In [25], the best agents of previous
obtained population are saved in an archive and used to replace some members of the search
population in the current environment. Xie [26] integrates decision variable classification-
based cooperative co-evolutionary mechanisms for dynamic multiobjective problems. Azzouz
[27] proposed an adaptive hybrid population management strategy by considering memory,
local technique and random strategy. In [2], a steady-state mechanism is introduced for
generating individuals and responding to dynamic change effectively. The kind of these
algorithms performs well in periodically changing problems.

In multi-population based algorithms, the diversity of search population is maintained
through multiple subpopulations. Xu et al [28] proposed two multi-population algorithms
based on PSO and NSGAII, each sub-population was endowed with different levels of sensitive
variables and responses to dynamic changes using different models. Liu et al [29] utilized
an external archive to store the obtained promising individuals and each sub-population
evolved one objective independently. In [30], multiple sub-populations are employed for
dealing with different objectives, and an external archive was used to share information
between sub-populations and enhance diversity preservation.

The main idea of prediction-based algorithms is to estimate the possible POS/POF
position in new dynamic circumstances according to previously obtained individuals. Zhou
[31] utilizes the univariate auto-regression (AR) model for predicting the manifold and search
population after changes are detected. Muruganantham [32] designed a DMOEA based on
Kalman filter for solving DMOPs. Hu [33] proposed multi-directional prediction mechanism



for generating high-quality search agents during the process of evolution. Besides, various
prediction approaches and models have been designed, such as knee points [34], and center
points [35]. This kind of algorithm are much popular in DMOEAs, since they are easy to
implement and understand.

In addition to those discussed above, real-world applications have also attracted growing
attention in recent years, and the following discusses some practical examples involved
in different areas. Deb et al [24] explored power scheduling in hydro-thermal generation
systems, which involves two optimization objectives and three constraints about dynamic
power demand, hydraulic ,fuel cost and power system networks. Zhang, et al [36] studied
the dynamic welded beam design problem and dynamic speed reducer for evaluating the
performance of dynamic artificial immune systems. In [37], a dynamic railway junction
rescheduling problem with two objectives and dynamic constraints was investigated in
railway networks. Kong et al [38] investigated the dynamic power supply problem with
dynamic changes of objectives and constraints. Gong et al [39] solved dynamic multi-period
portfolio selection problem using a similarity-based cooperative co-evolutionary algorithm.
In addition, there are still various application problems such as dynamic scheduling [40],
path planning [41] and so on.

It can be found from the above analysis that most of the existing dynamic multi-objective
optimization algorithms are designed based on various knowledge or machine learning
mechanisms and have been applied in various applications. However, a significant property,
i.e., the relationship between variables, has not been well explored for generating promising
individuals. Meanwhile, the polynomial fitting strategy can not only reflect the relationship
between variables, but also be used to predict new variable values [43]. Motivated by this,
this paper attempts to design an effective prediction-based algorithm for solving dynamic
multiobjective optimization problems.

This paper can be summarized as follows. A new polynomial fitting-based prediction
algorithm is proposed for generating high-quality search population when changes are
detected. The designed algorithm consists of three different parts, a multi-step movement
strategy, a polynomial fitting-based strategy and a sampling strategy. Firstly, the multi-step
movement strategy mainly utilizes two different step sizes to predict new individuals based
on the obtained historical population. Secondly, the polynomial fitting-based strategy aims
to predict the potential position of new individuals. Thirdly, the sampling strategy tends
to sample some well-distributed individuals based on relationship properties of variables
for guiding search and improving the convergence of population during the course of
optimization. Experimental results carried on a set of recently proposed functions and two
dynamic engineering design problems show that the proposed algorithm is very competitive
with other compared algorithms.

The following provides the organization of this paper. Section 2 presents the framework
of the proposed algorithm in detail. In Section 3, the effectiveness of the proposed algorithm
is evaluated on a suite of benchmarks and compared with several existing optimization
approaches. Section 4 discusses the influence of each component and key parameters in the
proposed algorithm. The proposed algorithm is utilized for solving two dynamic engineering
design problems in Section 5. The conclusion of this study can be found in Section 6.

2. Proposed algorithm: PFPA

The details of the proposed algorithm PFPA are presented in this section. Algorithm
2 provides the basic implementation steps of PFPA. When environment changes occur,
PFPA introduces a prediction mechanism for generating a high-quality search population
composed of three subpopulation resulting from different strategies. RMMEDA is employed
for improving the quality of population over the course of optimization.



Algorithm 2 The overall framework of the proposed algorithm

1: Initialize relevant parameters settings.
2: Initialize and evaluate population (Popiter) and set iter = 1.
3: If the stop condition is not satisfied.
4: If change detected, go to step 5; otherwise, go to step 10.
5: Generate the first subpopulation (SubPop1) using an multi-step movement strategy.
6: Generate the second subpopulation (SubPop2) based on a polynomial fitting based
strategy.
7: Generate the third subpopulation (SubPop3) by a sampling strategy [44].
8: Merge these subpopulations MixPop = SubPop1 ∪ SubPop2 ∪ SubPop3.
9: Obtain a population of Popsize by non-dominated sorting of the merged population.
10: Optimize population using RM-MEDA.
11: iter = iter + 1, return to step 3.

2.1. Multi-step movement strategy

The multi-step movement strategy is proposed to predict the position of non-dominated
solutions after the change is detected. Non-dominated solutions have good information of
the problem under consideration, so it is important to predict their new positions based on
historical information. The proposed strategy involves two important parameters, stepsize
and direction of movement, described as follows.

Inspired by the fact that the geometric center of the POF/POS is a significant feature
and can be utilized to represent the changing trend of data to some extent from the statistical
point of view. Therefore, the movement direction is computed based on the center points of
non-dominated solutions obtained in the last two consecutive generations. Here, suppose
that Popcentert is the centroid of population (Popt) and Post is the non-dominated sets of
Popt at the time t. Then, the Popcentert can be calculated as follows.

Popcentert =

∑
xt∈Popt

xt

|Popt|
(2)

where |Popt| refers to the population cardinality, xt = (x1
t , x

2
t , ..., x

D
t ) is a solution at time t,

and the moving direction (Dirt) at time t can be obtained by

Dirt = Popcentert − Popcentert−1 . (3)

Then, the possible position of Post+1 can be predicted using the formula below:

Post+1 = Post +Dirt × step (4)

where step defines as the moving stepsize along the moving direction of Dirt. Here, two
different values of step (i.e., 0.3 and 1.0,) are utilized for representing two different moving
levels of Post.

Fig.1 gives the description of this movement strategy. We use multi-step strategy rather
one-step strategy because different levels of dynamic change may occur to different population
individuals. Therefore, generating two positions by our strategy for each individual has a
higher chance to cover the the true POS than generating only one by one-step strategy.

2.2. Polynomial fitting-based strategy

This subsection introduces the polynomial fitting-based strategy in detail, which aims
at capturing complex relationship between variables according to the distribution of the
population individuals, and using it to predict population positions in the new environment.
This approach involves two important parts, i.e., curve prediction and generation of new
individuals, which are described as follows.



Fig 1. Description of Multi-step movement strategy.

Algorithm 3 Multi-step movement strategy

1: Retrieve the populations Popt and Popt−1 at time t and t− 1, respectively;
2: Calculate the population centers according to Eq.(2);
3: Predict the moving direction according to Eq.(3);
4: Generate two subpopulations Pospr1

t+1 and Pospr2
t+1 using Eq.(4) with different step values;

5: Save the subpopulations to SubPop1.

Algorithm 4 Implementation details of polynomial fitting based strategy

1: Suppose the populations (Popt and Popt−1) at time t and t− 1, respectively.
2: Define the moving direction of characteristic curve based on Eq.(5).
3: Predict the possible polynomial curve according to Eq.(6).
4: Create the subpopulation SubPop2 sampled from the decision space using Eq.(7).

Motivated by its success in machine learning applications, polynomial fitting as a simple
linear model can address nonlinearity of data, in addition to its computationally efficiency.
This inspires us to use it to explore the relationship between variables and then to generate
non-dominated solutions in order to keep track of changes. Here, as shown in Fig.2, Fct−1

and Fct are obtained by polynomial fitting according to the last two consecutive population
data at time t − 1 and t, respectively. The moving direction of the curve formed by the
population can be calculated using the following formulation.

MVt = Fct − Fct−1 (5)

Then, the curve at time t+ 1 can be predicted using the following equation.

Fct+1 = Fct +MVt (6)

The solutions of another subpopulation can be generated by

Indt+1 = Fct+1 + cr ×NDp (7)

where cr is a scaling parameter, which ensures that the newly generated individuals are not
far from the fitted curve and NDp is generated by normal distribution to allow variations
for the generated individuals.

Algorithm 4 presents the implementation steps of this strategy. In addition, as suggested
in [44], the correlation matrix of variables can be utilized to distinguish these variables. Also,
the study [45] suggests that the highest order of the fitting is not more than six. Therefore,
the strategy will adaptively select the polynomial orders during the iterative process.

2.3. Sampling strategy

The recent study [44] proposed a sampling strategy which is effective for handling
dynamic changes. We intend to use this strategy to obtain some well-distributed individuals



Fig 2. Description of polynomial fitting-based strategy

Fig 3. An description of the sampling strategy in 2D case.

as the third subpopulation for improving the quality of the search population in the new
environment. Fig.3 illustrates the employed sampling strategy in a 2D scenario.

Specifically, suppose that xd is the identified most principal variable in the POS [44], N1 is
the number of sampled points for xd. For any non-principal variable xk (k ∈ {1, . . . , D}\{d}),
N2 denotes the number of sampling points computed by

hxik = Lk + i× Uk − Lk

N2
, (i = 1, . . . , N2) (8)

where Lk and Uk denote the lower and upper bounds of xk, respectively. Then, this strategy
will generate a total of N1N2 sampling points (marked by black in Fig.3) x̄ = (xid, hx

j
k),

i = 1, · · · , N1 and j = 1, · · · , N2, and these sampled points will be screened using the
non-dominated sorting to obtain several promising agents (marked in red in Fig.3) as the
third subpopulation.

It is crucial to determine the values of N1 and N2 appropriately. Actually, the setting
of N1 and N2 is problem-specific; large values may cause high computational complexity
whereas small values may result in inadequate sampling. Therefore, for simplicity, N2 is set
to the number of variables (N2 = D), and N1 is set to a value such that N1N2=N1D ≤ N/2.

3. Experiments

This section is to evaluate the effectiveness of the proposed algorithm through experimen-
tal studies. The experimental settings include benchmark problems, performance evaluation
indicators, comparison algorithms and related parameter settings, followed by experimental
results and analysis.



Table 1. Mean and standard deviation values of MIGD obtained by five algorithm for (nt, τt)=(5,20)
Fun. (nt, τt) MOEA/D-FD TrDMOEA DNSGAA PPS PFPA

DF1 (5,20) 1.179e-2(1.764e-4) 1.777e-2(2.139e-3) 6.227e-2(4.221e-3) 3.668e-1(7.186e-2) 1.038e-2(4.838e-4)
p 1.761e-1 3.644e-2 3.917e-2 2.154e-10 -
h 0 1 1 1 -

DF2 (5,20) 1.073e-2(3.404e-4) 6.565e-3(6.454e-4) 4.261e-2(4.281e-3) 2.440e-1(5.131e-2) 5.434e-2(6.335e-3)
p 3.020e-11 1.087e-1 6.696e-11 2.813e-2 -
h 1 0 1 1 -

DF3 (5,20) 4.606e-2(4.499e-3) 5.734e-2(1.981e-2) 2.581e-1(3.135e-2) 1.797e-1(1.494e-1) 4.581e-2(8.669e-3)
p 3.020e-11 2.370e-10 3.012e-11 2.922e-9 -
h 1 1 1 1 -

DF4 (5,20) 1.186e-1(2.085e-3) 5.872e-1(1.742e-3) 8.384e-2(2.346e-3) 1.370e-1(1.003e-2) 9.570e-2(1.939e-3)
p 7.259e-4 1.168e-2 2.052e-3 5.570e-3 -
h 1 1 1 1 -

DF5 (5,20) 2.027e-2(2.061e-4) 2.808e-2(3.792e-4) 7.844e-2(5.077e-3) 3.723e-1(1.041e-1) 1.520e-2(7.420e-4)
p 1.154e-1 2.753e-1 8.418e-1 2.034e-9 -
h 0 0 0 1 -

DF6 (5,20) 4.514e+0(4.384e-1) 9.798e-1(2.154e-1) 2.267e+0(2.674e-1) 6.897e+0(8.883e-1) 4.654e-1(1.293e-2)
p 1.734e-9 6.889e-4 1.254e-7 1.492e-6 -
h 1 1 1 1 -

DF7 (5,20) 8.858e-2(1.863e-2) 3.829e-2(1.287e-3) 3.193e-1(5.110e-2) 6.720e-2(1.938e-2) 1.051e-2(3.048e-4)
p 3.020e-11 4.504e-11 4.975e-11 1.206e10 -
h 1 1 1 1 -

DF8 (5,20) 5.631e-2(1.418e-3) 8.208e-2(4.023e-4) 4.055e-2(7.530e-4) 4.636e-2(1.662e-3) 3.695e-2(3.163e-4)
p 1.004e-3 9.941e-1 6.669e-3 1.861e-6 -
h 1 0 1 1 -

DF9 (5,20) 9.535e-2(1.959e-2) 9.792e-2(2.423e-3) 3.618e-1(3.253e-2) 5.431e-1(1.111e-1) 9.288e-2(5.959e-3)
p 4.077e-11 1.072e-2 7.088e-8 8.841e-7 -
h 1 1 1 1 -

DF10 (5,20) 1.877e-1(4.411e-2) 2.804e-1(6.160e-3) 1.228e-1(7.753e-3) 1.931e-1(1.144e-2) 1.106e-1(5.332e-3)
p 4.060e-2 3.032e-2 3.112e-1 2.783e-7 -
h 1 1 0 1 -

DF11 (5,20) 6.514e-1(4.128e-4) 2.846e-1(3.159e-2) 6.725e-1(1.669e-3) 6.691e-1(2.447e-3) 6.589e-1(1.662e-3)
p 2.581e-1 7.192e-5 3.403e-1 3.042e-1 -
h 0 1 0 0 -

DF12 (5,20) 8.731e-1(3.021e-2) 3.266e-1(1.545e-2) 5.107e-1(2.905e-2) 3.123e-1(1.151e-2) 2.801e-1(6.598e-3)
p 6.010e-8 5.606e-5 5.072e-10 6.567e-2 -
h 1 1 1 1 -

DF13 (5,20) 2.530e-1(1.364e-2) 1.659e-1(2.258e-3) 3.256e-1(2.346e-2) 4.148e-1(4.258e-2) 1.577e-1(6.645e-3)
p 8.352e-8 5.997e-1 7.739e-6 8.153e-11 -
h 1 0 1 1 -

DF14 (5,20) 1.282e-1(2.850e-3) 7.204e-2(3.136e-4) 1.572e-1(4.965e-2) 1.552e-1(1.963e-2) 5.689e-2(1.817e-3)
p 1.729e-7 1.585e-4 9.063e-8 5.072e-10 -
h 1 1 1 1 -

‡/†/o 10/1/3 9/1/4 10/1/3 13/0/1 -

3.1. Test instances

This paper employs DF test problems [46], which consist of various difficulties and charac-
teristics including irregular POF shapes, time-linkage, variable separability for comprehensive
assessing the performance of algorithms.

3.2. Performance indicators

This paper utilizes different performance metrics described below for measuring the
effectiveness of algorithms. Firstly, the widely used mean inverted generational distance
(MIGD) is adopted to judge the convergence and diversity of the best population obtained
by an algorithm [32]. Secondly, the mean Schott’s spacing metric (MSP) is considered to
measure the distribution of the computed solutions [39]. Thirdly, the mean hypervolume
(MHV) metric is used [38]. Finally, t-test is adopted to check whether the obtained results
are statistically different among all the optimization algorithms at 0.05 significant level [47].
For each table of result, ‡, † or o indicate that the performance of PFPA is better than,
worse than or similar to that of the corresponding algorithm, respectively.

3.3. Compared algorithms

This paper employs four different dynamic multi-objective optimization algorithms for
comparison with PFPA, which are described below in detail. Firstly, a first-order difference
model-based MOEA/D algorithm (MOEA/D-FD) [48] employs the historically recorded
search population for determining movement directions and predicting potential locations
of the new POF. Meanwhile, it has a decomposition-based framework that can ensure
the distribution of individuals. Secondly, TrDMOEA aims to combine transfer learning
mechanism with evolutionary algorithms to handle dynamic environments [49]. Thirdly, as a
dynamic version of NSGA-II, DNSGAA aims to replace some existing population individuals
using random solutions in the event of dynamic changes [24]. Finally, population prediction
strategy (PPS) predicts a population after a change using population centers and manifolds
through an autoregression (AR) model [31].



Table 2. Mean and standard deviation values of MIGD obtained by five algorithms for (nt, τt)=(10,10)
Fun. (nt, τt) MOEA/D-FD TrDMOEA DNSGAA PPS PFPA

DF1 (10,10) 9.522e-3(1.371e-4) 8.431e-2(9.136e-2) 6.020e-2(4.333e-3) 3.729e-1(6.416e-2) 5.819e-3(2.801e-4)
p 1.492e-6 1.094e-10 2.439e-9 3.338e-11 -
h 1 1 1 1 -

DF2 (10,10) 1.097e-2(2.093e-4) 8.149e-3(5.478e-4) 4.289e-2(4.726e-3) 2.261e-1(4.723e-2) 4.932e-2(5.571e-3)
p 2.253e-4 1.202e-8 7.978e-2 1.698e-8 -
h 1 1 0 1 -

DF3 (10,10) 3.386e-2(2.023e-3) 3.358e-2(1.542e-2) 2.896e-1(2.940e-3) 1.460e-1(1.323e-1) 8.859e-3(2.957e-3)
p 1.311e-8 3.255e-7 7.398e-11 1.777e-10 -
h 1 1 1 1 -

DF4 (10,10) 1.069e-1(1.686e-3) 5.644e-1(1.407e-1) 7.539e-2(2.606e-3) 1.162e-1(1.222e-2) 7.146e-2(1.925e-3)
p 1.273e-2 1.558e-7 5.395e-1 8.500e-2 -
h 1 1 1 0 -

DF5 (10,10) 1.455e-2(2.501e-4) 2.583e-2(4.359e-3) 5.705e-2(4.674e-3) 3.628e-1(9.444e-2) 6.819e-3(1.253e-3)
p 4.311e-8 4.195e-10 4.563e-9 4.504e-11 -
h 1 1 1 1 -

DF6 (10,10) 5.080e+0(5.327e-1) 1.209e+0(2.704e-1) 3.478e+0(2.177e-1) 7.477e+0(7.384e-1) 6.484e-1(5.727e-2)
p 4.841e-2 7.482e-2 1.430e-5 6.695e-11 -
h 1 0 1 1 -

DF7 (10,10) 9.106e-2(1.418e-2) 3.546e-2(9.378e-4) 2.583e-1(6.761e-2) 6.051e-2(1.616e-2) 9.755e-3(2.019e-4)
p 3.020e-11 6.066e-11 3.020e-11 1.329e-10 -
h 1 1 1 1 -

DF8 (10,10) 3.053e-2(2.051e-3) 7.954e-2(7.347e-3) 1.164e-2(1.017e-3) 1.569e-2(1.487e-3) 6.980e-3(3.363e-4)
p 4.504e-11 3.094e-6 2.107e-1 3.183e-3 -
h 1 1 0 1 -

DF9 (10,10) 8.732e-2(1.473e-2) 7.540e-2(1.771e-2) 3.489e-1(4.264e-2) 4.713e-1(1.280e-1) 6.349e-2(4.895e-3)
p 9.000e-1 2.708e-2 1.957e-10 8.153e-11 -
h 0 1 1 1 -

DF10 (10,10) 1.652e-1(3.667e-2) 2.775e-1(1.289e-2) 1.140e-1(8.672e-3) 1.816e-1(1.075e-2) 1.011e-1(4.221e-3)
p 8.771e-2 2.510e-2 2.458e-1 6.010e-8 -
h 0 1 0 1 -

DF11 (10,10) 6.373e-1(3.384e-4) 2.877e-1(1.657e-2) 6.575e-1(2.241e-3) 6.551e-1(2.509e-3) 6.417e-1(1.518e-3)
p 5.592e-1 2.430e-5 5.895e-1 5.395e-1 -
h 0 1 0 0 -

DF12 (10,10) 9.526e-1(1.738e-2) 3.559e-1(4.370e-2) 5.047e-1(3.102e-2) 3.043e-1(9.512e-3) 2.820e-1(4.677e-3)
p 5.573e-10 3.965e-8 5.573e-10 1.087e-1 -
h 1 1 1 0 -

DF13 (10,10) 2.239e-1(5.951e-3) 1.542e-1(7.866e-3) 3.183e-1(2.451e-2) 4.057e-1(2.940e-2) 1.474e-1(5.111e-3)
p 2.572e-7 3.871e-1 3.835e-6 8.153e-11 -
h 1 0 1 1 -

DF14 (10,10) 1.221e-1(4.208e-3) 6.943e-2(3.387e-3) 1.435e-1(5.549e-2) 1.620e-1(2.177e-2) 5.314e-2(1.898e-3)
p 6.528e-8 3.592e-5 1.157e-7 4.200e-10 -
h 1 1 1 1 -

‡/†/o 10/1/3 11/2/1 10/0/4 11/0/3 -

3.4. Parameter settings

The relevant parameters of all the compared algorithms are same as their original studies,
and the population size is set to 100. Each algorithm is executed twenty-five independent
runs on each benchmark instance. Besides that, ten percent of the population is used to
detect each of the thirty times of change in dynamic optimization.

3.5. Experimental results

Test problems used in this paper involves two important control parameters, the severity
of change (nt) and the frequency of change (τt), which take values from {5, 10, 20} for
evaluating the robustness of the proposed algorithm. MIGD values and t-test results are
presented in Tables 1-3 (MSP, MHV results can be found in Supplementary Material), in
which the best results are also highlighted in bold face.

It is observed from the MIGD and t − test values reported in Tables 1-3 that PFPA
clearly outperforms the other compared algorithms on majority of the test problems. In
Table 1, the statistical p-values illustrate that there are not significant differences among all
the algorithms on DF5 and DF11. As the parameters change, the differences become clear
for DF10 and DF11. Totally, for different combinations of nt and τt, PFPA can generate
best results on most of the problems, which means that the proposed prediction mechanism
is able to obtain high-quality populations for tracking the Pareto-optimal front effectively in
dynamic environments.

Tables 1-3 (presented in Supplementary Material) present the MHV and t− test values
of all the optimization algorithms, and demonstrate that when nt is five, PFPA performs
much better than MOEADFD, PPS, NSGAA on the most of the problems, and slightly
worse than TrDMOEA on DF5, DF11, DF12 according to the p-values. With the change of
the parameters, the proposed algorithm still retains significant advantage and is competitive
with TrDMOEA. Therefore, in terms of this metric, PFPA has stable and fast responses to
dynamic changes.



Table 3. Mean and standard deviation values of MIGD obtained by five algorithms for (nt, τt)=(10,20)
Fun. (nt, τt) MOEA/D-FD TrDMOEA DNSGAA PPS PFPA

DF1 (10,20) 6.546e-2(1.322e-4) 5.809e-2(1.091e-3) 7.742e-2(8.680e-4) 2.479e-1(5.558e-2) 6.457e-2(3.287e-4)
p 2.897e-6 5.367e-1 4.033e-3 4.616e-10 -
h 1 0 1 1 -

DF2 (10,20) 9.222e-3(1.670e-4) 8.197e-3(2.152e-5) 1.955e-2(1.980e-3) 1.508e-1(4.644e-2) 4.218e-2(2.664e-3)
p 4.975e-11 1.359e-7 6.066e-11 9.521e-4 -
h 1 1 1 1 -

DF3 (10,20) 9.217e-2(1.145e-3) 8.895e-2(1.175e-3) 4.653e-1(4.629e-2) 1.662e-1(1.457e-1) 1.188e-1(1.303e-1)
p 3.020e-11 3.601e-11 3.020e-11 9.756e-10 -
h 1 1 1 1 -

DF4 (10,20) 4.451e-1(5.528e-3) 5.588e-1(1.801e-2) 4.115e-1(1.255e-2) 4.808e-1(1.193e-2) 4.398e-1(4.105e-3)
p 1.850e-8 4.625e-2 1.596e-7 1.248e-4 -
h 1 1 1 1 -

DF5 (10,20) 2.580e-2(1.771e-4) 3.118e-2(2.894e-4) 3.021e-2(5.962e-4) 1.044e-1(2.204e-2) 2.195e-2(4.480e-4)
p 3.368e-4 4.035e-1 2.282e-1 6.722e-10 -
h 1 0 0 1 -

DF6 (10,20) 3.235e+0(1.072e+0) 1.953e+0(2.570e-1) 1.692e+0(2.568e-1) 4.032e+0(6.981e-1) 3.864e-1(4.386e-2)
p 2.371e-10 5.841e-6 4.573e-9 1.174e-9 -
h 1 1 1 1 -

DF7 (10,20) 1.241e-1(1.096e-2) 7.679e-2(9.822e-3) 1.737e-1(3.238e-2) 8.795e-2(8.222e-3) 5.530e-2(3.028e-4)
p 3.020e-11 3.338e-11 3.020e-11 1.311e-8 -
h 1 1 1 1 -

DF8 (10,20) 1.374e-1(3.063e-3) 8.472e-2(2.789e-5) 1.319e-1(4.483e-3) 1.390e-1(3.522e-3) 1.303e-1(6.972e-4)
p 5.012e-2 1.174e-4 6.787e-2 7.119e-9 -
h 0 1 0 1 -

DF9 (10,20) 7.396e-2(1.394e-3) 6.534e-2(1.396e-2) 2.251e-1(4.792e-2) 2.970e-1(1.167e-1) 6.004e-2(3.336e-3)
p 3.690e-11 1.297e-1 5.186e-7 2.921e-2 -
h 1 0 1 1 -

DF10 (10,20) 3.147e-1(1.227e-2) 2.867e-1(1.412e-2) 2.632e-1(5.029e-3) 2.491e-1(7.535e-3) 2.606e-1(4.127e-3)
p 1.154e-1 9.470e-1 5.793e-1 9.705e-1 -
h 0 0 0 0 -

DF11 (10,20) 7.480e-1(3.787e-4) 2.507e-1(2.641e-2) 7.620e-1(1.107e-3) 7.639e-1(1.988e-3) 7.560e-1(1.422e-3)
p 5.692e-1 1.148e-7 6.309e-1 5.895e-1 -
h 0 1 0 0 -

DF12 (10,20) 9.348e-1(2.987e-2) 3.369e-1(1.431e-2) 4.763e-1(2.504e-2) 3.199e-1(1.016e-2) 3.149e-1(5.715e-3)
p 6.121e-10 3.339e-3 5.462e-9 3.183e-1 -
h 1 1 1 0 -

DF13 (10,20) 2.782e-1(1.351e-2) 1.715e-1(2.208e-3) 1.777e-1(6.624e-3) 2.996e-1(1.908e-2) 1.681e-1(4.608e-3)
p 1.202e-8 5.895e-1 7.618e-1 2.572e-7 -
h 1 0 0 1 -

DF14 (10,20) 1.427e-1(4.208e-3) 7.995e-2(7.074e-3) 7.382e-2(3.798e-3) 1.095e-1(9.542e-3) 6.729e-2(2.492e-3)
p 5.967e-9 3.183e-3 7.483e-2 8.841e-7 -
h 1 1 0 1 -

‡/†/o 9/2/3 6/5/3 6/2/6 11/0/3 -

It can be seen from the MSP and t − test values, shown in Tables 4-6 (presented in
Supplementary Material), that PFPA has a significant advantage over the other algorithms
on some bi-objective problems (e.g., DF1, DF7 and DF8) and performs ineffectively on
tri-objective problems. The frequency and severity of change has not obvious impact on all
the algorithms. The reason is that most of the algorithms have a good diversity maintenance
mechanism (e.g., the decomposition framework for MOEADFD). Pareto-dominance based
MOEAs do not seem to be effective for generating uniformly distributed solutions, especially
in three-objective cases. However, it is necessary to measure the overall effectiveness of an
algorithm from multiple metrics rather than one indicator. Therefore, although PFPA does
not achieve good MSP values, it has significant advantages on other metrics.

Some convergence curves of MIGD values are provided in Fig.4, which shows that the
difference is small between PFPA and DNSGAA on DF4, but PFPA outperforms other
algorithms in terms of convergence lines. For DF10, the proposed algorithm has a significant
advantage in the late stage of environmental change. For other problems, PFPA has
competitive performance. Overall, PFPA has more stable convergence and responds faster
to changes than other compared algorithms on most of the problems.

Fig.5-8 present some POF approximations. It can be found that the individuals obtained
by PFPA are closer to the real POF and are evenly distributed on DF3. For DF5, the PFPA
algorithm can obtain individuals with good distribution, but there is a gap between the
obtained solutions and the true POF. In later changes, the individuals obtained by PFPA
are close to the POF with good distribution, and the convergence is obviously better than
the other algorithms. The approximation of PFPA is significantly better than the other
algorithms on DF7 and DF8. Thus, PFPA have a good approximation to the changing
POF, which means that the designed algorithm has potential tracking ability in changing
environments.
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Fig 4. Mean IGD curves for different problems with nt=10 and τt=10.

4. Discussion

4.1. Component Analysis

As mentioned before, the proposed dynamic response mechanism contains three different
key strategies for generating high-quality population and tracking the changing Pareto front
effectively. This subsection focuses on the impact of each strategy on the search performance
of the proposed algorithm. Specifically, to illustrate the role of multi-step movement strategy,
PAPFV1 is designed by integrating a one-step movement model which is widely employed
in most existing prediction approaches for dynamism handling. PFPAV2 and PFPAV3 are
designed by removing the polynomial fitting strategy and sampling strategy for showing the
effect of the corresponding techniques,respectively. PFPA is also utilized to compare with
these three modified versions, Table 4 presents the experimental and comparison results in
detail.

4.1.1. Multi-step Movement Strategy

It is observed from Table 4 that, although there exists some similar results indicated
by the p-values, PFPA performs much better than the other three variants on the majority
of the test problems. This shows that the multi-step strategy is able to generate more
better individuals close to the real POS and improves the diversity of the population and
the search efficiency of the algorithm. Therefore, it can be seen that this strategy is an
important part of the proposed algorithm. It is worth noting that this strategy is likely to
generate boundary solutions, which may not benefit for global search. This strategy should
be improved in future work.
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Fig 5. POF approximations of five algorithms for DF3 with nt=10 and τt=10
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Fig 6. POF approximations of five algorithms for DF5 with nt=10 and τt=10
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Fig 7. POF approximations of five algorithms for DF7 with nt=10 and τt=10
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Fig 8. POF approximations of five algorithms for DF8 with nt=10 and τt=10

4.1.2. Polynomial Fitting Based Strategy

Table 4 clearly demonstrates that there are not differences between PFPA and PFPAV2
on DF6 and DF11, but PFPA is much superior to PFPAV2 on eleven benchmark problems,
which means that this strategy is indeed able to improve the search performance of PFPA.
This could be explained by the fact that this strategy fully considers the distribution
relationship between variables, which is helpful to generate promising solutions to some
extent.

4.1.3. Sampling Strategy

This strategy aims to make full use of the relationship between variables to generate
high-quality individuals to guide the search, thus speeding up the search efficiency of the
algorithm. The experimental results also show that this strategy can improve the search
performance of the algorithm to some extent in varying environments.

4.2. Parameter Analysis

In addition to the above discussion, parameter analysis is also necessary. The proposed
algorithm mainly includes two key control parameters, i.e., the step size (step) involved in
the multi-step movement strategy and the compression ratio (cr) involved in the polynomial
fitting strategy. The relevant comparison results are shown in Table 5 in detail.

4.2.1. Influence of step Values

As described before, the multi-step movement strategy utilizes two different stepsizes for
generating promising solutions. Here, to explore the influence of the step values, step = 1
is fixed as it has proven effective in many prediction algorithms, and other step values are
taken from the range [0.1, 0.7] (PFPAS1-PFPAS3), with an increment of 0.2. It can be
observed from Table5 that, although the differences among them are not significant on some
cases, PFPA performs better than the other modifications, according to the p-value results.
Therefore, 1 and 0.3 are utilized as the movement stepsizes in PFPA.

4.2.2. Influence of cr Values

Eq.(7) has a important parameter, i.e., compression ratio (cr), for generating possible
better solutions for new environments. Here, cr is varied from 0.1 to 1 (PFPAR1-PFPAR3)
with an increment of 0.3, and the results are summarized in Table6, which illustrate that
the proposed algorithm outperforms the other three versions on almost all the problems
significantly. Therefore, this paper uses 0.1 as the best cr value for the polynomial fitting
strategy.



4.3. Different Multi-objective Algorithms

The main purpose of this subsection is to verify the feasibility of the proposed strategies
by integrating them into three different and recently proposed multiobjective algorithms.
The experimental results can be found in Table 7 and Tables 7-8 (provided in Supplementary
Material). It is obvious that these algorithms are able to obtain effective results, but are not
as effective as PFPA. Therefore, the proposed algorithm is suitable to be used with different
algorithms to solve dynamic multi-objective optimization problems.

Table 4. Performance comparison of different PFPA variants on MIGD
Fun. (nt, τt) PFPAV1 PFPAV2 PFPAV3 PFPA

DF1 (10,10) 1.414e-2(4.494e-4) 1.431e-2(1.193e-3) 1.713e-2(2.824e-3) 5.819e-3(2.801e-4)
p 1.957e-10 1.957e-10 2.610e-10 -
h 1 1 1 -

DF2 (10,10) 1.074e-1(6.235e-3) 1.092e-1(5.436e-3) 8.080e-2(1.079e-2) 4.932e-2(5.571e-3)
p 2.959e-5 7.221e-6 7.959e-3 -
h 1 1 1 -

DF3 (10,10) 3.010e-2(3.089e-3) 8.484e-2(1.683e-1) 1.285e-2(6.089e-4) 8.859e-3(2.957e-3)
p 2.439e-9 5.072e-10 2.028e-7 -
h 1 1 1 -

DF4 (10,10) 3.421e-1(4.022e-2) 3.379e-1(4.501e-2) 7.539e-2(3.266e-3) 7.146e-2(1.925e-3)
p 9.063e-8 1.067e-7 3.555e-1 -
h 1 1 0 -

DF5 (10,10) 1.962e-2(1.145e-3) 1.869e-2(1.608e-3) 1.427e-2(1.311e-3) 6.819e-3(1.253e-3)
p 9.756e-10 1.734e-9 2.195e-8 -
h 1 1 1 -

DF6 (10,10) 6.377e-1(3.884e-2) 6.714e-1(5.660e-2) 4.336e+0(2.895e+0) 6.484e-1(5.727e-2)
p 3.671e-1 3.122e-1 1.023e-1 -
h 0 0 0 -

DF7 (10,10) 2.674e-2(9.112e-4) 2.761e-2(1.256e-3) 2.033e-2(6.670e-4) 9.755e-3(2.019e-4)
p 3.020e-11 3.020e-11 1.464e-10 -
h 1 1 1 -

DF8 (10,10) 2.944e-2(2.595e-3) 3.120e-2(2.704e-3) 1.333e-2(5.485e-4) 6.980e-3(3.363e-4)
p 3.020e-11 3.020e-11 1.411e-9 -
h 1 1 1 -

DF9 (10,10) 1.271e-1(4.815e-3) 1.289e-1(5.378e-3) 2.430e-1(8.753e-2) 6.349e-2(4.895e-3)
p 1.892e-4 4.639e-5 1.167e-5 -
h 1 1 1 -

DF10 (10,10) 1.648e-1(1.005e-2) 2.928e-1(3.636e-2) 1.017e-1(5.247e-3) 1.011e-1(4.221e-3)
p 4.077e-11 3.020e-11 7.845e-1 -
h 1 1 0 -

DF11 (10,10) 6.704e-1(1.363e-3) 6.947e-1(7.635e-3) 6.462e-1(1.197e-3) 6.417e-1(1.518e-3)
p 4.918e-1 4.204e-1 8.534e-1 -
h 0 0 0 -

DF12 (10,10) 3.384e-1(6.099e-3) 3.919e-1(1.369e-2) 2.839e-1(7.839e-3) 2.820e-1(4.677e-3)
p 1.194e-6 6.010e-8 8.303e-1 -
h 1 1 0 -

DF13 (10,10) 2.602e-1(1.897e-2) 5.469e-1(1.226e-1) 1.540e-1(6.515e-3) 1.474e-1(5.111e-3)
p 1.777e-10 4.077e-11 4.305e-1 -
h 1 1 0 -

DF14 (10,10) 4.368e-1(1.382e-2) 1.342e-1(7.323e-3) 5.106e-2(1.661e-3) 5.314e-2(1.898e-3)
p 3.197e-9 5.967e-9 2.973e-1 -
h 1 1 0 -

‡/†/o 11/0/2 11/0/2 7/0/7 -

5. Real-world applications

To further evaluate the effectiveness of the proposed PFPA in practice, two widely used
dynamic multi-objective engineering designed problems are adopted [36]. Note that the
stopping condition, the number of runs and the other relevant settings remain the same as
described in the previous sections, and a constraint handling technique [50] is also utilized to
deal with the constraints that the problems have. In addition, different from the benchmark
problems, the true POS/POF cannot be known in advance in real applications, so MIGD
and MSP cannot be used as the performance indicators. However, the MHV can be still
used, and the relevant experimental results are summarized in Tables 8-9.

5.1. Case 1

The welded beam design problem was modified and proposed by integrating some time
instances and dynamic factors into it to form the dynamic welded beam design problem,
which consists of two important objectives: minimum total fabricating cost and minimum
bar end deflection. As can be seen in the following mathematical model, there are four
decision variables (x1, x2, x3, x4) and four constraints.



Table 5. Performance comparison of PFPA variants on MIGD for (nt, τt)=(10,10)
Fun. (nt, τt) PFPAS1 PFPAS2 PFPAS3 PFPA

DF1 (10,10) 1.106e-2(3.976e-4) 1.104e-2(4.503e-4) 1.111e-2(6.105e-4) 5.819e-3(2.801e-4)
p 1.698e-8 2.390e-7 2.390e-7 -
h 1 1 1 -

DF2 (10,10) 8.010e-2(7.415e-3) 8.261e-2(7.062e-3) 8.285e-2(4.883e-3) 4.932e-2(5.571e-3)
p 2.006e-4 3.831e-5 5.607e-5 -
h 1 1 1 -

DF3 (10,10) 3.676e-2(1.423e-2) 5.179e-2(1.475e-1) 8.857e-2(2.237e-1) 8.859e-3(2.957e-3)
p 1.311e-8 6.528e-8 3.497e-9 -
h 1 1 1 -

DF4 (10,10) 3.421e-1(4.022e-2) 7.506e-2(2.561e-3) 7.440e-2(2.222e-3) 7.146e-2(1.925e-3)
p 5.298e-3 4.464e-1 3.790e-1 -
h 1 0 0 -

DF5 (10,10) 1.224e-2(5.607e-4) 1.230e-2(7.611e-4) 1.164e-2(4.619e-4) 6.819e-3(1.253e-3)
p 1.102e-8 2.015e-8 2.390e-8 -
h 1 1 1 -

DF6 (10,10) 5.341e-1(5.014e-2) 4.911e-1(4.886e-2) 4.951e-1(3.154e-2) 6.484e-1(5.727e-2)
p 4.643e-1 6.309e-1 6.414e-1 -
h 0 0 0 -

DF7 (10,10) 1.767e-2(4.501e-4) 1.829e-2(1.002e-3) 1.938e-2(3.061e-3) 9.755e-3(2.019e-4)
p 3.020e-11 3.020e-11 3.020e-11 -
h 1 1 1 -

DF8 (10,10) 1.230e-2(4.067e-4) 1.232e-2(3.584e-4) 1.258e-2(4.527e-4) 6.980e-3(3.363e-4)
p 8.485e-9 7.119e-9 7.119e-9 -
h 1 1 1 -

DF9 (10,10) 7.469e-2(7.412e-3) 6.887e-2(5.683e-3) 7.263e-2(4.585e-3) 6.349e-2(4.895e-3)
p 5.746e-2 1.958e-1 9.926e-2 -
h 1 0 0 -

DF10 (10,10) 1.689e-1(1.147e-2) 1.643e-1(9.155e-3) 1.618e-1(5.483e-3) 1.011e-1(4.221e-3)
p 2.610e-10 1.329e-10 2.371e-10 -
h 1 1 1 -

DF11 (10,10) 6.653e-1(4.538e-3) 6.643e-1(2.673e-3) 6.656e-1(3.896e-3) 6.417e-1(1.518e-3)
p 5.011e-1 5.201e-1 5.201e-1 -
h 0 0 0 -

DF12 (10,10) 3.329e-1(6.786e-3) 3.203e-1(8.256e-3) 3.210e-1(7.308e-3) 2.820e-1(4.677e-3)
p 6.765e-5 3.831e-5 2.433e-5 -
h 1 1 1 -

DF13 (10,10) 2.932e-1(1.864e-2) 2.581e-1(1.670e-2) 2.475e-1(1.613e-2) 1.474e-1(5.111e-3)
p 2.154e-10 8.101e-10 4.573e-9 -
h 1 1 1 -

DF14 (10,10) 4.323e-1(1.675e-2) 8.260e-2(4.528e-3) 8.180e-2(4.225e-3) 5.314e-2(1.898e-3)
p 2.195e-8 2.317e-6 7.739e-6 -
h 1 1 1 -

‡/†/o 12/0/2 10/0/4 10/0/4 -

Table 6. Performance comparison of PFPA variants on MIGD for (nt, τt)=(10,10)
Fun. (nt, τt) PFPAR1 PFPAR2 PFPAR3 PFPA

DF1 (10,10) 1.202e-2(6.330e-4) 1.248e-2(5.582e-4) 1.326e-2(8.466e-4) 5.819e-3(2.801e-4)
p 6.518e-9 4.998e-9 1.411e-9 -
h 1 1 1 -

DF2 (10,10) 6.887e-2(4.200e-3) 7.040e-2(8.178e-3) 6.654e-2(8.329e-3) 4.932e-2(5.571e-3)
p 2.531e-4 2.839e-4 5.264e-4 -
h 1 1 1 -

DF3 (10,10) 1.531e-2(3.077e-3) 2.130e-2(1.080e-2) 3.235e-2(4.975e-2) 8.859e-3(2.957e-3)
p 1.606e-6 6.526e-7 3.646e-8 -
h 1 1 1 -

DF4 (10,10) 7.605e-2(3.138e-3) 7.732e-2(3.412e-3) 7.663e-2(2.257e-3) 7.146e-2(1.925e-3)
p 3.871e-1 3.255e-1 3.790e-1 -
h 0 0 0 -

DF5 (10,10) 1.416e-2(4.750e-4) 1.610e-2(8.475e-4) 1.755e-2(1.320e-3) 6.819e-3(1.253e-3)
p 8.485e-9 6.518e-9 2.439e-9 -
h 1 1 1 -

DF6 (10,10) 6.180e-1(4.740e-2) 6.473e-1(4.496e-2) 6.606e-1(4.750e-2) 6.484e-1(5.727e-2)
p 8.500e-2 5.188e-2 4.841e-2 -
h 0 0 1 -

DF7 (10,10) 1.787e-2(6.005e-4) 1.798e-2(7.292e-4) 1.844e-2(6.913e-4) 9.755e-3(2.019e-4)
p 3.020e-11 3.020e-11 3.020e-11 -
h 1 1 1 -

DF8 (10,10) 1.399e-2(4.383e-3) 1.558e-2(9.046e-4) 1.787e-2(1.247e-3) 6.980e-3(3.363e-4)
p 1.174e-9 4.200e-10 1.094e-10 -
h 1 1 1 -

DF9 (10,10) 7.893e-2(5.033e-3) 8.880e-2(4.479e-3) 9.118e-2(8.936e-3) 6.349e-2(4.895e-3)
p 1.837e-2 2.380e-3 6.912e-4 -
h 1 1 1 -

DF10 (10,10) 1.304e-1(6.197e-3) 1.282e-1(6.893e-3) 1.344e-1(7.392e-3) 1.011e-1(4.221e-3)
p 1.596e-7 2.377e-7 3.081e-8 -
h 1 1 1 -

DF11 (10,10) 6.497e-1(1.566e-3) 6.486e-1(2.148e-3) 6.494e-1(1.646e-3) 6.417e-1(1.518e-3)
p 6.627e-1 7.062e-1 6.414e-1 -
h 0 0 0 -

DF12 (10,10) 3.113e-1(7.675e-3) 3.075e-1(4.426e-3) 3.020e-1(6.396e-3) 2.820e-1(4.677e-3)
p 6.912e-4 1.518e-3 6.972e-3 -
h 1 1 1 -

DF13 (10,10) 1.904e-1(5.077e-3) 1.900e-1(1.015e-1) 1.885e-1(6.361e-3) 1.474e-1(5.111e-3)
p 2.678e-6 4.421e-6 2.491e-6 -
h 1 1 1 -

DF14 (10,10) 6.050e-2(1.628e-3) 6.061e-2(1.759e-3) 6.183e-2(1.552e-3) 5.314e-2(1.898e-3)
p 1.383e-2 9.883e-3 3.501e-3 -
h 1 1 1 -

‡/†/o 11/0/3 12/0/2 12/0/2 -



Table 7. Experimental results of different multiobjective optimization algorithms on MIGD for
(nt, τt)=(10,10)

Fun. (nt, τt) MOMVO MOALO MOGOA PFPA

DF1 (10,10) 1.182e-2(4.707e-4) 3.670e-2(2.492e-3) 4.737e-2(8.374e-3) 5.819e-3(2.801e-4)
p 1.157e-7 7.380e-10 3.197e-9 -
h 1 1 1 -

DF2 (10,10) 1.279e-1(9.046e-3) 2.156e-1(1.932e-2) 1.903e-1(1.041e-2) 4.932e-2(5.571e-3)
p 1.492e-6 1.206e-10 2.872e-10 -
h 1 1 1 -

DF3 (10,10) 6.044e-2(1.959e-2) 6.217e-2(9.415e-3) 7.898e-2(1.321e-2) 8.859e-3(2.957e-3)
p 2.670e-9 1.287e-9 1.174e-9 -
h 1 1 1 -

DF4 (10,10) 9.836e-2(5.237e-3) 2.641e-1(4.634e-2) 1.952e-1(2.347e-2) 7.146e-2(1.925e-3)
p 1.335e-1 7.200e-5 9.792e-5 -
h 0 1 1 -

DF5 (10,10) 1.089e-2(4.366e-4) 4.095e-2(3.865e-3) 3.651e-2(2.985e-3) 6.819e-3(1.253e-3)
p 1.407e-4 6.518e-9 1.429e-8 -
h 1 1 1 -

DF6 (10,10) 6.693e-1(4.121e-2) 1.4932e+0(1.701e-1) 1.812e+0(3.526e-1) 6.484e-1(5.727e-2)
p 2.707e-1 3.387e-2 8.771e-2 -
h 0 1 0 -

DF7 (10,10) 4.955e-2(9.104e-3) 4.825e-2(5.287e-3) 5.797e-2(6.698e-3) 9.755e-3(2.019e-4)
p 3.338e-11 3.020e-11 3.020e-11 -
h 1 1 1 -

DF8 (10,10) 1.417e-2(1.117e-3) 2.617e-2(2.881e-3) 2.617e-2(2.368e-3) 6.980e-3(3.363e-4)
p 5.874e-4 8.841e-7 1.748e-5 -
h 1 1 1 -

DF9 (10,10) 1.530e-1(7.793e-3) 1.862e-1(6.129e-3) 1.879e-1(1.085e-2) 6.349e-2(4.895e-3)
p 2.028e-7 1.202e-8 3.081e-8 -
h 1 1 1 -

DF10 (10,10) 1.117e-1(6.022e-3) 1.566e-1(7.006e-3) 1.449e-1(1.396e-2) 1.011e-1(4.221e-3)
p 2.159e-1 9.919e-11 2.439e-9 -
h 0 1 1 -

DF11 (10,10) 6.582e-1(2.923e-3) 6.874e-1(7.728e-3) 7.098e-1(8.849e-3) 6.417e-1(1.518e-3)
p 5.997e-1 4.733e-1 3.478e-1 -
h 0 0 0 -

DF12 (10,10) 3.650e-1(2.923e-3) 3.941e-1(2.795e-2) 3.350e-1(2.088e-2) 2.820e-1(4.677e-3)
p 8.352e-8 4.421e-6 1.236e-3 -
h 1 1 1 -

DF13 (10,10) 1.152e-1(5.209e-3) 1.130e+0(3.478e-1) 6.621e-1(3.637e-1) 1.474e-1(5.111e-3)
p 5.859e-6 1.329e-10 2.439e-9 -
h 1 1 1 -

DF14 (10,10) 5.116e-2(2.540e-3) 4.655e-1(7.299e-1) 1.994e-1(3.309e-1) 5.314e-2(1.898e-3)
p 5.692e-1 3.020e-11 3.825e-9 -
h 0 1 1 -

‡/†/o 8/0/6 13/0/1 12/0/2 -

Table 8. Experimental results considering MHV indicator for dynamic Welded Beam Design Problem

Index MOEADFD TrDMOEA DNSGAA PPS PFPA
MHV 2.018e+0 2.316e+0 2.275e+0 2.317e+0 2.318e+0
std 1.506e-2 4.623e-3 5.213e-3 4.944e-3 5.156e-3
p 2.857e-2 8.857e-1 1.143e-1 9.015e-1 -
h 1 0 0 0 -
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E = 3× 107,G = 1.2× 107, (t, P (t)) = (1, 10000), (2, 8000), (3, 6000), (4, 3000),55 6 x1 6 80,
75 6 x2 6 110, 1000 6 x3 6 3000, 2 6 x4 6 20

According to the experimental results listed in Table 8, although the standard deviation
value of PFPA is worse than that of PPS and TrDMOEA, it outperforms the rest of the
algorithms. There is not significant difference between the algorithms except MOEADFD.



Table 9. Experimental results measured by the MHV indicator for Dynamic Speed Reducer Problem

Index MOEADFD TrDMOEA DNSGAA PPS PFPA
MHV 5.604e+5 5.426e+5 2.265e+6 5.405e+5 5.505e+5
std 4.018e+4 4.529e+4 3.618e+2 1.547e+4 1.617e+4
p 9.651e-1 8.993e-1 8.571e-2 9.323e-1 -
h 0 0 0 0 -

Such results indicate that the proposed algorithm is an attractive alternative optimizer for
generating satisfactory results on challenging optimization problems.

5.2. Case 2

As one of the most popular problems in the field of mechanical engineering, the dynamic
speed reducer design problem aims to optimize the weight (f1) and stress (f2), which contains
of eleven constraints and involves seven decision variables as follows, gear face width (x1),
teeth module (x2), number of teeth of pinion (x3), distance between bearings (x4), distance
between bearings 2 (x5), diameter of shaft 1 (x6), and diameter of shaft 2 (x7).
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g6(x) = x1/x2 − 12 6 0

g7(x) = 5− x1/x2 6 0

g8(x) = 1.9− x4 + 1.5x6 6 0

g9(x) = 1.9− x5 + 1.1x1 6 0

g10(x) = f1(x, t) 6 4300
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6 1100
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aj(t) = aj + t
10 , 1 6 j 6 6,a7(t) = a7 + 0.25− 1

t+4 ,a1 = 0.7854, a2 = 14.933, a3 =
43.0934, a4 = 1.508, a5 = 7.477, a6 = 0.7854, a7 = 0.1, 2.6 6 x1 6 3.6, 0.7 6 x2 6 0.8,

17 6 x3 6 28, 7.3 6 x4 6 8.3, 7.3 6 x5 6 8.3, 2.9 6 x6 6 3.9, 5.0 6 x7 6 5.5

Table 9 clearly shows that PFPA is slightly worse than that of DNSGAA, but it is
competitive with the other competitors in terms of MHV . The t-test values indicate that
there is no significant difference between them. That means PFPA can be an alternative to
existing approaches for handling complex dynamic multi-objective problems in real-world
applications.



6. Conclusion

In this paper, a polynomial fitting mechanism is employed for designing a dynamic
multi-objective optimization algorithm, named PFPA, which includes three key parts for
generating a high-quality search population after change detection. Each component plays
an important role in improving population diversity and convergence during the course of
optimization. Experimental results verified on a set of benchmark problems with various
difficulties and two classical dynamic engineering design problems demonstrate that PFPA
has competitive tracking ability compared with some state-of-the-art algorithms. In addition,
each component and control parameter in the proposed algorithm is also analysed and
discussed extensively. In our future work, prediction techniques and parameter settings will
be further investigated.
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