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Abstract. This paper studies the homology and cohomology of the Temperley-
Lieb algebra TLn(a), interpreted as appropriate Tor and Ext groups. Our main
result applies under the common assumption that a = v+v−1 for some unit v in
the ground ring, and states that the homology and cohomology vanish up to and
including degree (n − 2). To achieve this we simultaneously prove homological
stability and compute the stable homology. We show that our vanishing range
is sharp when n is even.

Our methods are inspired by the tools and techniques of homological stability
for families of groups. We construct and exploit a chain complex of ‘planar
injective words’ that is analogous to the complex of injective words used to
prove stability for the symmetric groups. However, in this algebraic setting we
encounter a novel difficulty: TLn(a) is not flat over TLm(a) for m < n, so that
Shapiro’s lemma is unavailable. We resolve this difficulty by constructing what
we call ‘inductive resolutions’ of the relevant modules.

Vanishing results for the homology and cohomology of Temperley-Lieb alge-
bras can also be obtained from the existence of the Jones-Wenzl projector. Our
own vanishing results are in general far stronger than these, but in a restricted
case we are able to obtain additional vanishing results via the existence of the
Jones-Wenzl projector.

We believe that these results, together with the second author’s work on
Iwahori-Hecke algebras, are the first time the techniques of homological stability
have been applied to algebras that are not group algebras.
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1. Introduction

In this work we study the homology and cohomology of the Temperley-Lieb alge-
bras. In particular, we simultaneously prove that the algebras satisfy homological
stability, and that their stable homology vanishes.

A sequence of groups and inclusions G0 → G1 → G2 → · · · is said to satisfy
homological stability if for each degree d the induced sequence of homology groups

Hd(G0)→ Hd(G1)→ Hd(G2)→ · · ·

eventually consists of isomorphisms. Homological stability can also be formu-
lated for sequences of spaces. There are many important examples of groups
and spaces for which homological stability is known to hold, such as symmet-
ric groups [Nak60], general linear groups [Cha80, Maa79, vdK80], mapping class
groups of surfaces [Har85, RW16] and 3-manifolds [HW10], automorphism groups
of free groups [HV98, HV04], diffeomorphism groups of high-dimensional man-
ifolds [GRW18], configuration spaces [Chu12, RW13], Coxeter groups [Hep16],
Artin monoids [Boyd20], and many more. In almost all cases, homological sta-
bility is one of the strongest things we know about the homology of these families.
It is often coupled with computations of the stable homology limn→∞H∗(Gn),
which is equal to the homology of the Gn in the stable range of degrees, i.e. those
degrees for which stability holds.

The homology and cohomology of a group G can be expressed in the language
of homological algebra as

H∗(G) = TorRG∗ (1,1), H∗(G) = Ext∗RG(1,1),

where R is the coefficient ring for homology and cohomology, RG is the group
algebra of G and 1 is its trivial module. Thus the homology and cohomology
of a group depend only on the group algebra RG and its trivial module 1. It is
therefore natural to consider the homology and cohomology of an arbitrary algebra
equipped with a ‘trivial’ module. Moreover, one may ask whether homological
stability occurs in this wider context.

In [Hep20] the second author proved homological stability for Iwahori-Hecke
algebras of type A. These are deformations of the group rings of the symmetric
groups that are important in representation theory, knot theory, and combina-
torics. There is a fairly standard suite of techniques used to prove homological
stability, albeit with immense local variation, and the proof strategy of [Hep20]
followed all the steps familiar from the setting of groups. As is typical, the hardest
step was to prove that the homology of a certain (chain) complex vanishes in a
large range of degrees.

In the present paper we will prove homological stability for the Temperley-Lieb
algebras, and we will prove that the stable homology vanishes. However amongst
the familiar steps in our proof lies a novel obstacle and — to counter it — a novel
construction. At a certain point the usual techniques fail because Shapiro’s lemma
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cannot be applied, as we will explain below. This is a new difficulty that never
occurs in the setting of groups, but we are able to resolve it for the algebras at hand,
and in fact our solution facilitates the unusually strong results that we are able
to obtain. It is not surprising that the Iwahori-Hecke case is more straightforward
than the Temperley-Lieb case: Iwahori-Hecke algebras are deformations of group
rings, whereas the Temperley-Lieb algebras are significantly different.

To the best of our knowledge, the present paper and [Hep20] are the first time
the techniques of homological stability have been applied to algebras that are
not group algebras, and together they serve as proof-of-concept for the export of
homological stability techniques to the setting of algebras. The moral of [Hep20] is
that the ‘usual’ techniques of homological stability suffice, so long as the algebras
involved satisfy a certain flatness condition. The moral of the present paper is
that failure of the flatness condition can in some cases be overcome, using new
ingredients and techniques, and can even lead to stronger results than in the flat
scenario. Since the completion of this paper, we have extended our techniques to
study the homology of the Brauer algebras in joint work with Patzt [BHP21].

1.1. Temperley-Lieb algebras. Let n > 0, let R be a commutative ring, and
let a ∈ R. The Temperley-Lieb algebra TLn(a) is the R-algebra with basis (by
which we will always mean R-module basis) given by the planar diagrams on n
strands, taken up to isotopy, and with multiplication given by pasting diagrams
and replacing closed loops with factors of a. The last sentence was intentionally
brief, but we hope that its meaning becomes clearer with the following illustration
of two elements x, y ∈ TL5(a)

x = y =

and their product x · y.

x · y = = = a ·

The Temperley-Lieb algebras arose in theoretical physics in the 1970s [TL71]. They
were later rediscovered by Jones in his work on von Neumann algebras [Jon83],
and used in the first definition of the Jones polynomial [Jon85]. Kauffman gave
the above diagrammatic interpretation of the algebras in [Kau87] and [Kau90].

The Temperley-Lieb algebra TLn(a) is perhaps best studied in the case where
a = v + v−1, for v ∈ R a unit. In this case, it is a quotient of the Iwahori-
Hecke algebra of type An−1 with parameter q = v2 (so it is closely related to
the symmetric group) and it receives a homomorphism from the group algebra
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of the braid group on n strands. It can also be described as the endomorphism
algebra of V ⊗nq , where Vq is a certain 2-dimensional representation of the quantum
group Uq(sl2). We recommend [RSA14] and [KT08] for further reading on TLn(a),
and [Wes95] and [GL96] for details on their representation theory.

1.2. Homology of Temperley-Lieb algebras. The Temperley-Lieb algebra TLn(a)
has a trivial module 1 consisting of a copy of R on which all diagrams other than
the identity diagram act as multiplication by 0. It therefore has homology and
cohomology groups TorTLn(a)

∗ (1,1) and Ext∗TLn(a)(1,1).
Our first result is a vanishing theorem in the case that the parameter a ∈ R is

invertible.

Theorem A. Let R be a commutative ring, and let a be a unit in R. Then

Tor
TLn(a)
d (1,1) and ExtdTLn(a)(1,1) both vanish for d > 0.

The next result holds regardless of whether or not a is invertible, and uses the
common assumption that a = v + v−1, v ∈ R×. However we see shortly that this
assumption can be removed.

Theorem B. Let R be a commutative ring, let v ∈ R be a unit, let a = v + v−1,
and let n > 0. Then

Tor
TLn(a)
d (1,1) = 0 and ExtdTLn(a)(1,1) = 0

for 1 6 d 6 (n− 2) if n is even, and for 1 6 d 6 (n− 1) if n is odd.

Thus the map Tor
TLn−1(a)
d (1,1)→ Tor

TLn(a)
d (1,1) is an isomorphism for d 6 n−

3, so that we have homological stability, and limn→∞TorTLn(a)
∗ (1,1) = 0 in positive

degrees, so the stable homology is trivial. The latter is reminiscent of Quillen’s
result on the vanishing stable homology of general linear groups of finite fields in
defining characteristic [Qui72], and of Szymik-Wahl’s result on the acyclicity of
the Thompson groups [SW19]. Theorems A and B might lead us to expect that
the homology and cohomology of the TLn(a) are largely trivial, but in fact the
results are as strong as possible, at least for n even:

Theorem C. In the setting of Theorem B above, suppose further that n is even

and that a = v + v−1 is not a unit. Then Tor
TLn(a)
n−1 (1,1) 6= 0.

Thus Theorem A does not extend to the case of a not invertible, and the sta-
ble range in Theorem B is sharp. In fact we can say more: When n is even,

Tor
TLn(a)
n−1 (1,1) ∼= R/bR where b is a multiple of a (unfortunately our methods do

not allow us to say anything more concrete about b).

Remark. One can compute Tor
TLn(a)
1 (1,1) directly using the method of [Wei94,

Exercise 3.1.3]: it is R/aR for n = 2, and vanishes otherwise. We also compute

the homology and cohomology of TL2(a) by an explicit resolution: TorTL2(a)
∗ (1,1)

is R/aR in odd degrees, and the kernel Ra of r 7→ ar in positive even degrees,
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so that if a is not invertible then TorTL2(a)
∗ (1,1) is non-trivial in infinitely many

degrees.

In [RW21], Randal-Williams shows that in fact you can remove our assumption
that a = v+v−1 for a unit v ∈ R, by applying Theorem C for an associated ring S.
This yields the following strengthening of Theorem B.

Corollary. [RW21, Theorem B’] Let R be a commutative ring, a be any element
in R, and n > 0. Then

Tor
TLn(a)
d (1,1) = 0 and ExtdTLn(a)(1,1) = 0

for 1 6 d 6 (n− 2) if n is even, and for 1 6 d 6 (n− 1) if n is odd.

Proof. The full proof can be found in [RW21], and uses the Base Change Spectral
Sequence [Wei94, Section 5.6]. This is applied to the faithfully flat ring homomor-
phism R→ S where S = R[v]/(v2 − a · v + 1), which by construction has a unit v
and element a such that a = v+ v−1. The results in Theorem B for the ring S can
now be transferred to analogous results for the ring R. �

1.3. Jones-Wenzl projectors. The Jones-Wenzl projector or Jones-Wenzl idem-
potent JWn, if it exists, is the element of TLn(a) uniquely characterised by the
following two properties:

• JWn ∈ 1 + In
• JWn · In = 0 = In · JWn

where In is the two-sided ideal in TLn(a) spanned by all diagrams other than the
identity diagram. The Jones-Wenzl projector was first introduced by Jones [Jon83],
was further studied by Wenzl [Wen87], and has since become important in repre-
sentation theory, knot theory and the study of 3-manifolds.

The Jones-Wenzl projector exists if and only if the trivial module 1 is projective.
Moreover, when the ground ring R is a field, there is a simple and explicit criterion
for the existence of JWn, given in terms of the parameter a. Thus, when this
criterion holds, the vanishing of TorTLn(a)

∗ (1,1) and Ext∗TLn(a)(1,1) in positive
degrees follows immediately.

Our own Theorems A and B are in general far stronger than the vanishing results
obtained from the existence of JWn, as they do not require R to be a field, and
the constraints are weaker. Indeed, in the case of n even, Theorems A and C are
the final word on vanishing, since they imply that the homology and cohomology
of TLn(a) vanish in all positive degrees if and only if a is invertible. However, in
the case of n odd and R a field, there are some situations where our theorems do
not incorporate all vanishing results given by the existence of JWn. These cases
are encapsulated in the following.

Theorem D. Let n = 2k + 1, and let R be a field whose characteristic does not
divide

(
k
t

)
for any 1 ≤ t ≤ k. Let v be a unit in R and assume that a = v+v−1 = 0.

Then TorTLn(0)
∗ (1,1) and Ext∗TLn(0)(1,1) vanish in positive degrees.



THE HOMOLOGY OF THE TEMPERLEY-LIEB ALGEBRAS 6

As with Theorem B, the assumption that a = v+v−1 for v a unit can be removed
in this result.

Combining Theorem D with Theorem A yields rather comprehensive vanishing
results when R is a field with appropriate characteristic. For example, it now
follows that when R is any field, the homology and cohomology of TL3(v + v−1)
vanish regardless of the choice of v. Similarly, the homology and cohomology of
TL5(v + v−1) will vanish over any field and for any value of v, except possibly in
characteristic 2 when v + v−1 = 0. Since the first appearance of our paper, Sroka
[Sro22] has used related techniques to show that when n is odd the Tor groups
vanish in all positive degrees, for any choice of R.

The next few sections of this introduction will discuss the proofs of our main
results in some detail.

1.4. Planar injective words. Several proofs of homological stability for the
symmetric group [Maa79, Ker05, RW13] make use of the complex of injective
words. This is a highly-connected complex with an action of the symmetric
group Sn. Our main tool for proving Theorems B and C is the complex of
planar injective words W (n), a Temperley-Lieb analogue of the complex of in-
jective words that we introduce and study here for the first time. It is a chain
complex of TLn(a)-modules, and in degree i it is given by the tensor product
module TLn(a)⊗TLn−i−1(a) 1. This is analogous to the complex of injective words,
whose i-simplices form a single Sn-orbit with typical stabiliser Sn−i−1, which is an
alternative way of saying that the i-th chain group is isomorphic to RSn⊗RSn−i−1

1.
We show the following high-acyclicity result. In order to construct appropriate
differentials for W (n) we exploit a homomorphism from the group algebra of the
braid group on n strands, which is not necessarily apparent from the definition
of TLn(a). This is where the restriction of a to a = v + v−1 is necessary.

Theorem E. Hd(W (n)) vanishes in degrees d 6 (n− 2).

The complex W (n) has rich combinatorial properties, analogous to those of the
complex of injective words, that we explore in the companion paper [BH21]. In
particular, Theorem E tells us that the homology of W (n) is concentrated in the
top degreeHn−1(W (n)), and in [BH21] we show that whenR is Noetherian the rank
of this top homology group is the n-th Fine number Fn [DS01], an analogue of the
number of derangements on n letters. Furthermore we show that the differentials
of W (n) encode the Jacobsthal numbers [OEIS]. Finally in the semisimple case we
show that Hn−1(W (n)) has descriptions firstly categorifying an alternating sum
for the Fine numbers, and secondly in terms of standard Young tableaux. We call
the TLn(a)-module Hn−1(W (n)) the Fineberg module, and we denote it Fn(a). We
know little about Fn(a) in general, though in the cases n = 2, 3, 4 we give examples
describing it in terms of the cell modules of TLn(a).

The proof of Theorem E is perhaps the most difficult technical result in this
paper. It is obtained by filtering W (n) and showing that the filtration quotients
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are (suspensions of truncations of) copies of W (n − 1), and then proceeding by
induction.

1.5. Spectral sequences and Shapiro’s lemma. Let us now outline how we use
the complex of planar injective words W (n) to prove Theorems B and C. Following
standard approaches to homological stability for groups, we consider a spectral
sequence obtained from the complex W (n). The E1-page of our spectral sequence

consists of the groups Tor
TLn(a)
j (1,TLn(a) ⊗TLn−i−1(a) 1). Furthermore, thanks to

Theorem E, the spectral sequence converges to Tor
TLn(a)
∗−n+1(1,Fn(a)), where Fn(a) =

Hn−1(W (n)) is the Fineberg module. Our experience from homological stability
tells us to apply Shapiro’s lemma, or in this context a change-of-rings isomorphism,
to identify

TorTLn(a)
∗ (1,TLn(a)⊗TLn−i−1(a) 1) with TorTLn−i−1(a)

∗ (1,1).

This identification applied to the columns of our spectral sequence would allow us
to implement an inductive hypothesis. However, such a change-of-rings isomor-
phism would only be valid if TLn(a) were flat as a TLn−i−1(a)-module, and this is
not the case. This failure of Shapiro’s lemma is a potentially serious obstacle to
proceeding further. However, we are able to identify the columns of our spectral
sequence by independent means, as follows:

Theorem F. Let R be a commutative ring and let a ∈ R. Let 0 6 m < n.

Then Tor
TLn(a)
d (1,TLn(a)⊗TLm(a)1) and ExtdTLn(a)(TLn(a)⊗TLm(a)1,1) both vanish

for d > 0.

In conjunction with a computation of the d = 0 case, this gives us the vanishing
results of Theorem B. Moreover, in the case of n even we are able to analyse the
rest of the spectral sequence (there is a single differential and a single extension
problem) in sufficient detail to prove the sharpness result of Theorem C. This
involves a careful study of the Fineberg module Fn(a). In general, our method

identifies TorTLn(a)
∗ (1,1) with Tor

TLn(a)
∗−n (1,Fn(a)), except in degrees ∗ = n − 1, n

when n is even.

1.6. Inductive resolutions. It remains for us to discuss the proofs of Theorems A
and F. These results are proved by a novel method that exploits the structure of
the Temperley-Lieb algebras, and in particular they lie outwith the standard tool-
kit of homological stability. Moreover, it is Theorem F which allows us to overcome
the failure of Shapiro’s lemma.

The two theorems are very similar: Theorem A is an instance of the more
general statement that TorTLn(a)

∗ (1,TLn(a)⊗TLm(a) 1) vanishes in positive degrees
for m 6 n and a invertible, while Theorem F states that the same groups vanish
for m < n and a arbitrary. These are both proved by strong induction on m. The
initial cases m = 0, 1 are immediate because then TLm(a) = R so TLn(a)⊗TLm(a)1

is free. The induction step is proved by constructing and exploiting a resolution
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of TLn(a)⊗TLm(a)1 whose terms have the form TLn(a)⊗TLm−1(a)1 and TLn(a)⊗TLm−2(a)

1, and then applying the inductive hypothesis. We call these resolutions inductive
resolutions since they resolve the next module in terms of those already considered.

Our technique of inductive resolutions is generalised in a joint paper with Patzt,
[BHP21], where we show that the homology of the Brauer algebras is isomorphic
to the homology of the symmetric groups in a stable range when the parameter δ
is not invertible, and in every degree when δ is invertible. This provides concrete
evidence that the new techniques developed in this paper can be adapted to other
algebras to obtain results of similar strength.

1.7. Discussion: Homological stability for algebras. As stated earlier, we
regard the present paper, together with the results of [Hep20] on Iwahori-Hecke al-
gebras, as proof-of-concept for the export of the techniques of homological stability
to the setting of algebras. And, since the first appearance of this paper, these tech-
niques have been extended to the setting of Brauer algebras in our joint work with
Patzt [BHP21]. We hope that the present paper, together with [Hep20, BHP21],
will be a springboard for further research in this direction.

One of the main motivations for studying the homology of groups, is that ho-
mology is a useful ‘measurement’ of the group. Put another way, homology is a
powerful invariant, where the power comes from the fact that it is both informa-
tive, and (relatively) computable. The Tor and Ext groups of algebras are likewise
strong invariants, and it is our hope that homology and cohomology of algebras
can be utilised as a tool to answer questions in the fields where the algebras arise.
For example, modern representation theory is rich in conjectures, and home to sur-
prising isomorphisms between apparently very different algebras [BK09, BCH20].
Understanding the similarities and differences between naturally-arising algebras
is precisely the kind of question that could be investigated via Tor and Ext-groups.

We will now discuss some questions arising from our work. Readers with expe-
rience in homological stability will be able to think of many new questions in this
direction, so we will simply list some that are most prominent in our minds.

The Temperley-Lieb algebra can be regarded as an algebra of 1-dimensional
cobordisms embedded in 2 dimensions, and the Brauer algebra can similarly be
viewed as an algebra of 1-dimensional cobordisms embedded in infinite dimensions.

Question. Are there analogues of the Temperley-Lieb algebra consisting of d-
dimensional cobordisms embedded in n dimensions? Does homological stability
hold for these algebras? And can the stability be understood in an essentially
geometric way?

And more generally:

Question. For which natural families of algebras does homological stability hold?
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Candidate algebras, closely related to the existing cases, are: Iwahori-Hecke and
Temperley-Lieb algebras of types B and D; the periodic and dilute Temperley-
Lieb algebras; and the blob, partition and Birman-Murakami-Wenzl algebras. We
invite the reader to think of possibilities from further afield.

There have recently been advances in building general frameworks for homolog-
ical stability proofs. In [RWW17] Randal-Williams and Wahl introduce a categor-
ical framework that encapsulates, improves and extends several of the standard
techniques used in homological stability proofs for groups. In [GKRW18] Galatius,
Kupers and Randal-Williams introduce a framework that applies to Ek-algebras in
simplicial modules. It exploits the notion of cellular Ek-algebras, and incorporates
methods for proving higher stability results. This invites us to pose the following
questions.

Question. Does the general homological stability machinery of Randal-Williams
and Wahl [RWW17] generalise to an R-linear version, giving a general framework
to prove that a family of R-algebras A0 → A1 → A2 → · · · satisfies homological
stability?

In this question, the most interesting issue is what form the resulting complexes
will take. One might expect that for a family of algebras the relevant complexes
will be constructed from tensor products, as with our complex W (n). However
it may happen, as in this paper, that flatness issues arise, in which case it seems
unlikely that complexes built from the honest tensor products will be sufficient.

Question. Can the homological stability machinery of Galatius, Kupers and
Randal-Williams [GKRW18] be applied in the setting of algebras?

It seems extremely likely that homology of Temperley-Lieb algebras will indeed
fit into the framework of [GKRW18], by using appropriate simplicial models for

the TorTLn(a)
∗ (1,1), or more precisely for the chain complexes underlying these Tor

groups. Again, the difficulty will lie in identifying and computing the associated
splitting complexes, especially when flatness issues arise.

1.8. Outline. In Section 2 we recall the definition of the Temperley-Lieb algebra,
the Jones basis, the relationship with Iwahori-Hecke algebras, and we establish re-
sults on the induced modules TLn(a)⊗TLm(a)1 that will be important in the rest of
the paper. Section 3 establishes our inductive resolutions and proves Theorems A
and F. Section 4 introduces the complex of planar injective words W (n) and the
Fineberg module Fn(a). Sections 5 and 6 then use W (n), in particular its high-
acyclicity (Theorem E), to prove Theorems B and C. Section 7 investigates our
results in the case of TL2(a), computing the homology directly and also in terms
of the Fineberg module F2(a). Section 8 proves Theorem E. Section 9 investigates
the vanishing results given by the Jones-Wenzl projectors and proves Theorem D.
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2. Temperley-Lieb Algebras

In this section we will cover the basic facts about the Temperley-Lieb algebra
that we will need for the rest of the paper. There is some overlap between the
material recalled here and in [BH21]. In particular, we cover the definitions by
generators and relations and by diagrams; we discuss the Jones basis for TLn(a); we
look at the induced modules TLn(a)⊗TLm(a)1 that will be an essential ingredient in
all that follows; and we discuss the homomorphism from the Iwahori-Hecke algebra
of type An−1 into TLn(a). Historical references on Temperley-Lieb algebras were
given in the introduction. General references for readers new to the TLn(a) are
Section 5.7 of Kassel and Turaev’s book [KT08] on the braid groups, and especially
Sections 1 and 2 of Ridout and Saint-Aubin’s survey on the representation theory
of the TLn(a) [RSA14].

Definition 2.1 (The Temperley-Lieb algebra TLn(a)). Let R be a commutative
ring and let a ∈ R. Let n be a non-negative integer. The Temperley-Lieb alge-
bra TLn(a) is defined to be the R-algebra with generators U1, . . . , Un−1 and the
following relations:

(1) UiUj = UjUi for j 6= i± 1
(2) UiUjUi = Ui for j = i± 1
(3) U2

i = aUi for all i.

Thus elements of the Temperley-Lieb algebra are formal sums of monomials in
the Ui, with coefficients in the ground ring R, modulo the relations above. We
often write TLn(a) as TLn. We note here that TL0 = TL1 = R.

There is an alternative definition of TLn in terms of diagrams. In this descrip-
tion, an element of TLn is an R-linear combination of planar diagrams (or 1-
dimensional cobordisms). Each planar diagram consists of two vertical lines in
the plane, decorated with n dots labelled 1, . . . , n from bottom to top, together
with a collection of n arcs joining the dots in pairs. The arcs must lie between
the vertical lines, they must be disjoint, and the diagrams are taken up to isotopy.
For example, here are two planar diagrams in the case n = 5:

x =

1 1

2 2

3 3

4 4

5 5

y =

1 1

2 2

3 3

4 4

5 5



THE HOMOLOGY OF THE TEMPERLEY-LIEB ALGEBRAS 11

We will often omit the labels on the dots. Multiplication of diagrams is given
by placing them side-by-side and joining the ends. Any closed loops created by
this process are then erased and replaced with a factor of a. For example, the
product xy of the elements x and y above is:

= = a ·

(We have subscribed to the heresy of [RSA14] by drawing planar diagrams that
go from left to right rather than top to bottom.)

One can pass from the generators-and-relations definition of TLn in Defini-
tion 2.1 to the diagrammatic description of the previous paragraph as follows.
For 1 6 i 6 n− 1, to each Ui we associate the planar diagram shown below.

...

...

1

i

i+1

n

We refer to an arc joining adjacent dots as a cup. The relations for the Temperley-
Lieb algebras are satisfied, and two of them are illustrated in Figure 1. The fact
that this determines an isomorphism between the algebra defined by generators
and relations, and the one defined by diagrams, is proved in [RSA14, Theorem 2.4],
[KT08, Theorem 5.34], and [Kau05, Section 6].

In the rest of the paper we will refer to the diagrammatic point of view on the
Temperley-Lieb algebra, but we will not rely on it for any proofs.

2.1. The Jones basis. From the diagrammatic point of view the Temperley-
Lieb algebra TLn has an evident R-basis given by the (isotopy classes of) planar
diagrams. This is called the diagram basis. We now recall the analogue of the
diagram basis given in terms of the Ui, which is called the Jones basis for TLn,
and we prove some additional facts about it that we will require later. See [KT08,
Section 5.7], [RSA14, Section 2] or [Kau05, Section 6], but note that conventions
vary, and see Remark 2.5 below in particular.

Definition 2.2 (Jones normal form). The Jones normal form for elements of
TLn(a) is defined as follows. Let

n > ak > ak−1 > · · · > a1 > 0 n > bk > bk−1 > · · · > b1 > 0
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1

i

i+1

i+2

n

=

(a) The relation U2
i = aUi.

...

...

...

...

...

...

...

...

1

i

i+1

i+2

n

=

(b) The relation UiUi+1Ui = Ui.

Figure 1. Diagrammatic relations in TLn.

be integers such that bi > ai for all i. Let a = (ak, . . . a1) and b = (bk, . . . b1). Then
set

xa,b = (Uak . . . Ubk) · (Uak−1
. . . Ubk−1

) · · · (Ua1 . . . Ub1)

where the subscripts of the generators increase in each tuple Uai . . . Ubi . A word
written in the form xa,b is said to be written in Jones normal form for TLn(a).

Example 2.3. In TL5 the words

U1U2U3U4 = (U1U2U3U4) = x(1),(4)

U4U3U2U1 = (U4) · (U3) · (U2) · (U1) = x(4,3,2,1),(4,3,2,1)

U3U4U1U2 = (U3U4) · (U1U2) = x(3,1),(4,2)

U2U3U1U2 = (U2U3) · (U1U2) = x(2,1),(3,2)

are in Jones normal form. The word U2U1U4U2U3 is not, but it can be rewritten
using the defining relations to give

U2U1U4U2U3 = U4U2U1U2U3 = U4U2U3 = (U4)(U2U3) = x(4,2),(4,3).

Denote the subset of TLn consisting of all xa,b with a = (a1, . . . , ak) and b =
(b1, . . . , bk) by TLn,k. Then the set

TLn,0 t TLn,1 t · · · t TLn,n−1
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is a basis (recall that by basis we always mean R-module basis) of TLn, called the
Jones basis. For a proof of this fact see [KT08, Corollary 5.32], [RSA14, pp.967-
969] or [Kau05, Section 6], though we again warn the reader that conventions
vary.

There is an algorithm for taking a diagram and writing it as an element of the
Jones basis, see [Kau05, Section 6]. We summarise the algorithm here. Let the i-th
row of the diagram be the horizontal strip whose left and right ends lie between
the dots i and (i + 1) on each vertical line. Take a planar diagram, and ensure
that it is drawn in minimal form: all arcs connecting the same side of the diagram
to itself are drawn as semicircles, and all arcs from left to right are drawn without
any cups, i.e. transverse to all vertical lines, and such that each arc of the diagram
intersects each row transversely and at most once.

Proceed along each row of the diagram, connecting the consecutive arcs encoun-
tered with a dotted horizontal line labelled by the row in question. This is done in
an alternating fashion: the first arc encountered is connected to the second by a
dotted line, then the third is connected to the fourth, and so on. If we start with
the elements x and y used earlier in this section, then this gives us the following:

x =

4

2

1

y =

4

3

2 2

1

A sequence in such a decorated diagram is taken by travelling right along the dotted
arcs and up along the solid arcs from one dotted arc to the next, starting as far
to the left as possible. The above diagrams each have two sequences, indicated
in blue and red. The sequences in a diagram are linearly ordered by scanning
from top to bottom and recording a sequence when one of its dotted lines is first
encountered. So in the above diagrams the blue sequences precede the red ones.
One now obtains a Jones normal form for the element by working through the
sequences in turn, writing out the labels from left to right, and then taking the
corresponding monomial in the Ui:

x = (U4)(U1U2) = x(4,1),(4,2), y = (U2U3U4)(U1U2) = x(2,1),(4,2).

We now present a proof that the Jones basis spans, adding slightly more detail
than we found in the references. The extra detail will be used in the next section.

Definition 2.4. Given a word w = Ui1 . . . Uin in the Ui, define the terminus to
be the subscript of the final letter of the word appearing, in, and denote it t(w).
Set t(1) =∞ as a convention. Define the index of w to be the minimum subscript ij
appearing, and denote it i(w).

Remark 2.5. Note here that the notions of Jones normal form and index in TLn(a)
coincide with those of [KT08], under the bijection which sends the generator ei
of [KT08] to the generator Un−i used in this paper, for 1 6 i 6 n− 1.
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The following two lemmas are an enhancement of Lemmas 5.25 and 5.26 of [KT08].

Lemma 2.6. Any word w ∈ TLn(a) is equal in TLn(a) to a scalar multiple of a
word w′ in which
(a) i(w) = i(w′) and Ui(w) appears exactly once in w′;
(b) t(w′) = t(w).

Point (a) occurs as Lemma 5.25 of [KT08], and the following is a simple extension
of the proof that appears there. We have opted to give our proof in full because, as
well as the minor extension of the proof, our notation differs from that of [KT08]
as in Remark 2.5.

Proof. We proceed by reverse induction on the index i(w) of w, which lies in the
range 1 6 i(w) 6 n − 1. If i(w) = n − 1, then w = U i

n−1 for some i ≥ 1, so that
w = ai−1Un−1 is a scalar multiple of the word Un−1. Since the words U i

n−1 and
Un−1 have the same index and terminus, the result holds in this case.

Suppose that the claim holds for all words of index > p and let w be a nonempty
word of index p. Suppose that Up appears in w at least twice. Then we may write
w = w1Upw

′Upw2 where i(w′) = ` > p.
If ` > p+ 1, then all letters of w′ commute with Up, so that

w = w1Upw
′Upw2 = w1w

′U2
pw2 = aw1w

′Upw2.

Thus we have reduced the number of occurrences of Up in w while preserving
the (nonempty) final portion Upw2 of the word, so that the terminus remains
unchanged.

If ` = p+1, then by the induction hypothesis we may assume that Up+1 appears
only once in w′, so that w′ = w3Up+1w4 where w3, w4 are words of index ≥ p + 2.
Therefore w3, w4 commute with Up, and consequently

w = w1Upw
′Upw2 = w1Upw3Up+1w4Upw2

= w1w3UpUp+1Upw4w2 = w1w3Upw4w2 = w1w3w4Upw2.

So again, we have reduced the number of occurrences of Up in the word while
preserving the final (nonempty) portion Upw2, and in particular preserving the
terminus.

Repeating the process of reducing the number of occurrences of Up while pre-
serving the terminus, we find that w is a scalar multiple of a word w′ of the required
form. �

Lemma 2.7. Any word w ∈ TLn(a) is equivalent in TLn(a) to a scalar multiple
of a word w′ such that
(a) w′ is written in Jones normal form;
(b) t(w′) 6 t(w);
(c) if t(w′) < t(w) then t(w′) 6 t(w)− 2.
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Proof. As in the previous Lemma, point (a) occurs as [KT08, Lemma 5.26]. We
refer the reader to that proof, with the following modifications:

• Invoke the bijection of generators of Remark 2.5. This amounts to replacing
each occurrence of ei with Un−i, so for example the subscripts 1 and n− 1
are interchanged, and inequalities are ‘reversed’.
• Whenever the inductive hypothesis is used in [KT08, Lemma 5.25], instead

use the statement of the present lemma as a stronger inductive hypothesis.
• At the point where [KT08, Lemma 5.25] is used in [KT08, Lemma 5.26],

use instead Lemma 2.6.

With these modifications in place, one can simply observe how the terminus
changes in the proof of [KT08, Lemma 5.26], to obtain the present strengthen-
ing of that result. �

2.2. Induced modules of Temperley-Lieb Algebras.

Definition 2.8 (The trivial module 1). The trivial module 1 of the Temperley-
Lieb algebra TLn(a) is the module consisting of R with the action of TLn(a) in
which all of the generators U1, . . . , Un−1 act as 0. We can regard 1 as either a left
or right module over TLn(a), and we will usually do that without indicating so in
the notation.

Definition 2.9 (Sub-algebra convention). For m 6 n, we will regard TLm(a) as
the sub-algebra of TLn(a) generated by the elements U1, . . . , Um−1. We will often
regard TLn(a) as a left TLn(a)-module and a right TLm(a)-module, so that we
obtain the left TLn(a)-module TLn(a)⊗TLm(a) 1.

Remark 2.10. Elements of TLn(a)⊗TLm(a)1 can always be written as elementary
tensors of the form y ⊗ 1, since in this module x⊗ r = rx⊗ 1 for all r ∈ R.

The modules TLn ⊗TLm 1 are an essential ingredient in the rest of this paper:
they will be the building blocks of all the complexes we construct in order to prove
our main results, in particular the complex of planar injective words W (n). The
rest of this section will study them in some detail, in particular finding a basis for
them analogous to the Jones basis.

Remark 2.11 (TLn(a)⊗TLm(a)1 via diagrams). The elements of TLn(a)⊗TLm(a)1

can be regarded as diagrams, just like the elements of TLn(a), except that now
the first m dots on the right are encapsulated within a black box, and if any cups
can be absorbed into the black box, then the diagram is identified with 0. For
example, some elements of TL4(a)⊗TL3(a) 1 are depicted as follows:

11111111

22222222

33333333

44444444



THE HOMOLOGY OF THE TEMPERLEY-LIEB ALGEBRAS 16

The structure of TLn(a)⊗TLm(a) 1 as a left module for TLn(a) is given by pasting
diagrams on the left, and then simplifying, as in the following example for n = 4
and m = 2:

U1U3 · = = = 0.

Definition 2.12 (The ideal Im). Given 0 6 m 6 n, let Im denote the left ideal
of TLn(a) generated by the elements U1, . . . , Um−1.

Lemma 2.13. TLn(a)⊗TLm(a) 1 and TLn(a)/Im are isomorphic as left TLn(a)-
modules via the maps

TLn(a)⊗TLm(a) 1 −→ TLn(a)/Im, y ⊗ r 7−→ yr + Im

and

TLn(a)/Im −→ TLn(a)⊗TLm(a) 1, y + Im 7−→ y ⊗ 1.

Proof. Observe that the generators U1, . . . , Um−1 of the left-ideal Im in TLn are
precisely the generators of the subalgebra TLm of TLn. Thus the map y ⊗ r 7→
yr+Im is well defined because if i = 1, . . . ,m−1 then elements of the form yUi⊗r
and y⊗Uir both map to 0 in TLn/Im. And y+ Im 7→ y⊗1 is well defined because
elements of Im are linear combinations of ones of the form x·Ui for i = 1, . . . ,m−1,
and (x ·Ui)⊗ 1 = x⊗ (Ui · 1) = x⊗ 0 = 0 for i = 1, . . . ,m− 1. One can now check
that the two maps are inverses of one another. �

Remark 2.14. Lemma 2.13 justifies the description of TLn(a)⊗TLm(a)1 in terms of
diagrams with ‘black boxes’ that we gave in Remark 2.11. Indeed, Im is precisely
the span of those diagrams which have a cup on the right between the dots i
and i + 1 for some i = 1, . . . ,m − 1. But these are precisely the diagrams which
are made to vanish by having a cup fall into the black box. Thus TLn(a)/Im has
basis given by the remaining diagrams, i.e. the ones that are not rendered 0 by the
black box.

Lemma 2.15. For m 6 n, the ideal Im of TLn(a) has basis consisting of those
elements of TLn(a) written in Jones normal form xa,b, which have terminus b1 6
m− 1 (and k 6= 0).

Proof. Recall that words of the form xa,b give a basis for TLn. Then by definition
any word w ∈ Im is of the form w = xa,bv for v ∈ 〈U1, . . . , Um−1〉 and v 6= e. Then
we have that t(w) 6 m−1. Now apply Lemma 2.7 to w to complete the proof. �

Lemma 2.16. For m 6 n, TLn(a)⊗TLm(a) 1 has basis given by xa,b⊗ 1 such that
the terminus b1 > m− 1.
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Proof. From Lemma 2.13 TLn ⊗TLm 1 is isomorphic to TLn/Im. Then elements
of the form xa,b give a basis for TLn and elements of the form xa,b, which have
terminus b1 6 m − 1 give a basis for Im by Lemma 2.15. Therefore a basis for
the quotient is given by xa,b such that the terminus b1 > m − 1, and under the
isomorphism in Lemma 2.13 this gives the required basis. �

Example 2.17. The Jones basis of TL3(a) is:

1, U2, U1U2, U1, U2U1

So TL3(a)⊗TL2(a)1 has basis consisting of those elements whose terminus is strictly
greater than 1, namely:

1, U2, U1U2.

(Recall that by convention the terminus of 1 is ∞.)

Lemma 2.18. For m 6 n, suppose that y ∈ TLn(a) and that y ·Um−1 lies in Im−1.
Then y · Um−1 lies in Im−2.

Proof. The product y · Um−1 is a linear combination of words ending with Um−1,
i.e. of words w with t(w) = m−1. By Lemma 2.7, this can be rewritten as a linear
combination of Jones basis elements xa,b whose terminus satisfies t(xa,b) = m − 1
or t(xa,b) 6 m−3. Since y ·Um−1 ∈ Im−1, this means that in fact no basis elements
with terminus m− 1 remain after cancellation, and therefore all remaining words
have terminus m− 3 or less, and so lie in Im−2. �

2.3. Iwahori-Hecke algebras.

Definition 2.19 (The Iwahori-Hecke algebra). Let n > 0 and let q ∈ R×. The
Iwahori-Hecke algebra Hn(q) of type An−1 is the algebra with generators

T1, . . . , Tn−1

satisfying the following relations:
• TiTj = TjTi for i 6= j ± 1
• TiTjTi = TjTiTj for i = j ± 1
• T 2

i = (q − 1)Ti + q

Definition 2.20 (From Iwahori-Hecke to Temperley-Lieb). Now suppose that
there is v ∈ R× such that q = v2. Then there are two natural homomorphisms

θ1, θ2 : Hn(q) −→ TLn(v + v−1),

defined by θ1(Ti) = vUi−1 and θ2(Ti) = v2−vUi for i = 1, . . . , n−1. They induce
isomorphisms

θ̄1 : Hn(q)/I1
∼=−−→ TLn(v + v−1), θ̄2 : Hn(q)/I2

∼=−−→ TLn(v + v−1),

where I1 is the two-sided ideal generated by elements of the form

TiTjTi + TiTj + TjTi + Ti + Tj + 1
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for i = j ± 1, and I2 is the two-sided ideal generated by elements of the form

TiTjTi − qTiTj − qTjTi + q2Ti + q2Tj − q3

for i = j ± 1. See [FG97], Theorem 5.29 of [KT08], and Section 2.3 of [HMR09],
though unfortunately conventions change from author to author. Another stan-
dard convention of setting a = −(v+v−1) can easily be accounted for by swapping v
with −v±1.

We will take an agnostic approach to the homomorphisms θ1, θ2. We will choose
one of them and denote it by simply

θ : Hn(q) −→ TLn(v + v−1),

and denote by λ the constant term in θ(Ti), and by µ the coefficient of Ui in θ(Ti),
so that

θ(Ti) = λ+ µUi.

Then θ induces an isomorphism

θ̄ : Hn(q)/I
∼=−−→ TLn(v + v−1)

where I is the two-sided ideal generated by elements of the form

TiTjTi − λTiTj − λTjTi + λ2Ti + λ2Tj − λ3

for i = j ± 1. And moreover, the elements θ(Ti) act on the trivial module 1 as
multiplication by λ.

Definition 2.21. Let v ∈ R×. We define s1, . . . , sn−1 ∈ TLn(v + v−1) by setting

si = θ(Ti) = λ+ µUi

and note that these elements satisfy the following properties:

• s2i = (v2 − 1)si + v2 for all i,
• sisj = sjsi for i 6= j ± 1,
• sisjsi = sjsisj for i = j ± 1,
• sisjsi − λsisj − λsjsi + λ2si + λ2sj − λ3 = 0 for i = j ± 1,
• si acts on 1 as multiplication by λ.

Remark 2.22. There is a homomorphism from (the group algebra of) the braid
group into TLn(v + v−1) given on generators by si 7→ si. This is the content
of the second and third bullet points above, together with the fact that the si
are invertible, which follows from the first bullet point (and the fact that v is
a unit). Diagrammatically, this homomorphism can be viewed as a smoothing
expansion from braided diagrams to planar diagrams: take a braid diagram, and
then smooth each crossing in turn in the two possible ways, using appropriate
weightings for each smoothing. For example, we can visualise the image of si
in TLn(v + v−1) as the standard braid group generator crossing strand i over
strand i+1. There are two ways this crossing can be resolved to a planar diagram,
and we equate si to the sum of these two states. They are the identity and Ui, as
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1

i

i+1

n

+µ= λ

si = λ +µ Ui

Figure 2. Smoothings of si

shown in Figure 2. The coefficient of the identity is λ and the coefficient of Ui is µ,
simply because we defined si = λ + µUi. Similarly, we consider the image of s−1i
as strand i crossing under strand i+ 1, and when this is smoothed the coefficient
of the identity is λ−1 and the coefficient of Ui is µ−1, precisely because one can
verify that s−1i = λ−1 + µ−1Ui in TLn(v + v−1).

In principle we could describe how various Reidemeister moves affect the smooth-
ing expansion, but it will not be necessary for the rest of the paper. Moreover, we
will only encounter positive powers of si.

3. Inductive resolutions

In this section we prove the following two theorems, which we recall from the
introduction.

Theorem A. Let R be a commutative ring and let a be a unit in R. Then

Tor
TLn(a)
d (1,1) and ExtdTLn(a)(1,1) both vanish for d > 0.

Theorem F. Let R be a commutative ring and let a ∈ R. Let 0 6 m < n.

Then Tor
TLn(a)
d (1,TLn(a) ⊗TLm(a) 1) and ExtdTLn(a)(TLn(a) ⊗TLm(a) 1,1) vanish

for d > 0.

In fact for Theorem A we will prove the following stronger claim:

Claim 3.1. Suppose that the parameter a ∈ R is invertible. Then for any 0 6 m 6
n, the groups Tor

TLn(a)
d (1,TLn(a) ⊗TLm(a) 1) and Ext

TLn(a)
d (TLn(a) ⊗TLm(a) 1,1)

both vanish for d > 0.

The similarity between Theorem F and Claim 3.1 is now clear. Both will be
proved by induction on m, the initial cases m = 0, 1 being immediate because
then TLm is the ground ring R so that TLn ⊗TLm 1 ∼= TLn is free. In order to
produce an inductive proof, we construct resolutions of the modules TLn ⊗TLm

1 whose terms are not free or projective or injective, but instead whose terms
are the modules considered earlier in the induction, specifically TLn ⊗TLm−1 1

and TLn ⊗TLm−2 1. For this reason we refer to these resolutions as inductive
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(1−a−1Um−1)

��
TLn ⊗TLm−2 1

a−1Um−1

��

3

TLn ⊗TLm−2 1

(1−a−1Um−1)

��

2

TLn ⊗TLm−2 1

a−1Um−1

��

1

TLn ⊗TLm−1 1

1
��

0

TLn ⊗TLm 1 −1

Figure 3. The complex C(m).

resolutions. This approach is inspired by homological stability arguments, in which
one considers complexes whose building blocks are induced up from the earlier
objects in the sequence. The difference here is that our complexes are actual
resolutions — they are acyclic rather than just acyclic up to a point — and because
Shapiro’s lemma is unavailable we do not change the algebra we are working over,
rather we change the algebra from which we are inducing our modules.

3.1. The inductive resolutions. In this subsection we establish the resolu-
tions C(m) and D(m) of TLn⊗TLm 1 required to prove Claim 3.1 and Theorem F
above.

Definition 3.2 (The complex C(m)). Let 2 6 m 6 n and assume that a is
invertible. We define a chain complex of left TLn(a)-modules as in Figure 3.
The degree is indicated in the right-hand column. The differentials of C(m) are
all given by extending the algebra over which the tensor product is taken, by
right multiplying in the first factor by the indicated element of TLn(a), or by a
combination of the two. So, for example, the differential originating in degree 1
sends x ⊗ r ∈ TLn(a) ⊗TLm−2(a) 1 to (x · a−1Um−1) ⊗ r ∈ TLn(a) ⊗TLm−1(a) 1.
The complex is periodic of period 2 in degrees 1 and above, so that all en-
tries are TLn(a) ⊗TLm−2(a) 1 and the boundary maps between them alternate
between a−1Um−1 and (1 − a−1Um−1). The boundary maps are well defined be-
cause Um−1 commutes inside TLn(a) with all elements of TLm−2(a).
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(1−Um−1Um)

��
TLn ⊗TLm−2 1

Um−1Um

��

3

TLn ⊗TLm−2 1

(1−Um−1Um)

��

2

TLn ⊗TLm−2 1

Um−1

��

1

TLn ⊗TLm−1 1

1
��

0

TLn ⊗TLm 1 −1

Figure 4. The complex D(m).

Definition 3.3 (The complex D(m)). Let 2 6 m < n, and do not assume that a
is invertible. We define a chain complex of left TLn(a)-modules as in Figure 4.
The degree is indicated in the right-hand column. The differentials of D(m) are
all given by extending the algebra over which the tensor product is taken, by
right multiplying in the first factor by the indicated element of TLn(a), or by a
combination of the two. So, for example, the differential originating in degree 1
sends x ⊗ r ∈ TLn(a) ⊗TLm−2(a) 1 to x · Um−1 ⊗ r ∈ TLn(a) ⊗TLm−1(a) 1. The
complex is periodic of period 2 in degrees 1 and above, so that in that range all
terms are TLn(a) ⊗TLm−2(a) 1 and the boundary maps between them alternate
between Um−1Um and (1 − Um−1Um). The boundary maps are well defined be-
cause Um−1 and Um−1Um commute inside TLn(a) with all elements of TLm−2(a).
Observe that the condition m < n is necessary in order to ensure that Um is
actually an element of TLn(a).

Lemma 3.4.

(1) Let 2 6 m 6 n and let a be invertible. Then a−1Um−1 ∈ TLn(a) is idem-
potent.

(2) Let 2 6 m < n and let a be arbitrary. Then Um−1Um ∈ TLn(a) is idempo-
tent.

Proof. We calculate

(a−1Ui)
2 = a−2U2

i = a−2aUi = a−1Ui
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and
Um−1Um · Um−1Um = Um−1UmUm−1 · Um = Um−1Um. �

From now on in this section, we will attempt to talk about C(m) and D(m)
at the same time. When we refer to C(m), the relevant assumptions should be
understood, namely that 2 6 m 6 n and that a ∈ R is a unit. And when we
refer to D(m), the assumptions that 2 6 m < n but a ∈ R is arbitrary should be
understood. We trust that this will not be confusing.

Lemma 3.5. C(m) and D(m) are indeed chain complexes.

Proof. We give the proof for C(m). The proof for D(m) is similar. We must
check that consecutive boundary maps of C(m) compose to 0. In the case of the
composite from degree 1 to −1, the composition is given by

x⊗ r 7→ (x · a−1Um−1)⊗ r = x⊗ (a−1Um−1 · r) = x⊗ 0 = 0

this holds because the tensor product is over TLm, which contains a−1Um−1. In
the case of the remaining composites, this follows immediately from

(a−1Um−1) · (1− a−1Um−1) = 0 = (1− a−1Um−1) · (a−1Um−1),
which is a consequence of the fact that a−1Um−1 is idempotent (from Lemma 3.4).

�

Lemma 3.6. The complexes C(m) and D(m) are acyclic.

Proof. In degree −1 it is clear that the boundary map is surjective, for both C(m)
and D(m).

In degree 0, we will give the proof for C(m), the proof for D(m) being similar.
Suppose that y ⊗ 1 ∈ TLn ⊗TLm−1 1 lies in the kernel of the boundary map, or
in other words that y ⊗ 1 ∈ TLn ⊗TLm 1 vanishes. This means that y lies in the
left-ideal generated by the elements U1, . . . , Um−1. Since all but the last of these
generators lie in TLm−1, and we started with y⊗1 ∈ TLn⊗TLm−11, we may assume
without loss that y = y′ · Um−1 for some y′. But then

y ⊗ 1 = y′ · Um−1 ⊗ 1 = ay′ · (a−1Um−1)⊗ 1

does indeed lie in the image of the boundary map.
In degree 1, we give the proof for both complexes. First, for C(m), suppose

that y ⊗ 1 ∈ TLn ⊗TLm−2 1 lies in the kernel of the boundary map. It follows
that y · (a−1Um−1)⊗ 1 vanishes in TLn ⊗TLm−1 1, which means that y · (a−1Um−1)
lies in the left ideal Im−1 generated by U1, . . . , Um−2. It follows from Lemma 2.18
that y · (a−1Um−1) lies in the left ideal Im−2 generated by U1, . . . , Um−3, so that
in TLn ⊗TLm−2 1 the element y · (a−1Um−1)⊗ 1 vanishes. Thus

y ⊗ 1 = y · (1− a−1Um−1)⊗ 1

does indeed lie in the image of the boundary map. Second, for D(m), suppose
that y ⊗ 1 ∈ TLn ⊗TLm−2 1 lies in the kernel of the boundary map. Then, as
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0
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1

1
��

2

1

0
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1

1

1
��

0

1 −1

Figure 5. The complex 1⊗ C(m)

for C(m), y · Um−1 lies in Im−2. So y · Um−1Um also lies in the left ideal Im−2
since Um commutes with the generators of Im−2. Thus y · Um−1Um ⊗ 1 vanishes
in TLn⊗TLm−2 1, so that y⊗ 1 = y · (1−Um−1Um)⊗ 1 does indeed lie in the image
of the boundary map.

In degrees 2 and higher, acyclicity is an immediate consequence of the fact
that a−1Um−1 and Um−1Um are idempotents, by Lemma 3.4. �

Lemma 3.7. The complexes 1⊗TLn(a)C(m), 1⊗TLn(a)D(m), HomTLn(a)(C(m),1)
and HomTLn(a)(D(m),1) are acyclic.

Proof. We give the proof for 1 ⊗TLn C(m), the proof for the other parts being
similar. The terms of C(m) have the form TLn⊗TLm−i

1 where i = 0, 1, 2 depending
on the degree. Thus 1⊗TLn C(m) has terms of the form 1⊗TLn (TLn⊗TLm−i

1) ∼=
1⊗TLm−i

1 ∼= 1. Moreover, by tracing through this isomorphism, one sees that if a
boundary map in C(m) is labelled by an element x ∈ TLn, then the corresponding
boundary map in 1⊗TLn C(m) is simply the map 1→ 1 given by the action of x
on 1. Thus 1⊗TLnC(m) is nothing other than the complex in Figure 5. (The right
hand column indicates the degree.) This is visibly acyclic, and this completes the
proof. �

Remark 3.8 (Representation theory and the inductive resolutions). Schur-Weyl
duality relates representations of TLn with representations of the quantum group
Uq(sl2), and it is possible to use this to construct our inductive resolutions via
the representation theory of Uq(sl2). We will try to describe this briefly. We are
indebted to an anonymous referee for explaining this connection to us.
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One instance of Schur-Weyl duality is the following. Let V denote the standard
representation of Uq(sl2). Then there is an isomorphism TLn ∼= EndUq(sl2)(V

⊗n),
and more generally there are isomorphisms TL(n,m) ∼= HomUq(sl2)(V

⊗n, V ⊗m)
that assemble into a monoidal functor on the Temperley-Lieb category TL. (The
objects of TL are the non-negative integers, the morphism space TL(n,m) is the
R-module spanned by planar diagrams with n marked points on the left and m
marked points on the right, and composition is defined just like multiplication in
TLn.) See Webster’s appendix to [EL17].

One can write down exact sequences of Uq(sl2)-modules that, after applying
Schur-Weyl duality, yield the inductive resolutions C(m) and D(m). We will not
detail the construction of these sequences, except to say that each one relies on the
construction of an appropriate splitting of some tensor power of V . The relevant
splittings are constructed in each case as follows:

• In the case where a is invertible, the morphisms

a−1 and

in TL compose to give the identity morphism in TL(0, 0). (The two semicir-
cles compose to the circle morphism from 0 to itself, and by the usual rule
for composing diagrams, the circle morphism is a times the identity.) This
then corresponds to a pair of maps R = V ⊗0 → V ⊗2 and V ⊗2 → V ⊗0 = R
that compose to the identity, showing that V ⊗2 splits off a copy of R. Note
that the map V ⊗2 → V ⊗2 that projects onto this copy of R is represented
by the morphism

a−1

in TL. Compare this with the idempotent a−1Um−1 appearing in C(n).
• When a is not invertible, we consider the morphisms

and

which compose to give the identity morphism in TL(1, 1). These diagrams
correspond to a pair of maps V → V ⊗3 → V that compose to the identity,
showing that V ⊗3 splits off a copy of V . Observe that the map V ⊗3 → V ⊗3

that projects to this copy of V is represented by the morphism
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which can be compared to the idempotent Um−1Um appearing in D(n).

3.2. The spectral sequence of a double complex. Since the spectral sequence
of a particular kind of double complex is used several times during this paper, we
introduce and discuss it in this subsection.

We begin with the homological version. Suppose we have a chain complex Q∗
of left TLn-modules, such as C(m) or D(m), or the complex of planar injec-
tive words W (n) to be introduced later. Then we choose a projective reso-
lution P of 1 as a right module over TLn, and we consider the double com-
plex P∗ ⊗TLn Q∗. This is a homological double complex in the sense that both
differentials reduce the grading. Associated to this double complex are two spec-
tral sequences, {IEr} and {IIEr}, which both converge to the homology of the
totalisation, H∗(Tot(P∗ ⊗TLn Q∗)) as in Section 5.6 of [Wei94]. The first spec-
tral sequence has E1-term given by IE1

i,j = Hj(Pi ⊗TLn Q∗)
∼= Pi ⊗TLn Hj(Q∗)

with d1 : IE1
i,j → IE1

i−1,j induced by the differential Pi → Pi−1. The isomorphism

above holds because each Pi is projective and therefore flat. It follows that the E2-
term is

IE2
i,j = TorTLn

i (1, Hj(Q∗)).

The second spectral sequence has E1-term given by IIE1
i,j = Hj(P∗ ⊗TLn Qi), i.e.

IIE1
i,j = TorTLn

j (1, Qi)

with d1 : IIE1
i,j → IIE1

i−1,j induced by the boundary maps of Q∗.
We now consider the cohomological version. Suppose we have a chain com-

plex Q∗ of left TLn-modules, again such as C(m), D(m) or W (n) (the latter to be
introduced later). Then we choose an injective resolution I∗ of 1 as a left module
over TLn, and we consider the double complex HomTLn(Q∗, I

∗). This is a coho-
mological double complex in the sense that both differentials increase the grading.
Associated to this double complex are two spectral sequences, {IEr} and {IIEr},
both converging to the cohomology of the totalisation, H∗(Tot(HomTLn(Q∗, I

∗)))
as in Section 5.6 of [Wei94]. The first spectral sequence has E1-term given by
IEi,j

1 = Hj(HomTLn(Q∗, I
i)) ∼= HomTLn(Hj(Q∗), I

i) with d1 : IE1
i,j → IE1

i+1,j in-

duced by the differential of I∗. The isomorphism above holds because each I i is
injective, so that the functor HomTLn(−, I i) is exact. It follows that the E2-term
is

IEi,j
2 = ExtiTLn

(Hj(Q∗),1).

The second spectral sequence has E1-term IIEi,j
1 = Hj(HomTLn(Qi, I

∗)), i.e.

IIEi,j
1 = ExtjTLn

(Qi,1)

with differential d1 : IIEi,j
1 → IIEi+1,j

1 induced by the differential of Q∗.
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3.3. Proof of Theorems A and F. We can now prove Claim 3.1 (which im-
plies Theorem A) and Theorem F. The proofs of the two results will be almost
identical except that the former uses the complex C(m) and the latter uses the
complex D(m). Moreover, each result has a homological and cohomological part,
referring to Tor and Ext respectively. In each case the two parts are proved sim-
ilarly, by using either the homological or cohomological spectral sequence from
Section 3.2 above. We will therefore only prove the homological part of Claim 3.1,
i.e. we will prove that TorTLn

∗ (1,TLn⊗TLm 1) vanishes in positive degrees, leaving
the details of the other parts to the reader.

Proof of Claim 3.1, Tor case. We prove the claim by fixing n and using strong
induction on m in the range n > m > 0. As noted before, the initial cases m = 0, 1
of the induction are immediate since then TLm is the ground ring and TLn⊗TLn1

∼=
TLn is free. We therefore fix m in the range 2 6 m 6 n.

We now employ the homological spectral sequences {IEr} and {IIEr} of Sec-
tion 3.2, in the case Q = C(m). Then IE2

i,j = TorTLn
i (1, Hj(C(m))) = 0 for all i

and j, since C(m) is acyclic by Lemma 3.6. Thus {IEr} converges to zero, and
the same must therefore be true of {IIEr}, since both spectral sequences have the
same target. In the second spectral sequence the E1-page

IIE1
i,j = TorTLn

j (1, C(m)i)

is largely known to us. The bottom j = 0 row of IIE1 is precisely the complex
1 ⊗TLn C(m), which is acyclic by Lemma 3.7. And when i > 0, the term C(m)i
is either TLn ⊗TLm−1 1 or TLn ⊗TLm−2 1, and our inductive hypothesis applies to

these ((m− 1) < m and (m− 2) < m) to show that IIE1
i,j = TorTLn

j (1, C(m)i) = 0

when j > 0. See Figure 6 for a visualisation of the E1 page. Altogether, this tells
us that IIE2

i,j vanishes except for the groups

IIE2
−1,j = TorTLn

j (1, C(m)−1) = TorTLn
j (1,TLn ⊗TLm 1)

for j > 0, which are concentrated in a single column and therefore not subject to
any further differentials. Thus IIE2 = IIE∞. But we know that IIE∞ vanishes
identically, so that the inductive hypothesis is proved, and so, therefore, is the
proof of the homological part of Claim 3.1. �

4. Planar injective words

Throughout this section we will consider the Temperley-Lieb algebra TLn(a) =
TLn(v + v−1), where v ∈ R×. We will make use of the elements s1, . . . , sn−1 of
Definition 2.21.

Definition 4.1. For n > 0 we define a chain complex W (n)∗ of left TLn(a)-
modules as follows. For i in the range −1 6 i 6 n− 1, the degree-i part of W (n)∗
is defined by

W (n)i = TLn(a)⊗TLn−i−1(a) 1
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j

i−1 0 1 2

0

1

2

3

...
...

· · ·
· · ·

TorTLn
1 (1,C(m)−1)

TorTLn
2 (1,C(m)−1)

TorTLn
3 (1,C(m)−1)

1⊗TLnC(m)−1 1⊗TLnC(m)0 1⊗TLnC(1)1 1⊗TLnC(m)2

TorTLn
j (1, C(m)i) = 0

Figure 6. The page IIE1. The only differentials that affect
the IIE2 page are shown on the j = 0 row.

and in all other degrees we set W (n)i = 0. Note that

W (n)−1 = TLn(a)⊗TLn(a) 1 = 1.

For i > 0 the boundary map di : W (n)i → W (n)i−1 is defined to be the alternating

sum
∑i

j=0(−1)jdij, where dij : W (n)i → W (n)i−1 is the map

dij : TLn(a)⊗TLn−i−1(a) 1 −→ TLn(a)⊗TLn−i(a) 1

defined by

dij(x⊗ r) = (x · sn−i+j−1 · · · sn−i)⊗ λ−jr.
In the expression sn−i+j−1 · · · sn−i, the indices decrease from left to right. Thus,
for example, the product is sn−i+1sn−i when j = 2, it is sn−i when j = 1, and
it is trivial (the unit element) when j = 0 (the latter point can be regarded as
a convention if one wishes). Recall that λ is indeed invertible since λ = −1 or
v2 and v is a unit. For notational purposes we will write W (n) and only use a
subscript when identifying a particular degree.

Observe that dj is well-defined because the elements sn−i, . . . , sn−i+j−1 all com-
mute with all generators of TLn−i−1. We have depicted W (n) in Figure 7.

Lemma 4.2. The boundary maps of W (n) satisfy di−1 ◦ di = 0.

Proof. We will show that if i > 1 and 0 6 j < k 6 i, then the composite
maps di−1j dik, d

i−1
k−1d

i
j : W (n)i → W (n)i−2 coincide. (Thus the dij satisfy the semi-

simplicial identities, so W (n) is a semi-simplicial R-module.) The fact that d ◦ d
vanishes then follows. We have

di−1j dik(x⊗ r) = [x · (sn−i+k−1 · · · sn−i) · (sn−i+j · · · sn−i+1)]⊗ λ−(j+k)r
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TLn ⊗TL0 1

dn−1
0 −dn−1

1 +···+(−1)n−1dn−1
n−1

��

n− 1

TLn ⊗TL1 1

dn−2
0 −dn−2

1 +···+(−1)n−2dn−2
n−2 ��

n− 2

...

��
TLn ⊗TLn−3 1

d20−d21+d22
��

2

TLn ⊗TLn−2 1

d10−d11
��

1

TLn ⊗TLn−1 1

��

0

1 −1

Figure 7. The complex W (n).

and

di−1k−1d
i
j(x⊗ r) = [x · (sn−i+j−1 · · · sn−i) · (sn−i+k−1 · · · sn−i+1)]⊗ λ−(j+k−1)r.

Now we have:

(sn−i+k−1 · · · sn−i)·(sn−i+j · · · sn−i+1)

=(sn−i+j−1 · · · sn−i) · (sn−i+k−1 · · · sn−i)
=(sn−i+j−1 · · · sn−i) · (sn−i+k−1 · · · sn−i+1) · sn−i

Here, the first equality follows by taking the letters of the second parenthesis in
turn, and ‘passing through’ the first parenthesis, using a single braid relation, with
the result that the letter’s index is reduced by 1. Thus:

di−1j dik(x⊗ r) = [x · (sn−i+k−1 · · · sn−i) · (sn−i+j · · · sn−i+1)]⊗ λ−(j+k)r
= [x · (sn−i+j−1 · · · sn−i) · (sn−i+k−1 · · · sn−i+1) · sn−i]⊗ λ−(j+k)r
= [x · (sn−i+j−1 · · · sn−i) · (sn−i+k−1 · · · sn−i+1)]⊗ sn−i · (λ−(j+k)r)
= [x · (sn−i+j−1 · · · sn−i) · (sn−i+k−1 · · · sn−i+1)]⊗ λ−(j+k−1)r
= di−1k−1d

i
j(x⊗ r)
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where the third equality holds because this computation takes place in W (n)i−2 =
TLn ⊗TLn−i+1

1 and sn−i ∈ TLn−i+1. �

Remark 4.3. Let us explain the motivation for the definition of W (n). Let Sn de-
note the symmetric group on n letters. The complex of injective words is the chain
complex C(n) of Sn-modules, concentrated in degrees −1 to (n − 1), that in de-
gree i is the free R-module with basis given by tuples (x0, . . . , xi) where x0, . . . , xi ∈
{1, . . . , n} and no letter appears more than once. We allow the empty word (),
which lies in degree −1. The differential of C(n) sends a word (x0, . . . , xi) to the al-

ternating sum
∑i

j=0(−1)j(x0, . . . , x̂j, . . . , xi). A theorem of Farmer [Far79] shows

that the homology of C(n) vanishes in degrees i 6 (n − 2), and the same result
has been proved since then by many authors [Maa79, BW83, Ker05, RW13]. The
complex of injective words has been used by several authors to prove homological
stability for the symmetric groups [Maa79, Ker05, RW13].

For this paragraph only, let us abuse our established notation and denote by
s1, . . . , sn−1 ∈ Sn the elements defined by si = (i i + 1), the transposition of i
with i+1. Then these elements satisfy the braid relations, i.e. the second and third
identities of Definition 2.21. The complex of injective words C(n) can be rewritten
in terms of the group ring RSn and the elements si. Indeed, it is shown in [Hep20]
that C(n)i ∼= RSn⊗RSn−i−1

1, where 1 is the trivial module of RSn−i−1, and that
under this isomorphism the differential di : C(n)i → C(n)i−1 becomes the map

di : RSn ⊗RSn−i−1
1 −→ RSn ⊗RSn−i

1

defined by di(x ⊗ 1) =
∑i

j=0(−1)jx · (sn−i+j−1 · · · sn−i) ⊗ 1. (There are no con-

stants λ in this expression). Comparing this description of C(n) with our definition
of W (n), we see that our complex of planar injective words is precisely analogous
to the original complex of injective words, after systematically replacing the group
algebras of symmetric groups with the Temperley-Lieb algebras. The lack of con-
stants in the differential for C(n) is explained by the fact that the effect of si on 1

is multiplication by λ in the Temperley-Lieb setting, and multiplication by 1 in
the symmetric group setting.

Since we regard the Temperley-Lieb algebra as the planar analogue of the sym-
metric group, we chose the name planar injective words for our complex W (n).
This seemed the least discordant way of giving our complex an appropriate name.
See the next remark for a means of picturing the complex.

Remark 4.4. Let us describe a method for visualising W (n). Recall from the
diagrammatic description of TLn(a)⊗TLm(a) 1 when m 6 n given in Remark 2.11
that elements of W (n)i can be regarded as diagrams where the first n−i−1 dots on
the right are encapsulated within a black box, and if any cups can be absorbed into
the black box, then the diagram is identified with 0. The differential di : W (n)i →
W (n)i−1 is then given by pasting special elements onto the right of a diagram,
followed by taking their signed and weighted sum. These special elements each
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enlarge the black box by an extra strand, and plumb one of the free strands into
the new space in the black box: Here is an example for n = 4 and i = 2.

d2 : 7→ −λ−1 +λ−2

The resulting diagrams can be simplified using the smoothing rules for diagrams
with crossings described in Remark 2.22. We leave it to the reader to make this
description as precise as they wish, and note here that this is where the notion of
braiding, so often seen in homological stability arguments, fits into our set up.

Remark 4.5. Readers who are familiar with the theory will recognise that W (n)
is the chain complex associated to an augmented semi-simplicial TLn(a)-module.

The main result about the complex of planar injective words is the following,
which we recall from the introduction. It is analogous to the homological vanishing
property of the complex of injective words first proved by Farmer [Far79].

Theorem E. The homology of W (n) vanishes in degrees d 6 (n− 2).

The proof of Theorem E is the most technical part of this work, and will be
given in Section 8.

The complex of injective words on n letters has rich combinatorial features: its
Euler characteristic is the number of derangements of {1, . . . , n}; when one works
over C, its top homology has a description as a virtual representation that cat-
egorifies a well-known alternating sum formula for the number of derangements;
and again when one works over C, its top homology has a compact description
in terms of Young diagrams and counts of standard Young tableaux. In the as-
sociated paper [BH21] we establish analogues of these for the complex of planar
injective words. In particular we show that when the ring R is Noetherian the
rank of Hn−1(W (n)) is the n-th Fine number [DS01]. (The rank of the Temperley-
Lieb algebra is the n-th Catalan number, which is the number of Dyck paths of
length 2n. The n-th Fine number is the number of Dyck paths of length 2n whose
first peak occurs at an even height, and as we explain in [BH21], it is an analogue
of the number of derangements.) We also discover a new feature of the complex:
the differentials have an alternate expression in terms not of the si but of the Ui.
This expression demonstrates a connection with the Jacobsthal numbers, and we
will briefly explain the result for the top differential below. The top homology of
the Tits building is known as the Steinberg module. This inspires the name in the
following definition.

Definition 4.6. We define the n-th Fineberg module to be the TLn(a)-module
Fn(a) = Hn−1(W (n)). We often suppress the a and simply write Fn.

The Fineberg module is an important ingredient in the full statement of our
stability result, Theorem 5.1. In order to detect the non-zero homology group
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appearing in Theorem C we need to study it in more detail using the connection
with Jacobsthal numbers from [BH21].

The n-th Jacobsthal number Jn [OEIS] is (among other things) the number of
sequences n > a1 > a2 > · · · > ar > 0 whose initial term has the opposite parity
to n. Some examples, when n = 4, are 3, 1, 3 > 2, 3 > 1 and 3 > 2 > 1. (We
allow the empty sequence, and say that by convention its initial term is a1 = 0
and r = 0. Of course this only occurs when n is odd.) Another viewpoint of Jn in
terms of compositions of n is given in [BH21].

Definition 4.7. Let a = v+v−1 where v ∈ R× is a unit. We define the Jacobsthal
element in TLn(a) as follows:

Jn = (−1)n−1
∑

n>a1>···>ar>0
n−a1 odd

(µ
λ

)r
Ua1 · · ·Uar

Recall we allow the empty sequence (a1 = 0 and r = 0) when n is odd. This
corresponds to a constant summand 1 in Jn for odd n. Note that the number of
irreducible terms in Jn is Jn.

Example 4.8. In the cases n = 1, 2, 3, 4, and choosing θ = θ1 so that (λ, µ) =
(−1, v), we have:

J1 = 1

J2 = vU1

J3 = v2U2U1 − vU2 + 1

J4 = v3U3U2U1 − v2U3U2 − v2U3U1 + vU3 + vU1

Spencer has computed the Jacobsthal elements Jn up to n = 9, these can be
viewed at [Spe22].

Since Fn is the homology of W (n) in the top degree, it is simply the kernel of
the top differential dn−1 : W (n)n−1 → W (n)n−2. There are identifications

W (n)n−1 = TLn(a)⊗TL0(a)1
∼= TLn(a) and W (n)n−2 ∼= TLn(a)⊗TL1(a)1

∼= TLn(a).

The following is shown in Theorem D of [BH21]:

Proposition 4.9. Under the above identifications, the top differential of W (n) is
right-multiplication by Jn. In particular, there is an exact sequence

0 −→ Fn(a) −→ TLn(a)
−·Jn−−−→ TLn(a).

Remark 4.10. Note that Definition 4.7 gives a different value for the element Jn
than the one that appears in Definition 8.1 and Theorem D of [BH21]. This is
because the proof of Theorem D of [BH21] contains a sign error: it assumes that
si = (λ−µUi) rather than si = (λ+µUi) as it should have done. This error is fixed
by replacing µ with −µ in the formula in Definition 8.1 of [BH21]. It is possible
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to check Example 4.8 by hand to confirm that the signs in the present formula for
Jn are the correct ones.

The Fineberg module Fn appears to be a new and interesting representation,
and looks likely to be highly nontrivial for each choice of n. Let us illustrate this
by computing F2, F3 and F4. We will continue with the choice θ = θ1 so that
(λ, µ) = (−1, v).

Our description will be phrased in terms of the cell modules of TLn, which we
describe briefly. A half-diagram (or link state in the language of [RSA14]) consists
of a vertical line in the plane decorated with dots labelled 1, . . . , n from bottom to
top, together with a collection of arcs in the plane, each of which either connects
two dots, or is connected to a dot at one end, in such a way that each dot lies on
precisely one arc. The arcs must lie to the right of the vertical line, they must be
disjoint, and the half-diagrams are taken up to isotopy. Thus the half-diagrams
on 4 dots are as follows.

The cell module S(n,m) is the TLn-module with R-basis consisting of the half-
diagrams on n dots in which m arcs have free ends. The TLn-module structure on
S(n,m) is obtained by pasting planar diagrams onto the left of half-diagrams and
simplifying the result exactly as with composition in TLn, with the extra condition
that if pasting produces an arc with two free ends, then the resulting diagram is
set to 0. In S(4, 2), for example, we have:

U1 · = a · U2 · = U3 · = 0

(The reader is reminded that we label the dots from bottom to top.) Observe that
S(n, n) = 1 is the trivial module for each n, and that S(n,m) is nonzero only
when n−m is even.

Example 4.11 (The Fineberg module F2). The module F2 is the kernel of the
map TL2 → TL2, x 7→ x · J2. Now J2 = vU1 as in Example 4.8, so that F2 is the
R-module of rank 1 spanned by the element a − U1. This is a copy of the trivial
module 1 = S(2, 2).

Example 4.12 (The Fineberg module F3). The module F3 is the kernel of the
map TL3 → TL3, x 7→ x · J3, where J3 = v2U2U1 − vU2 + 1 as in Example 4.8.
Thus F3 is the R-module of rank 2 with basis elements

α = U1U2 − vU1,

β = U2 − vU2U1.
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One can now check that there is an isomorphism of TL3-modules F3
∼= S(3, 1)

given by:

F3

∼=−−→ S(3, 1) α 7−→ β 7−→

Example 4.13 (The Fineberg module F4). The module F4 is the kernel of the
map TL4 → TL4, x 7→ x ·J4, where J4 = v3U3U2U1−v2U3U2−v2U3U1+vU3+vU1

as in Example 4.8. It is now possible to check (at length) that F4 is a free R-module
of rank 6 with the following basis:

A = U3U1 − aU3U1U2

B = U2U3U1 − aU2U3U1U2

X = U1U2U3 − U3U1U2 − aU1U2 + U1

Y = U2U3 − U2U3U1U2 − aU2 + U2U1

Z = U3U2U1 − U3U1U2 − aU3U2 + U3

P = U3U1U2 − U1 − U3 + a.

If we now define

M0 = span(A,B), M1 = span(A,B,X, Y, Z), M2 = span(A,B,X, Y, Z, P )

so that M0 ⊆ M1 ⊆ M2 = F4, then one can check directly (by computing the
effect of multiplying on the left by U1, U2, U2) that M0 and M1 are submodules of
F4, and moreover, that we have isomorphisms:

M0

∼=−−→ S(4, 0), A 7−→ B 7−→

M1/M0

∼=−−→ S(4, 2), X 7−→ Y 7−→ Z 7−→

M2/M1

∼=−−→ 1, P 7−→ 1

Thus F4 has a filtration in which each of the three cell modules appears as precisely
one of the filtration quotients. We emphasise that this result holds with no further
assumptions on the ground ring R or on the parameter v.

5. Homological stability and stable homology

The aim of this section is to prove the following result. Theorem B is an imme-
diate consequence, and Theorem C will be proved in the next section as a corollary
of it.
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Theorem 5.1. Let R be a commutative ring, let v ∈ R be a unit, and let a =
v + v−1. Then for n odd we have:

Tor
TLn(a)
i (1,1) ∼=


R i = 0

0 1 6 i 6 (n− 1)

Tor
TLn(a)
i−n (1,Fn(a)) i > n

and for n even we have

Tor
TLn(a)
i (1,1) ∼=


R i = 0

0 1 6 i 6 (n− 2)

Tor
TLn(a)
i−n (1,Fn(a)) i > (n+ 1)

for i 6= n− 1, n, while in degrees (n− 1) and n there is an exact sequence

0→ TorTLn(a)
n (1,1)→ 1⊗TLn(a) Fn(a)

Qn−→ 1→ Tor
TLn(a)
n−1 (1,1)→ 0. (1)

Analogous results hold for the Ext-groups. For n odd we have:

ExtiTLn(a)(1,1) ∼=


R i = 0

0 1 6 i 6 (n− 1)

Exti−nTLn(a)
(Fn(a),1) i > n

and for n even we have

ExtiTLn(a)(1,1) ∼=


R i = 0

0 1 6 i 6 (n− 2)

Exti−nTLn(a)
(Fn(a),1) i > (n+ 1)

for i 6= n− 1, n, while in degrees (n− 1) and n there is an exact sequence

0→ Extn−1TLn(a)
(1,1)→ 1

Qn

−→ HomTLn(a)(Fn(a),1)→ ExtnTLn(a)(1,1)→ 0. (2)

The central maps Qn and Qn of (1) and (2) respectively are described as follows.
Regard Fn(a) as a left-submodule of TLn(a) as in Proposition 4.9. Then the maps
are

Qn : 1⊗TLn(a) Fn(a) −→ 1, x⊗ f 7−→ x · f
and

Qn : 1 −→ HomTLn(a)(Fn(a),1), x 7−→ (f 7→ f · x)

where x · f and f · x denote the action of f ∈ Fn(a) ⊆ TLn(a) on the right and
left of 1, respectively.

In order to prove this theorem, we will use the complex of planar injective
words W (n) introduced in the previous section. Recall that the Fineberg mod-
ule Fn appearing in the statement is the top homology group Hn−1(W (n)).
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Lemma 5.2. The homology groups of both the complex 1 ⊗TLn(a) W (n) and the
complex HomTLn(a)(W (n),1) are concentrated in degree (n−1), where in both cases
they are given by 1 if n is even and 0 if n is odd.

Proof. We have W (n)i = TLn ⊗TLn−i−1
1, and the boundary map di : W (n)i →

W (n)i−1 is given by x⊗r 7→ x ·Di⊗r, where Di =
∑i

j=0(−1)jsn−i+j−1 · · · sn−iλ−j.
By regarding 1 as both a left and right TLn-module, we may regard 1⊗TLnW (n)i

as a left TLn-module. With this TLn-module structure, we obtain 1⊗TLnW (n)i =
1 ⊗TLn (TLn ⊗TLn−i−1

1) ∼= 1. Under these isomorphisms, the boundary map
originating in degree i becomes the action on 1 of the element Di. Similarly,
HomTLn(W (n)i,1) = HomTLn(TLn ⊗TLn−i−1

1,1) ∼= 1, and under these isomor-
phisms the boundary map originating in degree (i− 1) becomes the action of the
element Di on 1.

The action of sn−i+j−1 · · · sn−i on 1 is simply multiplication by λj, with one
factor of λ for each s term (recall si = µUi + λ). Thus the action of Di on 1 is

nothing other than multiplication by
∑i

j=0(−1)j, which is 0 for i odd and 1 for i
even.

So altogether 1⊗TLn W (n) and HomTLn(W (n),1) are isomorphic to complexes
with a copy of R in each degree i = −1, . . . , (n − 1) and with boundary maps
alternating between the identity map and 0. In 1 ⊗TLn W (n) the identity maps
originate in even degrees, and in HomTLn(W (n),1) they originate in odd degrees.
The claim now follows. �

Proof of Theorem 5.1. We begin with the Tor-case.
In degree d = 0 the theorem holds trivially. Recall that P∗ is a projective

resolution of 1 as a right TLn-module. We use the two homological spectral se-
quences {IEr} and {IIEr} associated to W (n) as described in Section 3.2.

Let us consider {IEr}. We have

IE2
i,j =

{
TorTLn

i (1,Fn) j = (n− 1)

0 j 6= (n− 1)

and consequently the spectral sequence converges to TorTLn
∗−n+1(1,Fn), for ∗ = i+j.

The same is therefore true of {IIEr}.
Let us write εn = Hn−1(1⊗TLn W (n)), so that by Lemma 5.2, εn is trivial for n

odd and 1 for n even. Since Fn consists of the cycles in W (n)n−1, the map

1⊗TLn Fn → 1⊗TLn W (n)n−1

again lands in the cycles, giving us a map

1⊗TLn Fn → Hn−1(1⊗TLn W (n)) = εn.

When n is even and εn is identified with 1 as in the lemma, then this map simply
becomes Qn as described in the statement of the theorem.
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j

i

0

−1 0

1

2

...
...

· · ·
· · ·

n
−
2

n

n
−
1

n−2

n−1

n

TorTLn
1 (1,1)

TorTLn
2 (1,1)

TorTLn
n−2 (1,1)

TorTLn
n−1 (1,1)

TorTLn
n (1,1)

1⊗TLnW (n)−1 1⊗TLnW (n)0 1⊗TLnW (n)n−2 1⊗TLnW (n)n−1 0

TorTLn
j (1,TLn ⊗TLn−i−1

1) = 0

Figure 8. The page IIE1. The only differentials that affect
the IIE2 page are shown on the j = 0 row.

We now know that {IIEr} converges to TorTLn
∗−n+1(1,Fn). Its E1-page IIE1

i,j =

TorTLn
j (1,W (n)i) is largely known to us. Indeed, when j = 0 the terms are

TorTLn
0 (1,W (n)i) = 1 ⊗TLn W (n)i, with d1-maps between them induced by the

boundary maps of W (n). In other words, the j = 0 part of IIE1
i,j is precisely the

complex 1⊗TLn W (n). When 0 6 i 6 (n− 1), the term W (n)i = TLn ⊗TLn−i−1
1

satisfies 0 6 (n− i− 1) < n, so that by Theorem F we have

IIE1
i,j = TorTLn

j (1,TLn ⊗TLn−i−1
1) = 0

for j > 0. When i = −1 we have W (n)−1 = 1 so that IIE1
−1,j = TorTLn

j (1,1)
for j > 0. This is depicted in Figure 8.

By the description in the previous paragraph, we can now identify IIE2
∗,∗. The

only possible differentials are in the j = 0 part, which is 1⊗TLn W (n), and whose
homology is εn concentrated in degree (n− 1). Thus IIE2

∗,∗ is zero except for the
following groups:

IIE2
i,j =

{
TorTLn

j (1,1) i = −1, j > 0

εn i = (n− 1), j = 0

as depicted in Figure 9.
From the E2-page onwards there is precisely one possible differential, namely

dn : En
n−1,0 → En

−1,n−1, which is a map dn : εn → TorTLn
n−1(1,1). It forms part of an
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0

−1 0

1

1

2

2

...
...

· · ·

· · ·

n
−
3

n
−
2

n

n
−
1

n−2

n−1

n

i+j=n−2

i+j=n−1

dn

TorTLn
1 (1,1)

TorTLn
2 (1,1)

εn

TorTLn
n−2 (1,1)

TorTLn
n−1 (1,1)

TorTLn
n (1,1)

0 0 0 0 0 0 0

0

Figure 9. The page IIE2. This page stays constant until IIEn

where the only possible further differential lies: this is shown in red.
The i+ j = n− 1 and i+ j = n− 2 diagonals are indicated in blue.

exact sequence

0→ IIE∞n−1,0 → εn
dn−→ TorTLn

n−1(1,1)→ IIE∞−1,n−1 → 0

In IIE∞∗,∗, each total degree has only one non-zero group, except (possibly) for

total degree (n − 1), where we have the two groups IIE∞−1,n and IIE∞n−1,0. The
relationship between the infinity-page of a spectral sequence and the sequence’s
target now give us a short exact sequence:

0→ IIE∞−1,n → TorTLn
0 (1,Fn)→ IIE∞n−1,0 → 0

The last two exact sequences combine to give us:

0→ IIE∞−1,n → TorTLn
0 (1,Fn)→ εn → TorTLn

n−1(1,1)→ IIE∞−1,n−1 → 0

The leftmost term is IIE∞−1,n = IIE2
−1,n = TorTLn

n (1,1). And IIE∞−1,n−1 is the only

group in total degree (n− 2), and therefore coincides with TorTLn

(n−2)−n+1(1,Fn) =

TorTLn
−1 (1,Fn) = 0. And TorTLn

0 (1,Fn) = 1 ⊗TLn Fn. So the last exact sequence
becomes:

0→ TorTLn
n (1,1)→ 1⊗TLn Fn → εn → TorTLn

n−1(1,1)→ 0

When n is even, we claim that the map 1 ⊗TLn Fn → εn in this sequence is Qn.
Let Fn[n−1] be the complex consisting of a copy of Fn concentrated in degree n−1.
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There is a natural inclusion of chain complexes Fn[n−1] ↪→ W (n), and this leads to
a map of double complexes and then of spectral sequences. The map 1⊗TLnFn →
εn can be identified using this map of spectral sequences.

It follows from the sequence that in the case n odd, when εn = 0, the final term
satisfies TorTLn

n−1(1,1) = 0, and the first two terms satisfy

TorTLn
n (1,1) ∼= 1⊗TLn Fn = TorTLn

0 (1,Fn)

as required.
The previous discussion determines what happens in total degrees (n − 1) and

(n − 2). In total degrees d other than (n − 1) and (n − 2), and when j > 0,
the only term on the E∞ page is IIE∞−1,d+1 = TorTLn

d+1 (1,1), which must therefore

equal TorTLn
d−n+1(1,Fn). Thus TorTLn

d (1,1) ∼= TorTLn
d−n(1,Fn) for d 6= n, n− 1. This

completes the proof.
For the Ext-case we use the two cohomological spectral sequences associated to

W (n) as in Section 3.2, and then proceed dually to the above. We leave the details
to the reader. �

6. Sharpness

We recall the statement of Theorem C from the introduction.

Theorem C. Let n be even and suppose that a is not a unit. Then Tor
TLn(a)
n−1 (1,1)

is non-zero.

Let I ⊆ TLn denote the left-ideal generated by all diagrams which have a cup
on the right in positions other than 1, together with all multiples of a. Thus

I = (TLn · a) + (TLn · U2) + · · ·+ (TLn · Un−1).

Lemma 6.1. Let n be even or odd, and let 1 6 p 6 n− 1. Then Up · Jn ∈ I.

Proof. Recall from Definition 4.7 that the monomials appearing in Jn are those
of the form Ui1 · · ·Uir where (n − 1) > i1 > i2 · · · > ir > 1 and i1 ≡ (n − 1)
mod 2, and that such a monomial appears in Jn with coefficient (−1)n−1(µ

λ
)r.

We write Jn = Kn + Ln where Kn is the part of Jn featuring monomials of the
form UiUi−1 · · ·U1 for i ≡ n − 1 mod 2 in the range 1 6 i 6 n − 1, and Ln is the
part of Jn featuring the remaining monomials.

If Ui1 · · ·Uir is a monomial appearing in Ln, then it must either end in Uir for n−
1 > ir > 1 or end in a monomial of the form Uij · Uij−1

· · ·U1 = (Uij−1
· · ·U1) · Uij

for some ij > ij−1 + 2, ij−1 > 1 and hence must lie in I. Thus Ln ∈ I, and to
prove the lemma it will be sufficient to show that Up ·Kn ∈ I.

Now observe that

Kn = (−1)n−1
∑

06i6(n−1)
i≡n−1 mod 2

(µ
λ

)i
· UiUi−1 · · ·U1.
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(In the case i = 0 the product Ui · · ·U1 is empty and therefore equal to 1. This
term only appears in Kn when n is odd.) Suppose that Ui · · ·U1 is a monomial
appearing in the above sum. Then:

Up · (Ui · · ·U1) =



(Up · · ·U1) · (Ui · · ·Up+2) p 6 i− 2

Ui−1 · · ·U1 p = i− 1

Ui · · ·U1 · a p = i

Ui+1 · · ·U1 p = i+ 1

(Ui · · ·U1) · Up p > i+ 2

Thus Up · (Ui · · ·U1) ∈ I except for the cases i = p − 1, i = p + 1. When
p ≡ (n − 1) mod 2 these exceptional cases never occur, since we have assumed
i ≡ (n − 1) mod 2, and so Up · Kn ∈ I as required. And when p ≡ n mod 2,
we can compute the contribution from the two exceptional cases to find that,
modulo I, Up · Jn is equal to

(−1)n−1
(µ
λ

)p−1
Up · (Up−1 · · ·U1) + (−1)n−1

(µ
λ

)p+1

Up · (Up+1 · · ·U1)

= (−1)n−1
(µ
λ

)p−1
· (Up · · ·U1) + (−1)n−1

(µ
λ

)p+1

· (Up · · ·U1)

= (−1)n−1
(µ
λ

)p [ (µ
λ

)−1
+
(µ
λ

)1 ]
· (Up · · ·U1) ∈ I.

Now from Definition 2.20 we have either (µ, λ) = (v,−1) or (µ, λ) = (−v, v2).
In both cases the square bracket above evaluates to −a (recall a = v + v−1).
Thus Up ·Kn is a multiple of a and therefore in I as required. �

Lemma 6.2. Let n be even. Let x ∈ Fn(a), so that x · Jn = 0. Then the constant
term of x is a multiple of a.

Proof. Let b be the constant term of x, so that x is equal to b plus a linear
combination of left-multiples of the elements U1, . . . , Un−1. Thus x · Jn is equal
to b · Jn plus a linear combination of left-multiples of U1 · Jn, . . . , Un−1 · Jn, all of
which lie in I by Lemma 6.1. Thus x · Jn = b · Jn modulo I.

As an R-module, the quotient TLn/I is isomorphic to the direct sum of copies
of R/aR, with one summand for each monomial whose Jones normal form ends
with U1. We have that

Jn = (−1)n−1
[ (µ

λ

)
U1 +

(µ
λ

)3
U3U2U1 + · · ·

]
in TLn/I

and it follows that

b · Jn = (−1)n−1
[
b
(µ
λ

)
U1 + b

(µ
λ

)3
U3U2U1 + · · ·

]
in TLn/I,

so b must vanish in R/aR. �
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Lemma 6.3. Let n be even. Then the image of the map

1⊗TLn(a) Fn(a)→ 1, 1⊗ x 7→ 1 · x,

is contained in the ideal generated by a.

Proof. Since the elements Up act on 1 as multiplication by 0, the map above simply
sends 1 ⊗ x to the constant term of x. But the previous lemma tells us that the
constant term of x is a multiple of a. �

Proof of Theorem C. Let n be even. From Theorem 5.1, we have the (fairly short)
exact sequence

0→ TorTLn
n (1,1)→ 1⊗TLn Fn → 1→ TorTLn

n−1(1,1)→ 0

and the image of 1⊗TLn Fn → 1 is contained in the ideal generated by a, and in
particular does not contain the element 1, so that TorTLn

n−1(1,1) 6= 0. �

7. The case of TL2(a)

In this section we briefly consider the case n = 2, and fully compute the Tor
and Ext groups. We do this first by a straightforward computation using an
explicit free resolution. Then, in order to illustrate the theory developed in the
paper, we re-prove the same result by explicitly computing the Fineberg module F2

and applying Theorem 5.1.

Proposition 7.1. The homology and cohomology of TL2(a) are as follows.

Tor
TL2(a)
i (1,1) =

 R, i = 0,
R/aR, i > 0, i odd,
Ra, i > 0, i even,

ExtiTL2(a)
(1,1) =

 R, i = 0,
Ra, i > 0, i odd,
R/aR, i > 0, i even,

where Ra denotes the kernel of the map R
a−→ R. This holds for any choice of

ground ring R and any choice of parameter a ∈ R.

Proof. We define a chain complex of left TL2-modules as follows. The degree
is indicated in the right-hand column. The boundary maps are given by right-
multiplication by the indicated element of TL2, except for the last, which is the
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map TL2 → 1, x 7→ x · 1.

...

(a−U1)

��
TL2

U1

��

3

TL2

(a−U1)
��

2

TL2

U1

��

1

TL2

��

0

1 −1

The composite of consecutive boundary maps is 0, due to the computation

U1 · (a− U1) = 0 = (a− U1) · U1,

and the fact that U1 acts by 0 on 1. Moreover, this complex is acyclic, as one sees
by considering the bases 1, U1 and 1, (a−U1) of TL2. Thus the non-negative part
of the complex above, which we denote by P∗, is a free resolution of the left TL2-
module 1. Thus TorTL2

∗ (1,1) and Ext∗TL2
(1,1) are the homology of 1⊗TL2 P∗ and

the cohomology of HomTL2(P∗,1) respectively. Using the isomorphisms 1 ⊗TL2

TL2
∼= 1, a ⊗ x 7→ a · x and HomTL2(TL2,1) ∼= 1, f 7→ f(1) in every degree, and

working out the induced boundary maps, we see that 1⊗TL2P∗ and HomTL2(P∗,1)
are isomorphic to the complexes depicted below.

...

a

��

...OO

a

...

R

0
��

ROO

0

3

R

a
��

ROO
a

2

R

0
��

ROO

0

1

R R 0
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The homology and cohomology of these complexes are easily computed, and give
the claim. �

Proposition 7.2. When n = 2 the Fineberg module satisfies F2(a) ∼= 1, and the
map 1⊗TL2(a) F2(a)→ ε2 ∼= 1 is multiplication by a.

Proof. We compute F2 explicitly in Example 4.11: F2
∼= 〈a − U1〉 ∼= 1. The

map 1⊗TL2 F2 → ε2 ∼= 1 is the composite map

1⊗TL2 F2 → 1⊗TL2 W (2)1 = 1⊗TL2 (TL2 ⊗TL0 1) ∼= 1.

Under the central equality the basis element a − U1 of F2 ⊂ W (2)1 gets mapped
to a − U1 = a in the tensor product. Therefore the composite map is given by
multiplication by a, as required. �

Corollary 7.3. Suppose that v ∈ R is a unit and that a = v + v−1. Then the

groups Tor
TL2(a)
i (1,1) and Ext

TL2(a)
i (1,1) are as described in Proposition 7.1.

Proof. In the light of Proposition 7.2, the exact sequence from Theorem 5.1

0→ TorTL2
2 (1,1)→ 1⊗TL2 F2 → 1→ TorTL2

1 (1,1)→ 0

now becomes

0→ TorTL2
2 (1,1)→ 1⊗TL2 1

a−→ 1→ TorTL2
1 (1,1)→ 0

from which one can compute TorTL2
2 (1,1) = Ra and TorTL2

1 (1,1) = R/aR. For
i > 3 we have the recursive formula

TorTL2
i (1,1) = TorTL2

i−2 (1,F2) ∼= TorTL2
i−2 (1,1)

which completes the proof. The Ext results similarly follow from Theorem 5.1. �

8. High-acyclicity

In this final section we prove high connectivity of W (n), Theorem E.

Theorem E. Hd(W (n)) vanishes in degrees d 6 (n− 2).

8.1. A filtration. In this subsection we introduce a filtration of W (n). We state
a theorem relating the filtration quotients to W (n− 1) (the proof of which is the
topic of the next 3 subsections) and therefore by induction prove Theorem E.

Definition 8.1 (The filtration). We define a filtration F of W (n),

F 0 ⊆ F 1 ⊆ · · · ⊆ F n = W (n)

as follows.

• F 0 is defined to be the span of the elements of two kinds. We call elements
of the first kind basic elements and these are of the form

x⊗ 1
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in degrees i such that −1 6 i 6 n−2, where x is represented by a monomial
in the sj not involving the letter s1. Elements of the second kind are those
of the form

x · (s1 · · · sn−i−1)⊗ 1

in degrees i such that 0 6 i 6 n − 1, where again x is represented by a
monomial not involving the letter s1.
• F k for k > 1 is defined to be the span of F k−1 together with terms of the

form
x · (s1 · · · sn−i−1+k)⊗ 1

in degrees i such that k 6 i 6 n − 1, where again x is represented by a
monomial not involving s1.

Remark 8.2. Note that in the description of F 0, it is possible for the prod-
uct s1 · · · sn−i−1 to be empty, i.e. the unit element, if the final index (n − i − 1)
is zero (i = n − 1). In contrast, in the description of F k for k > 1, the prod-
uct s1 · · · sn−i−1+k is never empty. This is one reason why it is important for us to
treat F 0 quite separately from the other F k, as is done in the remainder of this
paper.

In Theorem 8.7 we show that each F k is a subcomplex of W (n). The fact
that F n = W (n) will follow from Lemma 8.25.

Definition 8.3. Recall that the cone on a chain complex X (or, more precisely,
the cone on the identity map of X) is the chain complex CX defined by (CX)i =
Xi ⊕Xi−1, and with differential defined by

diCX(x, y) = (diX(x) + y,−di−1X (y)).

The suspension of a chain complex X is the complex ΣX defined by

(ΣX)i = Xi−1

and with the same differential as X. The truncation to degree p of a chain com-
plex X is the chain complex τpX defined by

(τpX)i =

{
Xi, i 6 p
0, i > p

and with the same differential as X (in the relevant degrees).

Remark 8.4. Note that our definition of cone and suspension do not seem to
match up very well. However, we have chosen our conventions in order to make
the proof of the next theorem as direct as possible, and we believe that our choices
are the best fit for this purpose.

Definition 8.5. Define the shift map σ to be the map

σ : TLn−1(a)→ TLn(a)

which sends each Ui to Ui+1 for 1 6 i 6 n− 2, and hence each si to si+1.
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Lemma 8.6. Each F k consists of TLn−1(a)-submodules of W (n), where TLn−1(a)
acts via the shift map σ.

Proof. Definition 8.1 defines each F k as the span of certain ‘base elements’ of the
form y⊗1 where y ∈ TLn is represented by a monomial in the sj subject to certain
restrictions. Multiplying any such y on the left by any sj for 1 < j 6 n − 1 does
not affect whether it meets these restrictions. Since sj = σ(sj−1) for 1 < j 6 n−1,
this shows that the generators of TLn−1 send the base elements of each F k to other
base elements of F k, and therefore F k itself is stable under the action of TLn−1. �

Here is the main result of this section.

Theorem 8.7. Each F k is a subcomplex of W (n). We identify

F 0 ∼= C(W (n− 1)).

And for k > 1, we have

F k/F k−1 ∼= τn−1Σ
k+1W (n− 1).

Corollary 8.8 (Theorem E). For each n > 0 the complex W (n) is (n−2)-acyclic,
or in other words, its homology vanishes up to and including degree (n− 2).

Proof. We prove this by induction on n > 0. One can verify the claim directly in
the case n = 0. Fix n > 1 and suppose that the theorem has been proved for the
previous case. Now W (n) has the filtration F 0 ⊆ F 1 ⊆ · · · ⊆ F n. We prove below
that F 0 and all filtration quotients F k/F k−1 are (n−2)-acyclic, and then it follows
(for example by using the short exact sequences 0→ F k−1 → F k → F k/F k−1 → 0,
or by using the spectral sequence of the filtration) that the same holds for W (n)
itself.

Observe that F 0 ∼= C(W (n− 1)), being isomorphic to a cone, is acyclic. Next,
for k > 1 we have F k/F k−1 ∼= τn−1Σ

k+1W (n−1). The induction hypothesis states
that W (n−1) is (n−3)-acyclic, so that Σk+1W (n−1) is (n−2+k)-acyclic and in
particular (n− 2)-acyclic, so that τn−1Σ

k+1W (n− 1) is also (n− 2)-acyclic. This
completes the proof. �

Remark 8.9 (Intuitions and motivations). The complex of planar injective words
W (n) is an analogue of the complex of injective words C(n), and Theorem E is the
analogue for W (n) of the well-known vanishing result for the homology of C(n);
see Remark 4.3.

Our starting point in proving Theorem E was Kerz’s proof [Ker05] of the van-
ishing theorem for the homology of C(n). Kerz identifies within C(n) a subcomplex
F 0 that is isomorphic to the cone C(C(n − 1)). This is then extended to a filtra-
tion F 0 ⊆ F 1 ⊆ · · · ⊆ F n−1 ⊆ C(n) in which each subsequent filtration quotient
F k/F k−1 is isomorphic to a direct sum of copies of the suspension Σk+1C(n−k−1).
(In fact Kerz does not explicitly mention filtrations, but this is one way of framing
his proof.) This permits an inductive proof of high-acyclicity as in Corollary 8.8.
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Our proof of Theorem E began as an attempt to mimic Kerz’s approach. There
is an evident way to embed W (n − 1) into W (n) — this is the span of the basic
elements of F 0 — and this can be extended to an embedding of the cone C(W (n−
1)) into W (n) by considering the elements of the second kind in F 0. The remainder
of our proof is the result of attempting to extend this embedding to a complete
filtration of W (n). At this stage the parallels with [Ker05] begin to fail, but the
Jones normal form gives us an extra tool. Using this we characterise the basis
elements of W (n) that are not in the image of the cone C(W (n − 1)), and this
characterisation gives a surprising separation into subcomplexes which ‘look like’
suspended and truncated copies of W (n − 1) — we build our filtration such that
these are our filtration quotients F k/F k−1.

The final three subsections prove Theorem 8.7, by first setting up the required
chain map for F 0, then for F k and then in the final section proving these chain
maps are isomorphisms.

8.2. Proofs for F 0. In this subsection we prove F 0 is a subcomplex of W (n). We
define a map from the cone C(W (n − 1)) to F 0 and prove this is a well defined
chain map.

Lemma 8.10. F 0 is a subcomplex of W (n).

Proof. To prove the claim, we must take a generator of F 0 in degree i, and show
that under the boundary map di : W (n)i → W (n)i−1 this generator is mapped
into F 0. Since di is the alternating sum di0 − di1 + · · · + (−1)idii, it will suffice to
fix j in the range 0 6 j 6 i, and show that dij sends our generator into F 0. Recall

from Definition 4.1 the definition of dij:

dij(y ⊗ r) = y · (sn−i+j−1 · · · sn−i)⊗ λ−jr.

Generators of F 0 come in two kinds. The first kind are the basic elements x⊗ 1
in degrees −1 6 i 6 n − 2 where x is represented by a monomial not featuring
the letter s1. The map dij only introduces a letter s1 in the case i = n− 1, which

is excluded here, so that dij(x⊗ 1) is again a basic element and therefore also lies

in F 0.
The second kind of generators of F 0 are elements

x · (s1 · · · sn−i−1)⊗ 1

in degrees 0 6 i 6 n− 1, where x is represented by a monomial not involving s1.
In the case j = 0, we have

di0(x · (s1 · · · sn−i−1)⊗ 1) = x · (s1 · · · sn−i−1)⊗ 1

but this lies in W (n)i−1 = TLn⊗TLn−i
1, hence is equal to x⊗ λn−i−1, and since x

is represented by a monomial not involving s1, this does indeed lie in F 0. (This
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argument includes the special case i = n − 1, where the product s1 · · · sn−i−1 is
empty, but this clearly creates no issues.) In the case j > 1, we have

dij(x · (s1 · · · sn−i−1)⊗ 1) = x · (s1 · · · sn−i−1) · (sn−i+j−1 · · · sn−i)⊗ λ−j

= x · (s1 · · · sn−i−1) · (sn−i+j−1 · · · sn−i+1) · sn−i ⊗ λ−j

= x · (sn−i+j−1 · · · sn−i+1) · (s1 · · · sn−i−1) · sn−i ⊗ λ−j

= x · (sn−i+j−1 · · · sn−i+1) · (s1 · · · sn−i)⊗ λ−j

= (x · (sn−i+j−1 · · · sn−i+1)) · (s1 · · · sn−(i−1)−1)⊗ λ−j

which lies in F 0 since x · (sn−i+j−1 · · · sn−i+1), does not involve the letter s1 and so
dij(x · (s1 · · · sn−i−1)⊗ 1) is a scalar multiple of a generator of F 0, and thus in F 0,
as required. �

Definition 8.11. Define a map

Φ0 : C(W (n− 1)) −→ F 0

as follows. Recall that

C(W (n− 1))i = W (n− 1)i ⊕W (n− 1)i−1

=
(
TLn−1(a)⊗TLn−i−2(a) 1

)
⊕
(
TLn−1(a)⊗TLn−i−1(a) 1

)
and that

F 0
i ⊆ W (n)i = TLn(a)⊗TLn−i−1(a) 1.

We define Φ0 in degree i by the rule

Φ0
i (x⊗ α, y ⊗ β) = ξi(x⊗ α) + ηi(y ⊗ β)

where

ξi : W (n− 1)i → W (n)i

x⊗ α 7→ σ(x)⊗ λn−1α
and

ηi : W (n− 1)i−1 → W (n)i

y ⊗ β 7→ σ(y) · (s1 · · · sn−i−1)⊗ λiβ.
It is simple to check that the image of both maps lies in F 0

i .

Lemma 8.12. The maps ξi and ηi are well defined.

Proof. In the case of ξi this is simple to verify, as the map σ : TLn−1 → TLn is in
fact a map of right-modules with respect to the map of algebras σ : TLn−i−2 →
TLn−i−1.

In the case of ηi, the definition of ηi(y ⊗ β) as presented depends on y and β
themselves, and we must check that it depends only on y⊗β. Thus we must show
that

ηi(ysj ⊗ β) = ηi(y ⊗ λβ)
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whenever 1 6 j 6 n− i− 2. And indeed

ηi(ysj ⊗ β) = σ(ysj) · (s1 · · · sn−i−1)⊗ λiβ
= σ(y) · sj+1 · (s1 · · · sn−i−1)⊗ λiβ
= σ(y) · (s1 · · · sn−i−1) · sj ⊗ λiβ
= σ(y) · (s1 · · · sn−i−1)⊗ λi+1β

= ηi(y ⊗ λβ)

where the third equality holds since 2 6 j + 1 6 n − i − 1 (a simple way to see
this is to draw the si as braids), and the fourth holds since j 6 n− i− 2 and the
tensor product is over TLn−i−1. �

Lemma 8.13. The ξi and ηi interact with the boundary maps of W (n) in the
following way:

(1) dij ◦ ξi = ξi−1 ◦ dij for i in the range −1 6 i 6 n − 2 and j in the range
0 6 j 6 i.

(2) di0 ◦ ηi = ξi−1 for i in the range 0 6 i 6 n− 1.
(3) dij+1 ◦ ηi = ηi−1 ◦ di−1j for i in the range 0 6 i 6 n − 1 and j in the

range 0 6 j 6 i− 1.

Proof. For the first point, we have:

dij(ξi(x⊗ α)) = dij(σ(x)⊗ λn−1α)

= σ(x) · (sn−i+j−1 · · · sn−i)⊗ λ−jλn−1α
= σ(x · (sn−i+j−2 · · · sn−i−1))⊗ λ−jλn−1α
= ξi−1(x · (sn−i+j−2 · · · sn−i−1)⊗ λ−jα)

= ξi−1(x · (s(n−1)−i+j−1 · · · s(n−1)−i)⊗ λ−jα)

= ξi−1(d
i
j(x⊗ α)).

For the second point, we have:

di0(ηi(y ⊗ β)) = di0(σ(y) · (s1 · · · sn−i−1)⊗ λiβ)

= σ(y) · (s1 · · · sn−i−1)⊗ λiβ
= σ(y)⊗ λn−i−1λiβ
= σ(y)⊗ λn−1β
= ξi−1(y ⊗ β),
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where the third equality holds because the terms lie in W (n)i−1 = TLn ⊗TLn−i
1.

And for the third point we have:

dij+1ηi(y ⊗ β) = dij+1(σ(y) · (s1 · · · sn−i−1)⊗ λiβ)

= σ(y) · (s1 · · · sn−i−1) · (sn−i+(j+1)−1 · · · sn−i)⊗ λ−j−1λiβ
= σ(y) · (s1 · · · sn−i−1) · (sn−i+j · · · sn−i+1) · sn−i ⊗ λi−j−1β
= σ(y) · (sn−i+j · · · sn−i+1) · (s1 · · · sn−i)⊗ λi−j−1β
= σ(y · (sn−i+j−1 · · · sn−i)) · (s1 · · · sn−(i−1)−1)⊗ λi−1λ−jβ
= ηi−1(y · (sn−i+j−1 · · · sn−i)⊗ λ−jβ)

= ηi−1(y · (s(n−1)−(i−1)+j−1 · · · s(n−1)−(i−1))⊗ λ−jβ)

= ηi−1(d
i−1
j (y ⊗ β))

where for the final equality we recall that the source of ηi−1 is W (n− 1)i−2. �

Lemma 8.14. Φ0 is a chain map.

Proof. Referring to the definition of the differential on C(W (n − 1)) (Defini-
tion 8.3), we see that in order to check that di ◦Φ0

i = Φ0
i−1 ◦di, it is enough to show

that di◦ξi(x⊗α) = ξi−1(d
i(x⊗α)) and di◦ηi(y⊗β) = ξi−1(y⊗β)−ηi−1(di−1(y⊗β)).

Using the previous lemma, for the first we have

di ◦ ξi(x⊗ α) =
i∑

j=0

(−1)jdij(ξi(x⊗ α))

=
i∑

j=0

(−1)jξi−1(d
i
j(x⊗ α))

= ξi−1

(
i∑

j=0

(−1)jdij(x⊗ α)

)
= ξi−1(d

i(x⊗ α)).
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And for the second we have

di ◦ ηi(y ⊗ β) =
i∑

j=0

(−1)jdij(ηi(y ⊗ β))

= di0(ηi(y ⊗ β))−
i−1∑
j=0

(−1)jdij+1ηi(y ⊗ β)

= ξi−1(y ⊗ β)−
i−1∑
j=0

(−1)jηi−1d
i−1
j (y ⊗ β)

= ξi−1(y ⊗ β)− ηi−1

(
i−1∑
j=0

(−1)jdi−1j (y ⊗ β)

)
= ξi−1(y ⊗ β)− ηi−1(di−1(y ⊗ β)). �

8.3. Proofs for F k, k > 1. In this subsection we prove, for k > 1, that F k is a
subcomplex of W (n). We define a map from τn−1Σ

k+1W (n − 1) to F k/F k−1 and
prove this is a well defined chain map. We start off with some elementary lemmas
involving the sj, which we require for later proofs.

Lemma 8.15. Let m > 1 and p 6 m. Then

s1 · · · sm · · · sp = (sm · · · sp+1) · (s1 · · · sm).

In the case m = p the product sm · · · sp+1 is empty and therefore equal to 1.

Lemma 8.16. Let p > 1, q > r > 1. Then the product (s1 · · · sp) · (sq · · · sr) can
be described as follows.

(1) When r − 1 6 p 6 q − 1,

(s1 · · · sp) · (sq · · · sr) = (sq · · · sr+1) · (s1 · · · sp+1).

(2) When p = q, (s1 · · · sp) · (sq · · · sr) is a linear combination of terms of
the form (st · · · sr+1) · (s1 · · · st) for p > t > r + 1, as well as s1 · · · sr
and s1 · · · sr−1.

(3) When p > q + 1,

(s1 · · · sp) · (sq · · · sr) = (sq+1 · · · sr+1) · (s1 · · · sp).

Proof. When r − 1 6 p 6 q − 1,

(s1 · · · sp) · (sq · · · sr) = (s1 · · · sp) · (sq · · · sp+2) · (sp+1 · · · sr)
= (sq · · · sp+2) · (s1 · · · sp) · (sp+1 · · · sr)
= (sq · · · sp+2) · (s1 · · · sp+1 · · · sr)
= (sq · · · sp+2) · (sp+1 · · · sr+1) · (s1 · · · sp+1)

= (sq · · · sr+1) · (s1 · · · sp+1),
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where we used Lemma 8.15 to obtain the fourth equality.
When p = q, we claim that

(s1 · · · sp) · (sq · · · sr) = (s1 · · · sp) · (sp · · · sr)
is a linear combination of terms of the form (st · · · sr+1)·(s1 · · · st) for p > t > r+1,
as well as s1 · · · sr and s1 · · · sr−1. We will prove this claim by induction on the
difference p− r. When p− r = 0, we have

(s1 · · · sp) · (sp · · · sr) = s1 · · · sp · sp.
Now since s2p is a linear combination of sp and 1, this is a linear combination of
s1 · · · sp = s1 · · · sr and s1 · · · sp−1 = s1 · · · sr−1 as required. Now let p− r > 1, and
assume that the claim holds for all smaller values. Then

(s1 · · · sp) · (sp · · · sr) = (s1 · · · sp−1) · s2p · (sp−1 · · · sr)
is a linear combination of

(s1 · · · sp−1) · sp · (sp−1 · · · sr) = s1 · · · sp · · · sr
= (sp · · · sr+1) · (s1 · · · sp)

(where we used Lemma 8.15) and

(s1 · · · sp−1) · (sp−1 · · · sr).
The former is (st · · · sr+1) · (s1 · · · st) in the case t = p, while the induction hy-
pothesis tells us that the latter is a linear combination of (st · · · sr+1) · (s1 · · · st)
for p− 1 > t > r + 1, as well as s1 · · · sr and s1 · · · sr−1. This completes the proof
of the claim.

When p > q + 1,

(s1 · · · sp) · (sq · · · sr) = (s1 · · · sq+1) · (sq+2 · · · sp) · (sq · · · sr)
= (s1 · · · sq+1) · (sq · · · sr) · (sq+2 · · · sp)
= (s1 · · · sq+1 · · · sr) · (sq+2 · · · sp)
= (sq+1 · · · sr+1) · (s1 · · · sq+1) · (sq+2 · · · sp)
= (sq+1 · · · sr+1) · (s1 · · · sp)

(where we again used Lemma 8.15 to obtain the fourth equality) as required. �

Lemma 8.17. For k > 1, F k is a subcomplex of W (n).

Proof. We fix k > 1 and take a generator of F k/F k−1 in degree i, where k 6 i 6
n−1, and show that the boundary map di : W (n)i → W (n)i−1 sends our generator
into F k. Since d is the alternating sum di0−di1 + · · ·+(−1)idii, it will suffice to fix j
in the range 0 6 j 6 i, and show that dij sends our generator into F k. Recall from

Definition 8.1 that our generator of F k/F k−1 in degree i is x · (s1 · · · sn−i−1+k)⊗ 1,
where x does not involve the letter s1. Note that

(n− i− 1 + k) = (n− 1)− i+ k > (n− 1)− (n− 1) + 1 = 1,
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so that the product (s1 · · · sn−i−1+k) is not empty. We have

dij(x · (s1 · · · sn−i−1+k)⊗ 1) = x · (s1 · · · sn−i−1+k) · (sn−i−1+j · · · sn−i)⊗ λ−j,

where the factor (sn−i−1+j · · · sn−i) can be empty, in the case j = 0.

• First we consider the case j = 0. We find that

di0(x · (s1 · · · sn−i−1+k)⊗ 1) = x · (s1 · · · sn−i−1+k)⊗ 1

= x · (s1 · · · sn−(i−1)−1+(k−1))⊗ 1

lies in F k−1, and therefore in F k as required.
• Now we consider the case 1 6 j 6 (k − 1). Then (n − i − 1 + k) >

(n− i− 1 + j) + 1, so that the third item of Lemma 8.16 applies and shows
that

dij(x·(s1 · · · sn−i−1+k)⊗ 1)

= x · (s1 · · · sn−i−1+k) · (sn−i−1+j · · · sn−i)⊗ λ−j

= x · (sn−i+j · · · sn−i+1) · (s1 · · · sn−i−1+k)⊗ λ−j

= x · (sn−i+j · · · sn−i+1) · (s1 · · · sn−(i−1)−1+(k−1))⊗ λ−j

Since n− i+ 1 > n− (n− 1) + 1 = 2, the word (sn−i+j · · · sn−i+1) does not
involve s1, and consequently the element above lies in F k−1, and therefore
in F k.
• Now we consider the case j = k. Then (n − i − 1 + k) = (n − i − 1 + j)

and so the second item of Lemma 8.16 applies and shows that

dik(x · (s1 · · · sn−i−1+k)⊗ 1) =

x · (s1 · · · sn−i−1+k) · (sn−i−1+k · · · sn−i)⊗ λ−k

is a linear combination of terms

x · (st · · · sn−i+1) · (s1 · · · st)⊗ λ−k

for t in the range

(n− i+ 1) 6 t 6 (n− i− 1 + k) = (n− (i− 1)− 1 + (k − 1))

together with

x · (s1 · · · sn−(i−1)−1)⊗ λ−k

and

x · (s1 · · · sn−(i−1)−2)⊗ λ−k = x⊗ λ−k.
Now (st · · · sn−i+1) does not involve s1, so the first of these terms lies
in F k−1, while the second and third lie in F 0. So altogether we have the
required result.
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• Now we consider the case k + 1 6 j. Here we have

(n− i− 1) 6 (n− i− 1 + k) + 1 6 (n− i− 1 + j),

so that the first item of Lemma 8.16 applies and shows that

dij(x · (s1 · · · sn−i−1+k)⊗ 1) = x · (s1 · · · sn−i−1+k) · (sn−i−1+j · · · sn−i)⊗ λ−j

= x · (sn−i−1+j · · · sn−i+1) · (s1 · · · sn−i−1+k+1)⊗ λ−j

= x · (sn−i−1+j · · · sn−i+1) · (s1 · · · sn−(i−1)−1+k)⊗ λ−j.

Since (sn−i−1+j · · · sn−i+1) does not involve s1, the element above lies in F k

as required. �

Definition 8.18. Define a map

Ψk : τn−1Σ
k+1W (n− 1) −→ F k/F k−1

as follows. Note that for i in the range k 6 i 6 (n− 1),

[τn−1Σ
k+1W (n− 1)]i = W (n− 1)i−k−1

= TLn−1(a)⊗TL(n−1)−(i−k−1)−1(a) 1

= TLn−1(a)⊗TLn−i−1+k(a) 1,

while (F k/F k−1)i is a quotient of TLn(a) ⊗TLn−i−1(a) 1. Define the degree i part
of Ψ to be the map

Ψk
i : TLn−1(a)⊗TLn−i−1+k(a) 1 −→ (F k/F k−1)i

given by

Ψk
i : x⊗ α 7−→ (−1)−i(k+1)σ(x) · (s1 · · · sn−i−1+k)⊗ λiα.

For later convenience, we will denote by ψki the map

ψki : x⊗ α 7−→ σ(x) · (s1 · · · sn−i−1+k)⊗ λiα,
so that Ψk

i = (−1)−i(k+1)ψki .

Lemma 8.19. The map ψki is well defined (and the same therefore holds for Ψk
i ).

Proof. As presented above, the value of ψki (x ⊗ α) depends on the choices of x
and α, rather than on x ⊗ α. So to check that ψki is well-defined, we must check
that ψki (xsp ⊗ α) = ψki (x ⊗ λα) whenever p 6 (n − i − 1 + k) − 1. Let us
write q = (n − i − 1 + k), so that p 6 q − 1. (In particular we are assuming
that q > 2.) Now

ψki (xsp ⊗ α) = σ(xsp) · (s1 · · · sq)⊗ λiα
= σ(x) · sp+1 · (s1 · · · sq)⊗ λiα
= σ(x) · sp+1 · (s1 · · · sp−1) · (spsp+1) · (sp+2 · · · sq)⊗ λiα
= σ(x) · (s1 · · · sp−1) · (sp+1spsp+1) · (sp+2 · · · sq)⊗ λiα.



THE HOMOLOGY OF THE TEMPERLEY-LIEB ALGEBRAS 53

Recall from Definition 2.21 that

sp+1spsp+1 = λspsp+1 + λsp+1sp − λ2sp − λ2sp+1 + λ3.

Now

(s1 · · · sp−1) · (spsp+1) · (sp+2 · · · sq) = (s1 · · · sq)
(s1 · · · sp−1) · (sp+1sp) · (sp+2 · · · sq) = (sp+1 · · · sq) · (s1 · · · sp)
(s1 · · · sp−1) · sp · (sp+2 · · · sq) = (sp+2 · · · sq) · (s1 · · · sp)
(s1 · · · sp−1) · sp+1 · (sp+2 · · · sq) = (sp+1 · · · sq) · (s1 · · · sp−1)
(s1 · · · sp−1) · 1 · (sp+2 · · · sq) = (sp+2 · · · sq) · (s1 · · · sp−1)

so it follows that

ψki (xsp ⊗ α) =σ(x) · (s1 · · · sq)⊗ λi+1α

+σ(x) · (sp+1 · · · sq) · (s1 · · · sp) · ⊗λi+1α

−σ(x) · (sp+2 · · · sq) · (s1 · · · sp)⊗ λi+2α

−σ(x) · (sp+1 · · · sq) · (s1 · · · sp−1)⊗ λi+2α

+σ(x) · (sp+2 · · · sq) · (s1 · · · sp−1)⊗ λi+3α.

Now p < n− i− 1 +k, which means that the final four terms above all lie in F k−1,
so that in F k/F k−1 we have

ψki (xsp ⊗ α) = σ(x) · (s1 · · · sq)⊗ λi+1α

= σ(x) · (s1 · · · sn−i−1+k)⊗ λi+1α

= ψki (x⊗ λα)

as required. �

Lemma 8.20. Let k > 1 and let k 6 i 6 n− 1. Then for j in the range j > k+ 1
we have ψki−1 ◦ di−k−1j−k−1 = dij ◦ ψki .

Proof. Let x⊗ α ∈ W (n− 1)i−k−1 = TLn−1 ⊗TLn−i−1+k
1. Then

dij(ψ
k
i (x⊗ α)) = dij(σ(x) · (s1 · · · sn−i−1+k)⊗ λiα)

= σ(x) · (s1 · · · sn−i−1+k) · (sn−i+j−1 · · · sn−i)⊗ λi−jα.
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Since (n − i − 1) 6 (n − i − 1 + k) + 1 6 (n − i + j − 1), we may apply the first
part of Lemma 8.16 to obtain

dij(ψ
k
i (x⊗ α)) = σ(x) · (s1 · · · sn−i−1+k) · (sn−i+j−1 · · · sn−i)⊗ λi−jα

= σ(x) · (sn−i+j−1 · · · sn−i+1) · (s1 · · · sn−i+k)⊗ λi−jα
= σ(x) · (sn−i+j−1 · · · sn−i+1) · (s1 · · · sn−(i−1)−1+k)⊗ λ(i−1)λ1−jα
= σ(x · (sn−i+j−2 · · · sn−i)) · (s1 · · · sn−(i−1)−1+k)⊗ λ(i−1)λ1−jα
= ψki−1(x · (sn−i+j−2 · · · sn−i)⊗ λ1−jα).

In the last line of the above computation, x·(sn−i+j−2 · · · sn−i)⊗λ1−jα is an element
of W (n− 1)(i−1)−k−1 = TLn−1 ⊗TLn−i+k

1, so we have

x · (sn−i+j−2 · · · sn−i)⊗ λ1−jα
= x · (sn−i+j−2 · · · sn−i+k) · (sn−i+k−1 · · · sn−i)⊗ λ1−jα
= x · (sn−i+j−2 · · · sn−i+k)⊗ λkλ1−jα
= x · (sn−i+j−2 · · · sn−i+k)⊗ λ−(j−k−1)α.

Thus

dij(ψ
k
i (x⊗ α)) = ψki−1(x · (sn−i+j−2 · · · sn−i)⊗ λ1−jα)

= ψki−1(x · (sn−i+j−2 · · · sn−i+k)⊗ λ−(j−k−1)α.)
= ψki−1(x · (s(n−1)−(i−k−1)+(j−k−1)−1 · · · s(n−1)−(i−k−1))⊗ λ−(j−k−1)α)

= ψki−1(d
i−k−1
j−k−1(x⊗ α))

as required. �

Corollary 8.21. Ψk is a chain map.

Proof. The boundary map of τn−1Σ
k+1W (n− 1) is given in degree i by the bound-

ary map di−k−1 : W (n − 1)i−k−1 → W (n − 1)i−k−2, which is itself given by the

formula
∑i−k−1

j=0 (−1)jdi−k−1j .

The boundary map of F k/F k−1 is given in degree i by the boundary map ofW (n)

in degree i, which is the alternating sum
∑i

j=0(−1)jdij. However, the proof of

Lemma 8.17 shows that di0, . . . , d
i
k all send F k into F k−1, and hence that they vanish

in the quotient F k/F k−1. Thus the boundary map of F k/F k−1 is
∑i

j=k+1(−1)jdij.
It follows that
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di ◦Ψk
i =

i∑
j=k+1

(−1)jdij ◦ [(−1)−i(k+1)ψki ]

=
i∑

j=k+1

(−1)j−i(k+1)ψki−1 ◦ di−k−1j−k−1

=
i−k−1∑
j=0

(−1)j+(k+1)−i(k+1)ψki−1 ◦ di−k−1j

= [(−1)−(i−1)(k+1)ψki−1] ◦
i−k−1∑
j=0

(−1)jψki−1 ◦ di−k−1j

= Ψk
i−1 ◦ di−k−1

as required. �

8.4. Proof of Theorem 8.7. In this subsection we prove Theorem 8.7, which in
turn completes the proof of Theorem E.

We begin by finding a basis for each part of the filtration in terms of the Jones
normal form. This is done in Lemma 8.25 below, after some preliminary work.

Lemma 8.22. Any word in the si not containing s1 is a linear combination of
words in the Ui, none of which involve U1. Conversely, any word in the Ui not
containing U1 is a linear combination of words in the si not containing s1.

Proof. Recall from Definition 2.21 that si = λ+µUi, where λ and µ are both units
in the ground ring, so that Ui = −µ−1λ+µ−1si. The claim follows immediately. �

Lemma 8.23. For 1 6 p 6 n − 1, the word s1 . . . sp written in terms of the Ui
generators is equal to µpU1 · · ·Up, plus a linear combination of scalar multiples—by
units—of words w in the Ui with the following properties:

• i(w) > 2 and t(w) 6 p or
• i(w) = 1 and t(w) < p.

In particular only the summand w = µpU1 · · ·Up satisfies i(w) = 1 and t(w) = p.

Proof. Using si = λ+ µUi and multiplying out brackets gives the following:

s1 . . . sp =

p∑
r=0

∑
(16i16···6ir6p)

λp−rµrUi1Ui2 . . . Uir

= µpU1 · · ·Up +

p−1∑
r=0

∑
(16i16···6ir6p)

λp−rµrUi1Ui2 . . . Uir
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If r = 0 the term is a scalar, which has index∞ by convention (thus the first point
is satisfied). Suppose 0 < r < p. Then if i1 > 1 it follows that i(Ui1 . . . Uip) > 2.
Otherwise i1 = 1 and, since r < p, there is some j > 2 such that ij > ij−1 + 2, so
that Ui1 · · ·Uir can be written as a word with terminus ij−1, and then the claim
follows. Coefficients are given by powers of λ and µ, and products of these. The
terms λ and µ are defined via the homomorphisms in Definition 2.20 and lie in the
set {−1,±v, v2}. Since v is a unit it follows that all coefficients are units. �

Lemma 8.24. Let k > 0 and −1 6 i 6 n − 1, and consider elements xa,b ⊗ 1,
where xa,b is in Jones normal form and satisfies either:

• i(xa,b) > 2 and t(xa,b) > n− i− 1, or
• i(xa,b) = 1 and n− i− 1 6 t(xa,b) 6 n− i− 1 + k.

Then these elements all lie in F k
i .

Proof. The first type of element lies in F 0, since in this case xa,b is a word in the Uis
not containing U1, and by Lemma 8.22, this is a linear combination of words
in the sis not containing s1 (a basic element). For the second type of element,
from the definition of Jones normal form, xa,b must end in a string U1 . . . Un−i−1+j
for 0 ≤ j ≤ k. We proceed by induction on k.
Base case: We start with the base case k = 0, so the only option is that j = 0.
i.e. xa,b = ya,bU1 . . . Un−i−1 for some ya,b in Jones normal form with i(ya,b) ≥ 2. We
aim to show in this case xa,b lies in F 0

i . Compare xa,b to ya,bs1 . . . sn−i−1, which
does lie in F 0

i by Definition 8.1. From Lemma 8.23 multiplying out the string
s1 . . . sn−i−1 will result in ya,bs1 . . . sn−i−1 being written as a linear combination
(up to scalar multiplication by units) of three types of elements, and we consider
their image in TLn ⊗TLn−i−1

1.

(1) ya,bU1 . . . Un−i−1. This is equal to xa,b and appears as a single summand of
ya,bs1 . . . sn−i−1.

(2) ya,bw where i(w) > 2 and t(w) 6 n − i − 1. These are all basic elements
since i(ya,b) ≥ 2, and thus lie in F 0.

(3) ya,bw where i(w) = 1 and t(w) < n− i− 1. Due to the terminus, these are
all zero in TLn ⊗TLn−i−1

1.

So it follows that in TLn ⊗TLn−i−1
1, xa,b is, up to scalar multiplication by units,

equal to a linear combination of ya,bs1 . . . sn−i−1 and basic elements. Since this is
a linear combination of elements in F 0

i , it follows that xa,b lies in F 0
i as required.

Inductive step: We now assume the Lemma is true for k − 1 and prove for k.
Let xa,b = ya,bU1 . . . Un−i−1+j for some ya,b in Jones normal form with i(ya,b) ≥ 2,
t(ya,b) > n−i−1+j, and 0 ≤ j ≤ k. When 0 ≤ j < k, by the inductive hypothesis

this element lies in F k−1
i ⊂ F k

i , and so we can restrict to the case where j = k,
i.e. xa,b = ya,bU1 . . . Un−i−1+k. We aim to show that, in this case, xa,b lies in F k

i .
As in the base case, we compare xa,b with ya,bs1 . . . sn−i−1+k, which lies in F k

i by
Definition 8.1. From Lemma 8.23, ya,bs1 . . . sn−i−1+k is a linear combination (up
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to scalar multiplication by a unit) of three types of elements, which we evaluate
in TLn ⊗TLn−i−1

1.

(1) ya,bU1 . . . Un−i−1+k. This is equal to xa,b and appears as a single summand
of ya,bs1 . . . sn−i−1+k.

(2) ya,bw where i(w) > 2 and t(w) 6 n− i− 1 + k. Since i(ya,b) ≥ 2 they are
all basic elements, and thus lie in F 0 ⊂ F k.

(3) ya,bw where i(w) = 1 and t(w) < n − i − 1 + k. Rewriting these in
Jones normal form gives elements ya,bw = za,b such that i(za,b) = 1 and
t(za,b) ≤ t(w) < n − i − 1 + k (by Lemmas 2.6 and 2.7). These are then
Jones normal form elements ending in U1 . . . Un−i−1+j for 0 ≤ j ≤ k − 1 so
by the inductive hypothesis these lie in F k−1

i ⊂ F k
i .

Again it follows that in TLn⊗TLn−i−1
1, xa,b is, up to scalar multiplication by units,

equal to a linear combination of ya,bs1 . . . sn−i−k, elements in F k
i (by the inductive

hypothesis), and basic elements. Since this is a linear combination of elements
in F k

i , it follows that xa,b lies in F k
i as required. �

Lemma 8.25. Let k > 0 and −1 6 i 6 n − 1. Then F k
i has basis consisting of

elements xa,b ⊗ 1, where xa,b is in Jones normal form and satisfies either:
• i(xa,b) > 2 and t(xa,b) > n− i− 1, or
• i(xa,b) = 1 and n− i− 1 6 t(xa,b) 6 n− i− 1 + k.

Proof. This is a subset of the known basis for TLn ⊗TLn−i−1
1 ⊇ F k

i , and by the
previous lemma we know these elements lie in F k

i , so it is enough to show that F k
i

is spanned by these elements. First of all, note that since F k
i ⊆ TLn ⊗TLn−i−1

1

any word in F k
i written in Jones normal form will vanish if t(xa,b) 6 n − i − 2,

therefore we will always have t(xa,b) > n − i − 1. By definition F k
i is spanned by

elements of the form
• x⊗ 1
• x · (s1 · · · sn−i−1+k′)⊗ 1

where x is a word in the Ui with i(x) > 2 (i.e. containing no U1s) and 0 6 k′ 6 k
(note in the case i = n − 1 and k′ = 0 the two kinds coincide). The first
kind is spanned by xa,b such that i(xa,b) > 2, as described in the first bullet
point in the statement of the lemma. From Lemma 8.23, expanding the prod-
uct (s1 · · · sn−i−1+k′) in the second kind gives a linear combination of words x·w⊗1
such that t(w) 6 n− i− 1 + k′. Either i(w) will be > 2 or i(w) = 1. In the first
case, since i(x) > 2 it follows that i(x·w) > 2 and so when written in Jones normal
form this will remain the case, giving an element of the first type described in the
Lemma. In the second case, when i(w) = 1, since i(x) > 2 then either i(x ·w) > 2
and as in the previous sentence we are done, or i(x · w) = 1 and, by Lemma 2.7,
when written in Jones normal form the terminus t(x ·w) = t(w) 6 n− i− 1 +k′ 6
n− i− 1 + k will either remain the same or reduce. This puts us in the setting of
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the second bullet point in the statement of the lemma, and thus we have shown
that the two types of elements span F k

i . �

Proposition 8.26. The map Φ0 : C(W (n− 1)) −→ F 0 from Definition 8.11 is an
isomorphism.

Proof. Recall that for −1 6 i 6 (n− 1),

Φ0
i :
(
TLn−1 ⊗TLn−i−2

1
)
⊕
(
TLn−1 ⊗TLn−i−1

1
)
→ F 0

i

is given by

Φ0
i (x⊗ α, y ⊗ β) = ξi(x⊗ α) + ηi(y ⊗ β)

where

ξi(x⊗ α) = σ(x)⊗ λn−1α
and

ηi(y ⊗ β) = σ(y) · (s1 · · · sn−i−1)⊗ λiβ.
By Lemma 2.16, a basis for the left hand side is given by elements of either
the form (xa,b ⊗ 1, 0) such that t(xa,b) > n − i − 3 or the form (0, xa′,b′ ⊗ 1) such
that t(xa′,b′) > n−i−2. Under the map Φ0

i , (xa,b⊗1, 0) is taken to a scalar multiple
(by a unit) of σ(xa,b)⊗1, where σ(xa,b) is a Jones basis element with i(σ(xa,b)) > 2
and t(σ(xa,b)) > n− i− 2. By Lemma 8.23, the element (0, xa′,b′ ⊗ 1) is taken to
a linear combination of scalar multiples (by units) of terms σ(xa′,b′) · w ⊗ 1 such
that t(w) 6 n− i− 1. Since F 0

i ⊆ TLn ⊗TLn−i−1
1 the only non-zero terms in the

image will occur when t(w) = n−i−1. We consider two cases: i(w) > 2 or i(w) = 1.
By Lemma 2.7, converting to Jones normal form in the first case gives an element
with index i(σ(xa′,b′) ·w) > 2 and terminus t(σ(xa′,b′) ·w) = n− i−1, or zero, since
the terminus will either remain the same or reduce when converting. When i(w) =
1 and t(w) = n − i − 1, by Lemma 8.23 it follows that w = U1 . . . Un−i−1 and
therefore the terms will be of the form σ(xa′,b′) ·U1 . . . Un−i−1. These elements are
already in Jones normal form, with index 1 and terminus n−i−1. Furthermore all
Jones basis elements with this index and terminus arise in this way. By Lemma 8.25
a basis for F 0

i is given by elements ya,b ⊗ 1 where ya,b is in Jones normal form and
satisfies:

• i(ya,b) > 2 and t(ya,b) > n− i− 1 or
• i(ya,b) = 1 and t(ya,b) = n− i− 1.

By our analysis, all of these elements lie in the image of Φ0
i , up to scalar multipli-

cation by units, hence Φ0 is a bijection on bases and therefore an isomorphism. �

Lemma 8.27. A basis for (F k/F k−1)i is given by words xa,b in Jones normal form
such that i(xa,b) = 1 and t(xa,b) = n− i− 1 + k.

Proof. This is a direct consequence of taking the quotient of the bases for F k

and F k−1 given in Lemma 8.25. �
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Proposition 8.28. The map Ψk : τn−1Σ
k+1W (n − 1) −→ F k/F k−1 from Defini-

tion 8.18 is an isomorphism.

Proof. Recall for i in the range k 6 i 6 (n− 1),

Ψk
i : TLn−1 ⊗TLn−i−1+k

1 −→ (F k/F k−1)i

is given by

Ψk
i : x⊗ α 7−→ (−1)−i(k+1)σ(x) · (s1 · · · sn−i−1+k)⊗ λiα.

By Lemma 2.16 a basis for the domain is given by xa,b such that t(xa,b) >
(n − i − 1 + k) − 1. Note also that xa,b does not contain the letter Un−1. By
Lemma 8.23, the image Ψk

i (xa,b) is a linear combination of scalar multiples (by
units) of terms σ(xa,b) · w such that t(w) 6 n − i − 1 + k. These terms are
zero in (F k/F k−1)i ⊆ TLn ⊗TLn−i−1

1 only when w cannot be written as a word
with t(w) < n − i − 1. Rewriting these elements in Jones normal form will
maintain or decrease the terminus, and i(σ(xa,b)) > 2, so i(σ(xa,b) · w) = 1 only
when i(w) = 1. Therefore by Lemma 8.25 quotienting out by F k−1 leaves only the
term for which i(w) = 1 and t(w) = n − i − 1 + k. In particular by Lemma 8.23
this term is a scalar multiple (by a unit) of σ(xa,b) · U1 . . . Un−i−1+k.

Since σ(xa,b) has index > 2 and terminus > n− i−1 +k, it follows that σ(xa,b) ·
U1 . . . Un−i−1+k is in Jones normal form. From Lemma 8.27 this is a Jones basis
element for F k/F k−1 and all basis elements arise in this way. Therefore up to unit
scalars, the map Ψk is a bijection on bases, and hence an isomorphism. �

9. Jones-Wenzl projectors and vanishing

This section relates our results with the existence of the Jones-Wenzl projectors,
to strengthen our vanishing results when R is a field. This section is written such
that the reader can read the introduction, the background on Temperley-Lieb
algebras, and continue straight to this section. For the time being we make the
substitutions a ↔ δ and v ↔ q, as is common in the recent literature concerning
Jones-Wenzl projectors.

Throughout this section, we will consider a commutative ring R, a unit q ∈ R,
the parameter δ = q + q−1, and we will work in TLn(δ). Recall that we show in

Theorem A that, when δ is invertible, TorTLn(δ)
∗ (1,1) and Ext∗TLn(δ)(1,1) vanish in

every non-zero degree. In this section we investigate the case where δ = 0 and R is
a field using established results on Jones-Wenzl projectors. We prove the following
theorem:

Theorem D. Let n = 2k + 1, and let R be a field whose characteristic does not
divide

(
k
t

)
for any 0 ≤ t ≤ k. Let q be a unit in R and assume that δ = q+q−1 = 0.

Then TorTLn(0)
∗ (1,1) and Ext∗TLn(0)(1,1) vanish in positive degrees.

For example, when n = 3, R is a field, and δ = q + q−1 for q ∈ R×, combining
this theorem with Theorem A demonstrates that TorTL3(δ)

∗ (1,1) and Ext∗TL3(δ)
(1,1)
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vanish in positive degrees with no further condition on δ. And if one wishes to
show that TorTL5(δ)

∗ (1,1) and Ext∗TL5(δ)
(1,1) can be nonzero in positive degrees,

then the only chance of this happening is in characteristic 2.
The theorem is in strict contrast to the n even case, where we show in Theorem A

that for a general ring R and δ not invertible, Tor
TLn(δ)
n−1 (1,1) = R/bR is non-zero

for b some multiple of δ. Therefore, in the particular case where n is even, R is a
field, and δ = 0, there can be no vanishing in all positive degrees.

9.1. Jones-Wenzl projectors. In this subsection we introduce the Jones-Wenzl
projector and relate its existence to the projectivity of the trivial module 1. The
original references are [Jon83] and [Wen87], see also [KL94], [Lic92, section 4].

Definition 9.1. Recall that In ⊆ TLn is the two sided ideal generated by the Ui
for i = 1, . . . , n − 1. Then, if it exists, the nth Jones-Wenzl projector JWn is the
element of TLn characterised by the following two properties:

(i) JWn ∈ 1 + In and
(ii) In · JWn = 0 = JWn · In.

Lemma 9.2. If JWn exists it is unique.

Proof. Suppose a second element JW′
n in TLn satisfies (i) and (ii) of Definition 9.1.

Write JWn = 1 + i and JW′
n = 1 + i′ for i, i′ ∈ In. Then JWn · i′ = 0 = i · JW′

n by
(ii). It follows that

JW′
n = JW′

n + i · JW′
n = (1 + i) · JW′

n = JWn · JW′
n

and similarly that JWn = JWn · JW′
n. �

The Jones-Wenzl projector was first introduced by Jones [Jon83], was further
studied by Wenzl [Wen87], and has since become important in representation the-
ory, knot theory and the study of 3-manifolds. It is a key ingredient in the definition
of the coloured Jones polynomial and SU(2) quantum invariants more generally,
and is important in the study of tilting modules of (quantum) sl2.

9.2. JWn and projectivity of 1. We will now show that the Jones-Wenzl projec-
tor exists if and only if the trivial module 1 is projective. Thus, existence of JWn

implies the vanishing of TorTLn(δ)
∗ (1,1) and Ext∗TLn(δ)(1,1) in positive degrees. Our

own Theorem A implies that vanishing for δ invertible, while Theorem C proves
non-vanishing for n even and δ not invertible. It turns out that there is a rich
interplay between these two sources of (non-)vanishing results.

Proposition 9.3. JWn exists if and only if 1 is a projective left TLn(δ)-module,
which is if and only if 1 is a projective right TLn(δ)-module.

Before proving the proposition we need the following.

Lemma 9.4. In Definition 9.1, it is sufficient to replace (ii) with either

(ii)’ In · JWn = 0, or
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(ii)” JWn · In = 0.

Proof. Suppose JW ∈ TLn satisfies (i) and (ii)’. We have suggestively named this
element, and will show it is in fact JWn, by showing that JW also satisfies (ii)”
and hence (ii). Let TLn → TLn, d 7→ d be the anti-automorphism which reverses
the order of letters in a monomial i.e. Ui1 . . . Uin = Uin . . . Ui1 . In diagrammatic
terms, this map flips the diagram corresponding to the monomial in the left-to-
right direction. Since JW satisfies (ii)’, it follows that JW satisfies (ii)”. Then
the argument of Lemma 9.2 can be repeated to show that JW = JW so that JW
satisfies (ii)’ and (ii)”, hence it satisfies (ii) and JW = JWn. �

Proof of Proposition 9.3. We prove the equivalence for left-modules.
If JWn exists, then the maps 1 → TLn, 1 7→ JWn and TLn → 1, d 7→ d · 1 are

maps of left TLn-modules composing to the identity. It follows that 1 is a direct
summand of TLn, and thus is projective.

Conversely, if 1 is a projective left TLn-module, then the surjection TLn →
TLn/In = 1, regarded as a map of left TLn-modules, has a splitting s : 1 →
TLn, again a map of left TLn-modules. By construction the element s(1) then
satisfies condition (i) of 9.1 and condition (ii)’ of 9.4, so that JWn = s(1) exists as
required. �

9.3. Jones-Wenzl projectors and quantum binomial coefficients. Here we
work in the Laurent polynomial ring Z[q, q−1], and we set δ = q + q−1. For this
section, let n and r be integers such that n > r > 0.

Definition 9.5. The quantum integer [n]q is defined to be

[n]q =
qn − q−n

q − q−1
= qn−1 + qn−3 + . . .+ q−(n−3) + q−(n−1),

the quantum factorial [n]q! is defined by

[n]q! = [n]q[n− 1]q · · · [1]q,

and the quantum binomial coefficient
[
n
r

]
q

is then given by computing the normal

binomial coefficient but replacing integers with quantum integers:[
n

r

]
q

=
[n]q!

[r]q![n− r]q!
.

The quantum binomial coefficients satisfy the following recursion relations:[
n

r

]
q

= qn−r
[
n− 1

r − 1

]
q

+ q−r
[
n− 1

r

]
q[

n

r

]
q

= q−(n−r)
[
n− 1

r − 1

]
q

+ qr
[
n− 1

r

]
q

.
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Either one of these relations gives an inductive proof that
[
n
r

]
q

lies in Z[q, q−1].

And taken together, these relations give an inductive proof that
[
n
r

]
q

is invariant

under inverting q, and consequently that it lies in Z[δ]. (Recall that δ = q + q−1.)
This means that we may evaluate

[
n
r

]
q

in any ring containing an element named

δ, to obtain an element of that ring, which we continue to denote by
[
n
r

]
q
.

The following result is proved in an Appendix to [EL17] by Webster, using Schur-
Weyl duality. For a purely diagrammatic approach see recent work of Spencer
[Spe21, Section 10.3].

Theorem 9.6 ([EL17, Theorem A.2], [Spe21, Section 10.3]). Let R = k be a field,
let q ∈ k be nonzero, and set δ = q + q−1. The nth Jones-Wenzl projector JWn ∈
TLn(δ) exists if and only if the quantum binomial coefficients

[
n
r

]
q

are non-zero in

k for all 0 ≤ r ≤ n.

Remark 9.7. Suppose that R = k is a field. Whenever k, q and n satisfy
the conditions of Theorem 9.6, we obtain the vanishing of TorTLn(δ)

∗ (1,1) and
Ext∗TLn(δ)(1,1) in positive degrees. (We will refer to this as simply “vanishing” for
the present remark.)

• In the case of n even, Theorems A and C show that vanishing holds if and
only if δ 6= 0, and this is in fact stronger than the result obtained from
Theorem 9.6. For example, if we take n = 4 then the

[
n
k

]
q

take values 1,

δ(δ2 − 2) and (δ2 − 1)(δ2 − 2), so that Theorem 9.6 requires δ to avoid
the values 0,±1,±

√
2. For n even, δ is always a factor of

[
n
1

]
q
, so that

Theorem A will always apply more generally than Theorem 9.6 in this
case.
• In the case of n odd, the situation is more interesting. Theorem A demon-

strates vanishing when δ 6= 0. But if we take n = 3, for example, then the[
n
k

]
q

take values 1 and (δ2−1), so that Theorem 9.6 demonstrates vanishing

so long as δ 6= ±1. Neither of these vanishing results implies the other, but
taken together they demonstrate vanishing for all values of δ.

9.4. Identifying the quantum binomial coefficients. In this section, we iden-
tify the quantum binomial coefficients upon specialising δ = q + q−1 = 0. The
results are assembled in the following proposition.

Proposition 9.8. When δ = q + q−1 = 0 then the quantum binomial coefficients
have the following form:

• When n is even and r is odd,
[
n
r

]
q

= 0.

• When n and r are both even, let n = 2a and r = 2t. Then
[
n
r

]
q

=
(
a
t

)
.

• When n is odd and r is even, let n = 2a + 1 and r = 2t. Then
[
n
r

]
q

=

(−1)t
(
a
t

)
.
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Figure 10. The quantum binomial coefficients with δ = q + q−1 = 0.

• When n and r are both odd, let n = 2a + 1 and r = 2t + 1. Then
[
n
r

]
q

=

(−1)a−t
(
a
t

)
.

Remark 9.9. Proposition 9.8 shows that the ‘quantum Pascal’s triangle’ with
δ = 0 looks like a Pascal’s triangle in the even rows, with every coefficient separated
by a zero, and a ‘doubled’ Pascal’s triangle with signs on the odd rows. This is
shown in Figure 10.

The proof of the four points in this proposition are given by applying a result of
Désarménien [Dés83, Proposition 2.2], which we recall below. This result is given
not in terms of quantum binomials, but in terms of Gaussian binomials, so we
recall these first.

Let p be an indeterminate. The Gaussian binomial coefficients are the quantities[
n

r

]G
p

=
[n]Gp !

[r]Gp ![n− r]Gp !

defined in terms of the Gaussian integers [n]Gp = 1 + p+ · · ·+ pn−1 and Gaussian

factorials [n]Gp ! = [n]Gp [n− 1]Gp · · · [1]Gp . The relation between the Gaussian and
quantum binomial coefficients is[

n

r

]
q

= qr
2−nr

[
n

r

]G
q2
.

Proposition 9.10 ([Dés83, Proposition 2.2]). Fix a k ≥ 0 ∈ N and let Φk be
the kth cyclotomic polynomial. Let n = ka+b and r = kt+s with 0 ≤ b, s ≤ k−1.
Then the Gaussian binomial coefficient satisfies the congruence[

n

r

]G
p

≡
(
a

t

)[
b

s

]G
p

mod Φk.

Proof of Proposition 9.8. Note that when δ = q + q−1 = 0 that rearranging this
equation gives that q±2 = −1. Recall that the parameter p in the Gaussian
binomial coefficient is q2, and so p2 = q4 = 1. We invoke Proposition 9.10 with k =
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2. Then the cyclotomic polynomial Φ2(p) = 1 + p = 1 + q2 = 0. Let n = 2a + b
and r = 2t+ s with 0 ≤ b, s ≤ 1, then the quantum binomial coefficient satisfies[

n

r

]
q

= qr
2−nr

[
n

r

]G
q2

= qr
2−nr

(
a

t

)[
b

s

]G
q2
.

When n is even and r is odd,
[
b
s

]G
q2

=
[
0
1

]G
q2

= 0 which gives the first case of the

proposition. For all other cases,
[
b
s

]G
q2

= 1 and so[
n

r

]
q

= qr
2−nr

(
a

t

)
.

Computing the coefficient qr
2−nr, using q±2 = −1, yields the result for the remain-

ing three cases. �

9.5. Proof of theorem. In this section we prove Theorem D.

Proof. This proof puts together three previous results. By Proposition 9.3 we

know that if JWn exists then 1 is projective and it follows that Tor
TL(0)
i (1,1) and

Ext∗TLn(0)(1,1) vanish for all i > 0. So it is enough to show that JWn exists under
the hypotheses of the theorem. Proposition 9.6 tells us that JWn exists precisely
when the quantum binomial coefficients

[
n
r

]
q

are non-zero for all 1 ≤ r ≤ n.

Finally, Proposition 9.8 explicitly describes these coefficients when δ = 0. We see
that for n even, there is always a quantum binomial coefficient

[
n
r

]
q

= 0 and so

we learn nothing new. However when n = 2k + 1 is odd, the quantum binomial
coefficients take values in the set{

±
(
k

t

) ∣∣∣∣ 0 ≤ t ≤ k

}
and—up to sign—all values in this set are realised as some

[
n
r

]
q
. The hypotheses of

the theorem precisely say that these numbers are non-zero in R and so the result
follows. �
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