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ABSTRACT
In thispaper,weapproachmodellingmathematicsdispositions fromadifferent
methodological perspective in order to shed more light into the complex
interplay between teaching practices and students’ learning outcomes. We
draw on survey data from around 5000 students from Year 7–11 (age 11–16)
from 40 Secondary schools in England. Our methodological approach
includes Rasch modelling to produce measures of attitudinal outcomes as
well as students’ perceptions of pedagogic practices. We then employ fuzzy-
set Qualitative Comparative Analysis (fs/QCA) to explore the relationships
between students’ characteristics and the perceived type of teaching they
receive in mathematics. We use two measures of ‘transmissionist teaching’
which aim to quantify the degree to which teaching practices are perceived
as ‘teacher-centred’. One measure gives the students’ perceptions and the
other gives the teacher’s perspective. We find that different configurations of
student and teacher perceptions of transmissionist teaching are associated
with high and low mathematical dispositions for different year groups and
for boys and girls. We discuss the methodological merits of this approach
along with the substantive educational implications of these findings.
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Introduction: overview of literature and context of this study

Mathematics as a topic in the school curriculum is considered important, if not vital, for students’
potential access to further study in Science, Technology, Engineering and Mathematics (STEM) sub-
jects, and also many fields in the Social Sciences (e.g. Business, Economics, etc) in Higher education,
and consequently to their educational and socioeconomic life opportunities. The need to promote
a mathematically engaged society is also well documented in literature and recent policy documents
in the UK (OFSTED 2011; Smith 2017) and globally (see Mevarech and Kramarski 2014). The Advisory
Committee on Mathematics Education (ACME) (ACME 2012, 2009) recognized this important issue and
advocated ‘tackling the perceptions of mathematics’ as a particularly important issue placing emphasis
on the importance of mathematics as a ‘powerful analytical tool’, with inherent ‘pervasiveness’ (2009,
5) and a ‘key workforce skill’ (ibid, p. 6). Looking beyond attainment, research on attitudes towards
mathematics (and dispositions) is very important and has gained considerable interest over the past
40 years because it may reveal key influences on students’ choices and decision-making and hence
their future engagement with STEM1; this is our emphasis here.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an OpenAccess article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Stephanie Thomson stephanie.thomson@abdn.ac.uk University of Aberdeen, Education, University of
Aberdeen, MacRobert Building, Aberdeen, AB24 5UA, United Kingdom of Great Britain and Northern Ireland
This article has been republished with minor changes. These changes do not impact the academic content of the article.

INTERNATIONAL JOURNAL OF RESEARCH & METHOD IN EDUCATION
2021, VOL. 44, NO. 5, 474–492
https://doi.org/10.1080/1743727X.2020.1856066

http://crossmark.crossref.org/dialog/?doi=10.1080/1743727X.2020.1856066&domain=pdf&date_stamp=2021-09-08
http://orcid.org/0000-0002-6131-9512
http://orcid.org/0000-0001-5481-1560
http://creativecommons.org/licenses/by/4.0/
mailto:stephanie.thomson@abdn.ac.uk
http://www.tandfonline.com


The complex field of attitudes and dispositions towards mathematics

The field of ‘attitudes towards mathematics’ has seen numerous adaptations of instruments (e.g
Hemmings and Kay 2010; Kleanthous and Williams 2013; Lim and Chapman 2013) mainly influenced
by the well-known Fennema-Sherman scales (Fennema and Sherman 1977). Relevant studies and
resulting research findings have focused on one or more from many ‘dimensions’, including
beliefs, values, identities, engagement, affect, emotions, motivation, confidence, self-efficacy, and
dispositions (Di Martino and Zan 2011; Hannula 2002; Ruffell, Mason, and Allen 1998). This complex-
ity, as well as the lack of agreement on the definition of the construct has led researchers (e.g. Lim
and Chapman 2013; Wilson 2011) to recently revisit the established instruments of the 1970s and
1980s looking for alternative universal definitions or more parsimonious instruments.

Previous studies had also identified a plethora of socio-cultural factors which are significant in
shaping students’ dispositions and choice-making in education in general, and in STEM subjects
andmathematics in particular: for example class, gender, nationality, ethnicity, parental and peer cul-
tures as well as the intersectionality between these variables (e.g. Cao et al. 2006; Lei and Pampaka
2018; Mendick 2005; O’Brien, Martinez-Pons, and Kopala 1999). It is not our intention here to
rehearse these discussions, nor to propose an alternative definition of ‘attitudes’ towards mathemat-
ics. Rather, we follow the paradigm introduced and validated in our earlier work with post-secondary
students, where instruments were developed for measuring dispositions towards further study
(Pampaka et al. 2013, 2011); adapting and revalidating these for secondary-school students (Lei
and Pampaka 2019; Pampaka and Wo 2014).

The relationship between teaching practices and dispositions

The quality of mathematics teaching is an important factor in understanding students’ dispositions,
Within this literature (Askew et al. 1997; Driessen and Sleegers 2000; McCaffrey et al. 2001; Schuh
2004; Swan2006; SwansonandStevenson2002; Vermunt andVerloop1999) it hasbeenwidely accepted
that effective mathematics teaching should be ‘connectionist’ in two ways: (a) connecting teaching to
students’mathematical understanding, and (b) connecting teaching and learning across mathematics’
topics, and between mathematics and other knowledge. Many others have also argued that formative
assessment and more dialogical pedagogies are required for the development of deeper mathematics
understanding (e.g. Black and Wiliam 1998; Boaler 2002; Lapointe, Legault, and Batiste 2005; Meece,
Herman, and McCombs 2003; Ryan and Williams 2007; Wilkins and Ma 2003). Such approaches are
thought to be the opposite to more ‘transmissionist’ practices where mathematical knowledge is com-
partmentalized and treated as separate fromother subjects and from students’own context. In previous
work we have shown how some institutional and pedagogic practices can encourage the reduction of
the learning ofmathematics to the procedural level only, thus limiting future educational opportunities.
In this work, we have used and ‘quantified’ the terms ‘connectionist’ and ‘transmissionist’ teaching,
employing Swan’s previously developed instrument (Swan 2006), which in turn built on the research
findings of Askew et al. (1997) and Ernest (1991). Pampaka et al. (2012) described in detail how the
items of Swan’s (2006) ‘practice scale’ could be amended to create a unidimensional measure of
‘teacher centricism’ (or transmissionism) in teaching mathematics which was successful in associating
transmissionist practices with the decline of students’ dispositions over time.

But there is still an unresolved gap in knowledge in regards to the developing students’ math-
ematics dispositions and how these are shaped in relation to teaching at earlier educational
stages. This was the ultimate aim of the project we draw from here.

Studying and modelling dispositions

Quantitative studies of attitudes and dispositions to mathematics tend to employ analytical tech-
niques such as latent class analysis (Lazarides and Ittel 2012), and regression modelling (Mata,
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Monteiro, and Peixoto 2012) as in our previous work (Pampaka and Williams 2016). These
approaches provide good summaries of whether a particular attitude is strongly associated with
an outcome ‘in general’ by testing the strength of the association for all the respondents. This
assumes that some general relationship may exist between attitudes, perceptions of processes/prac-
tices and outcomes and also that these variables used as explanatory variables or predictors in such
models are independent from each other, an assumption hard to meet with social constructs and for
social phenomena. In previous work, teaching was perceived as more transmissionist by female stu-
dents and by older students but teacher perceived transmissionism was not always significantly
associated with dispositions (Pampaka and Williams 2016). Despite finding some statistically signifi-
cant associations between these variables, the predictive power of the models overall was not par-
ticularly high. One potential explanation of this could be that subgroups in the model (such as
students in different years) had different associative relationships with the outcome and other vari-
ables in the model, which a model for the whole sample failed to capture well. Even though sub-
group analysis could probably highlight some of these differing relationships, such partitioning of
the whole sample is not always desirable. The same complexity has also been observed with
other models and with other similar datasets, especially when it comes to identifying and interpret-
ing interaction effects (Gabriel, Signolet, and Westwell 2018; Lei and Pampaka 2019, 2018; Pampaka
et al. 2018).

Wewant thus to investigate further whether different attitudes and practices combine in particular
ways to influence a student’s dispositions towards mathematics and whether the ways in which they
combine may be different for different subgroups of the dataset. An approach that can help us to
understand whether these different patterns exist for different subgroups is Qualitative Comparative
Analysis (QCA) – a set-theoretic method of data analysis that does not assume linear relationships
between explanatory and outcome variables. To our knowledge, there is no previous work reported
inmodelling (mathematics) dispositions using aQCAapproach. In fact, there areonly a limitednumber
of papers in education in general which use QCA; see for example the work of Cooper and Glaesser
(Cooper and Glaesser 2010; Glaesser 2008; Glaesser and Cooper 2012a, 2012b), Thomson (2011a,
2011b), and the very recent and timely paper of Bingham, Dean, and Castillo (2019). We aim to add
to this literature base by demonstrating how QCA combined with interval measures can be used to
explore complex relationships between attitudes and other outcomes and what this approach
might reveal in addition to findings from other types of analyses. In this paper, we are mainly inter-
ested in modelling dispositions as the outcome whereas the majority of studies dealing with maths
dispositions or other affective factors usually focus onmodelling their effect onmathematics perform-
ance and attainment (e.g. Grootenboer and Hemmings 2007; Hemmings and Kay 2010).

The paper draws on data from a longitudinal (survey) study of teaching and learning secondary
mathematics focusing on the impact of pedagogical practices on important learning outcomes in
UK. The particular research questions that guide this paper are as follows:

RQ1: How can QCA be combined with interval scores from Rasch modelling to inform our understanding of
complex educational relationships? (methodological)

RQ2: What conditions/combinations of students’ characteristics, attitudinal learning outcomes and perceptions
of teaching practice can explain whether students will have high or low dispositions towards mathematics
during their secondary education? (substantive)

Methodology

Instrumentation and sample

This longitudinal, school-level (for selection purposes) study employed a varied sampling frame to
ensure maximum coverage of the schools of England. In total, we approached over 2200 schools
and we were able to establish collaboration with 40 of them to participate at least on the first
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data point.2 We note here issues around self-selection bias in this type of studies, which could limit
the representativeness of the achieved sample.3

Data collection in these schools involved a student questionnaire (at three data points) with ques-
tions about students’ attitudes to mathematics, future aspirations, and their perceptions of the
teaching they encounter. Teacher perceptions of teaching were also captured through a separate
survey administered to respondents’ mathematics teachers. Student questionnaires were based
on different versions of the same instrument to reflect the age and level of students (i.e. 5
different Year Groups, years 7–11). Background variables and information on students’ attainment
were also collected. The various sections of the questionnaire capturing teaching and learning per-
ceptions were constructed based on a previous project framework, Transmaths (www.transmaths.
org), where instruments for students aged 16 and older were validated and used (Pampaka et al.
2013, 2012, 2011).

This analysis draws on the first data point (DP1, out of three) of our longitudinal survey of students
and their mathematics teachers. This data collection took place from October to December 2011.
During this period we collected data from a sample of 13,643 students in 40 schools. As per our
usual measurement practice the construction of the measures, and their consequent calibration
for the purposes of this analysis, has been conducted with all available data. From this DP1 we
then analyse the responses on a complete case analysis (i.e. those with responses in all relevant vari-
ables). The resulting sample consists of 5022 students: 2988 girls (59%) and 2034 boys (41%). This
was a pragmatic decision to facilitate the demonstration of this novel methodological approach
and also allows comparisons between previous work which was based on the same sub-sample.
We acknowledge the potential limitations of this decision, but dealing with missing data as we
would have done with traditional modelling approaches (Pampaka, Hutcheson, and Williams
2016) goes beyond the scope of this paper.

Measurement methodology

Before any substantial analysis takes place, the first step we follow in our methodological approach is
the validation of our constructed measures. This measurement step is based on the assumption that
there are various underlying constructs behind the groups of items in the questionnaires, which
were brought together after studying previous research literature and looking at other researchers’
instruments.

Given the students’ responses to the relevant questions we then attempt to validate these afore-
mentioned constructs: in other words to check whether they exist as ‘measures’ (or scales), and if not
if there are other dimensions relevant and useful. Our validation process, thus, refers to the accumu-
lation of evidence to support validity arguments regarding the students’ reported measures (Messick
1988). We employed a psychometric analysis for this purpose, conducted within the Rasch measure-
ment framework, following relevant guidelines (Wolfe and Smith Jr. 2007a, 2007b) and with the
Rasch rating scale model, in particular, which is the most appropriate model for Likert type items,
as in this project. Our decisions about the validity of the measures are based on different statistical
indices, such as item fit statistics, category statistics, differential item functioning and person-item
maps (Bond and Fox 2015). More information about the validation of the ‘mathematics disposition’
construct is presented elsewhere (Pampaka and Wo 2014). As also indicated earlier we have vali-
dated measures for both teachers’ and students’ perceptions of (the same) teaching practice. In par-
ticular we use here a measure of students’ perception of how transmissionist teaching is (which we
call ‘student perceived transmissionism’ throughout) and of teacher’s perception of how transmissio-
nist teaching is (which we call ‘teacher perceived transmissionism’ throughout) (see Pampaka and
Williams 2016).

In the next section we introduce the QCA approach using generic/artificial examples before we
move on to discuss how we used it within the context of this study.
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Analytical approach for this paper - QCA

Rationale
Fuzzy-set qualitative comparative analysis (fs/QCA) is a case-based (rather than variable-oriented),
set-theoretic method of data analysis that can be used with any size of dataset but is less commonly
used with large-size datasets (Rihoux and Ragin 2009). It is used here to sort student data into types,
based on combinations (called configurations) of student characteristics and then to assess which of
these configurations are typically associated with high/low dispositions and the strength of the
relationship. In our fs/QCA, the student characteristics, constructed from variables/measures in the
original dataset, are conceived of as sets. Each case (i.e. student) has a membership score for
every set, to indicate the degree to which that case ‘belongs’ to that set.

Using fs/QCA allows us to assume a situation where the relationships between student character-
istics and dispositions may be complex and asymmetric and where there may be more than one
configuration of characteristics showing a strong relationship with high (or low) maths dispositions
(Ragin 2008a, 2008b). As we discussed earlier, there is every reason to expect our data to display such
asymmetry and complexity as we are considering the conjunction of several related, but not iden-
tical, aspects of mathematical attitudes (Lei and Pampaka 2019; Pampaka, Hutcheson, and Williams
2016). We predict that there may only be a small number of students for whom the various aspects of
mathematical attitudes do not line up but we are just as interested in the relationship between the
particular configuration of these measures of attitudes and practices as their impact on dispositions.
Such detail can be lost when employing a linear modelling approach as the fitted model is trying to
show the best estimate for the effect of any variable (or interaction of variables) for all cases – i.e.
assuming that it is sensible to calculate such a thing. Where we expect, as we do here, that attitudes
and practices may have a different degree (or direction) of influence depending on what they are in
conjunction with, then fs/QCA is an appropriate choice of analytic method. We assume that the inter-
play of characteristics may be crucial for the formation of mathematical dispositions and not just the
levels or presence of the individual characteristics themselves. Regression-based approaches to
analysis of this kind, however sophisticated, assume each factor/variable can have a unique effect
on an outcome but, actually, what is established by models of this kind is an average, or ‘net-
effect’, of a variable for all cases or a group of cases with random effects multi-level models
(Ragin 2006a, 13).

QCA, according to Byrne (2013) allows us to ‘get a handle on what works where (in what context),
when (in what temporal context), and in what order’ (217). Regression-based approaches, even those
which include interaction terms in an attempt to account for complexity, assume that variables in a
model are capable of ‘influencing the level or probability of an outcome’ on their own (Ragin 2006a,
14). Standard multiplicative interaction terms, e.g. between variables A and B, can hide complexity
behind a single value. For example, if variable A has value 1 and variable B has value 0.5, A*B = 0.5;
but A*B would also equal 0.5 if A had value 0.5 and B had value 1. In fs/QCA, these two situations are
treated as qualitatively different (see Vaisey 2007). In addition, we want to consider 3- and 4-way
interactions between characteristics and attempting this within a linear-regression framework
leads to a great deal of interpretative difficultly. Of course, it is possible that some characteristics
may dominate to the extent that other characteristics matter very little and a fs/QCA approach
allows us to see when this is the case.

Terminology
We will talk, throughout, about our measures of attitudes and practices as ‘characteristics’ of the
cases (students) rather than ‘variables’ or ‘factors’ (partially, to avoid confusion with other analytic
methods). We avoid the use of ‘variables’ to emphasise that we are, as Ragin (2000, 65) describes,
‘assessing scores in context’ rather than automatically treating cases with similar scores on one
characteristic as similar. We avoid using ‘factors’ so as to make clearer that our approach is not a
form of factor analysis. In explanatory factor analysis, researchers are concerned with reducing the
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number of explanatory factors believing that the values in some small set of factors may be reflective
of those in a wider set and thus that those values in the extra factors are redundant. In fs/QCA,
although a process of simplification does occur, if a characteristic is minimised out of a solution
term, this is because it, empirically, makes no difference to the outcome, in the presence of the
other model characteristics. We can use this approach to see which particular combinations of stu-
dents characteristics are necessary and/or sufficient for high dispositions in mathematics.

Constructing sets and assigning set membership scores for cases
As mentioned, QCA relies on conceiving our characteristics as sets and assigning a set-membership
score, to each case, for that set. Sets can be crisp to indicate the presence (score membership = 1) or
absence (score membership = 0) of a characteristic. This is more appropriate for binary categorical
variables. Most usefully for the study of dispositions (and other similar continuous measures) sets
can also be fuzzy and then cases can take any score between 0 and 1. For fuzzy sets, the score
can be anything between 0 and 1 where 0 indicates complete non-membership in the set, 1 indi-
cates complete membership and a value of 0.5 indicates that the case is neither in nor out of the
set in question. In other words, the degree of set-membership gets larger as scores approach 1
and smaller as scores approach 0. The 0.5 value marks a qualitative threshold between cases that
are definitely in the set (those with scores above 0.5) and those that are definitely out of it (those
with scores below 0.5). If a case has a 0.5 value, it has not been possible to determine whether it
definitely sits within the set or outside of it.

It is important to note here that calibration is not a simple re-coding. The researcher must develop
a method and rationale for assigning set-membership scores to cases and this should be driven by
information about the cases themselves. For this, researchers must decide which values in the orig-
inal dataset correspond to the boundaries of the set (the 0, 0.5 and 1 values). They may choose to use
meaningful values or summaries of the original variables to do this, depending on what makes sense
in the context of the data and research aims. For example, if we were creating a calibrated set from
an original set of test scores, we may decide that the ‘pass mark’ constitutes a reasonable value to
equate to a set-membership score of 0.5. In this case, the created set would constitute the set of
passes and set-membership scores approaching 1 would be those where the original scores were
almost full marks. Another approach would be to equate the 0.5 set-membership score to a particu-
lar percentile in the original distribution of test scores. Equating, for example, the 80th percentile
score to the 0.5 value would create a slightly different set – the set of high scores. The purpose of
the analysis and properties of the data should drive the decision about calibration.

In our particular example, we can take advantage of the properties of the Rasch model to help us
make decisions about how to calibrate because we have measures of mathematics dispositions
created by the Rasch model. The examples above show, however, that other calibration methods
are possible and sensible, even for large-n datasets, depending on the particular context. We
explain more about our calibration procedures in section 3 but first explain some other important
concepts in QCA.

Necessary and sufficient conditions
The concepts of sufficiency and necessity are central in the QCA approach: the membership scores,
described earlier, can be used to examine whether certain configurations of characteristics can be
considered necessary and/or sufficient for a given outcome. A necessary condition4 for an
outcome must be present for the outcome to be achieved/observed but may not be enough on
its own to produce the outcome (Ragin 2008b, 2000). Similarly, if every instance of a characteristic,
or configuration of characteristics, is followed by the outcome, we can say that that characteristic/
configuration of characteristics is a sufficient condition for the outcome. In some cases, a condition
may be necessary and sufficient and, in others, it may be neither necessary nor sufficient. A configur-
ation is perfectly sufficient for an outcome if the set membership scores in it are less than the scores
of the outcome set, for all cases – or, in other words, when the condition is a subset of the outcome
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set. When this relationship holds, every case that is in the configuration set is, by default, also in the
outcome set. Similarly, a condition is perfectly necessary for an outcome if the set membership
scores in the condition are greater than the scores of the outcome set, for all cases – or when the
outcome is a subset of the condition set. When examining the social world, particularly, though
not exclusively, when using large datasets, it is unusual to encounter such examples of perfect neces-
sity or sufficiency. Instead, we allow the relationships between configuration and outcome sets to be
less than perfectly necessary/sufficient because they allow us to determine whether a characteristic
is, for example, ‘almost always’ sufficient, or quasi-sufficient (Ragin 2008b, 2000). In this way, we are
looking for empirical evidence of relationships that may be causal in reality. Evidence of strong
necessary and/or sufficient relationships (i.e. those approaching perfect necessity or sufficiency)
between outcome and configurations could be evidence of a wider causal pattern though this analy-
sis alone cannot provide definitive evidence of causality and any claims of causality should also make
appeals to theory, research design, and other sources of evidence, as appropriate. In this paper, we
will focus on relationships of sufficiency as these fit well with our substantive questions about which
combinations of characteristics may be leading to high or low dispositions.

Using truth tables to understand the data
The dataset, then, must be calibrated to translate original values into crisp or fuzzy-set scores before
QCA analysis can begin.5 Once the data has been calibrated, it can be analysed to determine whether
there are any patterns indicating a relationship of quasi-necessity or quasi-sufficiency between
characteristics.

Table 1 is an example of a truth table, with made-up data, where ‘Male’, ‘Maths ability’, and ‘Maths
confidence’ are characteristics being drawn upon to explain an outcome, ‘high Maths disposition’.6

Table 1 has 8 (or 23) rows and shows all the possible combinations of ‘Male’, ‘Maths ability’, and
‘Maths confidence’ and each row represents a configuration. In the case of the set ‘Male’, where
the characteristic is a crisp set, the 1’s and 0’s in the table simply indicate the presence or
absence of this characteristic. So, for example, rows 1, 3, 4, and 6 represent boys and rows 2, 5, 7,
and 8 represent girls. In Table 1, ‘Maths ability’ and ‘Maths confidence’ are fuzzy – so each row
includes cases with a range of membership scores in these sets.7 The 1’s in Table 1 in the ‘Maths
ability’ and ‘Maths confidence’ columns indicate cases where the fuzzy membership score is
greater than 0.5 and the 0’s are cases with a score of less than 0.5. So, row 1 represents boys with
scores of greater than 0.5 in ‘Maths ability’ and ‘Maths confidence’. The rows of Table 1 then, are
intersections of sets or configurations and we write row 1 as MALE*MATHS ABILITY*MATHS CONFI-
DENCE with the operator ‘*’ indicating set intersection and the capital letters indicating the presence
of a characteristic.8 Similarly, we use small letters to indicate the absence of a characteristic; row 2
could, thus, be written as male*MATHS ABILITY*MATHS CONFIDENCE.

The rows of Table 1, representing particular, separate configurations of characteristics, can be
thought of as new sets and a case’s membership score in them can be calculated as the
minimum of its membership scores in the component sets.9 The score of a case in row 1, MALE*-
MATHS ABILITY*MATHS CONFIDENCE, for example, would be the minimum of its scores in the

Table 1. Example of a Truth Table.

Row number
(configurations) Male

Maths
ability

Maths
Confidence

Number of
cases

Consistency for high Maths
disposition

1 1 1 1 453 0.89
2 0 1 1 224 0.85
3 1 1 0 130 0.81
4 1 0 0 194 0.63
5 0 0 1 12 0.52
6 1 0 1 219 0.48
7 0 0 0 98 0.47
8 0 1 0 484 0.12
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sets ‘Male’, ‘Maths ability’, and ‘Maths confidence’. The consistency measure for Maths disposition
tells us the extent to which these new sets, formed from intersections of the original sets, coincide
with the outcome: here, a measure of maths disposition. Remember that each case has set member-
ship scores for ‘Male’, ‘Maths ability’, ‘Maths confidence’, and ‘Maths Disposition’. If all of these were
crisp sets, then the consistency of row 1 for ‘Maths Disposition’ would simply be the proportion of all
cases in row 1 that also have a score of ‘1’ for ‘Maths disposition’. When considering fuzzy sets, the
consistency formula:

consistency(Xi ≤ Yi) = Smin(Xi, Yi)/S(Xi)

calculates, for each truth table row, the score of a case in that row and assesses this against the
case’s score for the outcome set, for all cases in the dataset. A consistency score of 1 would indicate
that, all cases of that configuration, have smaller membership scores for the configuration than those
for the outcome. A consistency score of 0 indicates that no cases of a configuration are smaller than
that of the outcome. A consistency score between 0 and 1 indicates that some cases of a configur-
ation have smaller score than that of the outcome – where the closer the score to 1, the higher the
number of cases fulfilling this criterion.

As analysts, we must make a judgement about what level of consistency threshold is acceptable
to indicate quasi-sufficiency and this affects the results we produce.10 These ideas are summarized in
Figure 1 where X can be any configuration of characteristics and Y is an outcome set., The situation in
Figure 1a cannot be thought of as quasi-sufficient as more of X is out of Y than in it (which would be
indicated by a consistency score of less than 0.5). Choosing what score is acceptable to indicate
quasi-sufficiency, is not always straightforward, however (Ragin 2000). We discuss the implications
of this for our data in a later section.

Generating and interpreting solutions
As mentioned earlier, one of the benefits of using fs/QCA is that it can highlight asymmetric relation-
ships between characteristics and outcomes. This, however, means that, when using fuzzy sets, the
analysis for one outcome (e.g. high dispositions) cannot be used to derive a solution for the absence
of the outcome (e.g. low dispositions). For example, Table 1 is a truth table showing the degree to
which configurations are sufficient for high maths dispositions. It would be wrong to immediately
conclude from Table 1 that row 8 is an example of a configuration leading to low dispositions.
This is because, if we run an analysis for the absence of the outcome, i.e. low maths dispositions,
we could find that the configuration in row 8 of Table 1 does not have a consistency score high
enough to warrant being described as sufficient for that outcome.11

If we select a consistency threshold of 0.85, we find that there are 2 rows which have consistency
scores higher than this and therefore can be considered quasi-sufficient for Maths disposition. These
are the rows representing the configurations MALE*MATHS ABILITY*MATHS CONFIDENCE and mal-
e*MATHS ABILITY*MATHS CONFIDENCE (rows 1 and 2 in Table 1). To simplify, we can first produce a

Figure 1. Venn diagrams representing various degrees of sufficiency of X for Y.
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solution of the form

MALE∗MATHS ABILITY∗MATHS CONFIDENCE + male∗MATHS ABILITY∗ MATHS CONFIDENCE

� MATHS DISPOSITION, (where′ +′ represents logical OR);

which shows that either boys or girls with high maths ability and high mathematical confidence
consistently have high mathematical dispositions. It is possible to simplify this further by noticing
that a case’s score in the set ‘MALE’ is not making a difference here – both ‘MALE’ and ‘male’ (i.e.
female) are, in conjunction with high mathematical ability and high mathematical confidence
(MATHS ABILITY*MATHS CONFIDENCE), is quasi-sufficient for high maths disposition.

So, our simplified solution is just MATHS ABILITY*MATHS CONFIDENCE→MATHS DISPOSITION. If
we set the threshold at 0.8 instead, we would produce the simplified solution MALE*MATHS ABILITY
+MATHS ABILITY*MATHS CONFIDENCE → MATHS DISPOSITION – a very different solution obtained
by the decision to include only one more row than previously. Software packages for fs/QCA perform
this act of Boolean simplification for more complicated truth tables by considering pairs of quasi-
sufficient truth table rows together and eliminating redundant parts of terms until the simplest
expression is found. This simple example reminds us, however, that it is our decisions about consist-
ency thresholds that will determine which solution is generated.

How should we, then, evaluate which solution should be chosen as a good representation of the
data? Each term (e.g each configuration) in a solution can be thought of as one route to the outcome.
In situations such as the example above, it is helpful to know the ‘empirical importance’ of each of
these routes as this can help us determine which of the solutions best explains the outcome (Ragin
2006b, 299). This can be found by calculating the ‘coverage’ of a configuration – a measure of how
much of the outcome set coincides with the configuration in question. The coveragemeasure in QCA
for the whole solution can be thought of as analogous to R2 measures in linear (regression) models as
it gives a measure of how much of the outcome set is being explained by the configurations in the
model. QCA solutions will also contain details of raw and unique coverage of each part of the sol-
ution or solution term. The unique coverage is the coverage specific to that term and so solution
terms which have an element in common, such as MALE*MATHS ABILITY +MATHS ABILITY*MATHS
CONFIDENCE from earlier, will have a unique coverage of 0. The raw coverage for solution terms is
the amount of the outcome covered by that term. Solution terms which do not overlap with others
will have equal raw and unique coverage scores.

Figure 2 shows two instances of perfect sufficiency – one where coverage is low and another
where it is high. Both these instances would have consistency scores of 1 but Y is being explained
better by X in the right-hand diagram where the coverage score is higher and more of the set X is
‘covered’ by Y.

Results

As already mentioned this analysis is focused on data from a complete case analysis of 5022 students
in Years 7–11, with mathematics dispositions as the main outcome. In order to conduct QCA each
case must have information in all of the possible characteristics – otherwise it is not possible to
create a set-membership score in all sets and assign the case to its proper row in the truth table.
Before the presentation of the main results we illustrate in more detail our calibration approach
which was performed with the full DP1 dataset (N=13,643).

Calibration of variables/measures

The first step in QCA is to create sets (i.e. calibrate the measures). We outline our method and ration-
ale below for each set in turn.
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Gender is coded as a crisp set called ‘MALE’ where a score of 0 indicates girls and a score of 1
indicates boys. Our sample has a higher percentage of girls (59%) to boys (41%) but by creating
this set we are able to see if relationships between transmissionist teaching practices and disposi-
tions are different for girls and boys.

We use crisp sets as year dummies to investigate whether the results differ by year group and
include four of these in the model (for years 7-10) since a score of zero in all of these will indicate
that cases are in year 11.12 Ordinal variables cannot be translated into fuzzy sets in QCA as doing
so would assign a distance between levels that does not necessarily exist in the original variable.

Fuzzy-sets are then created for each of the attitudinal measures of mathematics identity, math-
ematical self-efficacy and mathematics disposition using the QCA package in R (Dusa 2019). As
noted earlier, for continuous measures the researcher must choose an approach to calibration
that is meaningful in their context. In our dataset, these measures have been constructed using
the Rasch model, which produces interval measures in logits, with scores ranging from negative
values through to positive values centred around zero. If a student in our dataset, for example,
scores 0 on the measure of mathematics disposition, this can be taken to be indicative that that
student has neither high nor low mathematics dispositions.

As the starting point of our calibration process we argue that the concept of a zero score in a
Rasch measure (i.e. the expected centre of its distribution) is analogous to the concept of a set mem-
bership score of 0.5 in fuzzy set theory and so, for all our measures, we translate scores of zero in the
original measure to 0.5 in the resulting fuzzy-set. The next step in calibration is to decide the upper
and lower thresholds in the original measures that will correspond to complete set-membership or
non-membership of the sets. We set these boundaries at less than/more than the mean plus 1 stan-
dard deviation – indicating that these cases are far enough away from the actual centre value to indi-
cate complete set non-membership or full set-membership respectively This calibration decision was
the result of an iterative process where different calibration thresholds were tried and discussed by
the authors using graphical methods to help understand their differences. It is this researcher control
over calibration that provides an important qualitative dimension to QCA and is often the part that
researchers find most challenging (Russo and Confente 2019).

Our aim, when choosing the final thresholds was 1) to minimise the effect of very high and low
original measures on the calibration, 2) to use the information contained in the original Rasch scores
to determine what Rasch scores equate to ‘very high’ or ‘very low’ set-membership scores and 3) to
account for the Rasch scores in our complete cases sample dataset not being (perfectly) normally
distributed (i.e. with scales where the mean was not the expected 0). Our decision to set the
thresholds for full set-membership and non-membership to the mean + 1 standard deviation
fulfils these criteria. It is well known that the calibration chosen can effect results (Glaesser and

Figure 2. Venn diagrams showing low and high coverage.
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Cooper 2014; Skaaning 2011) and so we also checked the effect of changing this slightly on the
results generated to ensure they were stable. This transformation of the Rasch scores into fuzzy
sets is demonstrated in Figure 3 for the maths disposition measure.

Practically, once the thresholds were chosen we used the QCA package in R (Dusa 2019) to cali-
brate our fuzzy sets. This function requires 4 inputs – the data to be calibrated and the values cor-
responding to 0, 0.5 and 1 in the new set. With these inputs, it uses the empirical cumulative
distribution function to create the new set membership scores. It is important to note here that
this function will not automatically assign a score of exactly 0 or 1 so some variation is still preserved
at the extremes of the distribution of set membership scores. For our purposes, we were content to
retain some distinction between the extreme values.

Figure 3 illustrates clearly that set calibration is not merely a straightforward translation of the
data to the (0,1) interval. In our calibration, for example, several values at the extremes of the original
distribution have been calibrated to have set membership scores very close to 0 or 1. We do this
because we think, for example, that very small values on the original disposition measure indicate
roughly the same thing and it would be unwise to exaggerate the differences between them in
our calibrated measure. However, because we considered 0 as the expected centre of the scores
and thus denoted values above or below zero as qualitatively different (i.e. high and low dispositions
respectively), we want the differences between these to be reflected in our final calibration.

Solutions

Next, we organise the cases in the dataset into a truth table (not shown) according to their set-mem-
bership scores in each of our created sets and then solutions are generated from the truth tables
using the approach outlined earlier. For both high dispositions and low dispositions, solutions
were generated with a consistency threshold of 0.68. Choosing a consistency threshold is another
qualitative decision by the researchers and we note here that ours is lower than is usual in the (pre-
dominantly small-n) QCA literature which is reflected in the strength of the relationships detected. As
discussed earlier, there is a trade-off between consistency and coverage with high consistency often
yielding very low coverage scores. This was the case in our analysis where higher consistency
thresholds either yielded no solutions or solutions about one year group only.

Both these analytic processes were carried out using the QCA package in R (Dusa 2019). The
results for both the outcome (high disposition) and the negated outcome (low dispositions) are pre-
sented in Tables 2 and 3, respectively.

Figure 3. Distribution of original Rasch score and calibrated fuzzy set for maths disposition.
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Table 2 shows that there are different solutions for different year groups – confirming our suspi-
cion that the associations found in earlier work (see Pampaka and Williams 2016) provide better
explanations for some year groups than others. For those in years 7 and 8, low scores in the
‘student perceived transmissionist’ measure are quasi-sufficient for high mathematical dispositions
though the consistency score for year 7 is higher than that of year 8 – suggesting that the relation-
ship between low student perceived transmissionist scores and high dispositions is weaker for the
year 8 students. This also suggests that if girls perceive their mathematics teaching to be transmis-
sionist at this age, they will not want to keep studying it (as reflected in lower dispositions).

Another similarity between the results of those in year 7 and 8 is that being male is quasi-
sufficient for high dispositions – i.e. regardless of their scores in the transmissionist measures,
boys generally have high mathematical dispositions at this educational stage. Again, as with the
student perceived transmissionist measure, the strength of the relationship is weaker for those in
year 8 than in year 7. This should not be taken to mean that there are not girls in these year
groups with high mathematical dispositions – merely that there is no overall relationship
between the terms in the model that holds in general for girls. In other words, the girls in the
group show sufficiently different relationships between their perceptions of teaching practices
and their dispositions that a good summary for the group of girls in these years overall is not
possible.

Similarly, there are no quasi-sufficient relationships in the solution for students in years 9 and 11.
Again, this should not be taken to mean that there are not students in years 9 and 11 with high dis-
positions but that the factors we have modelled have an inconclusive relationship with mathemat-
ical dispositions for these year groups.

For students in year 10, there is a more complex relationship between the measures of perceived
transmissionism, gender and dispositions. For male students in this year, it is quasi-sufficient for high
dispositions to have either low scores in the student transmissionist measure or the teacher one. This
is the only year group where the teacher measure shows any sort of relationship with dispositions
which could explain why it appeared to be not statistically significant in our earlier work using
regression modelling (Pampaka and Williams 2016). Considering the sample as a whole in a
regression model would show such a small association between this teacher perceived transmission-
ism and dispositions because there is no clear relationship except for students in year 10.

Considering the solution as a whole, the coverage score of 0.58 means that most of the individual
cases have been explained using one (or more) of the individual solution terms in Table 2.13

However, many cases still have not and this will be largely due to there being no terms in the sol-
ution that explain high dispositions for students in years 9 and 11.

Table 3 shows the results for an analysis of low dispositions. Again, we find results that differ by
year group but that, unlike for high dispositions, there are some relationships for each year group in
the sample.

For female students in year 7, having high scores in the teacher perceived transmissionist and the
student perceived transmissionist measure is quasi-sufficient for low dispositions. This is interesting
because it suggests that high scores in either is not quasi-sufficient for low dispositions
but having high scores in both is. In earlier work, we found that the younger students in the

Table 2. Results for high dispositions.

Raw coverage Unique coverage consistency

student transmissionist*YEAR7 0.27 0.15 0.73
MALE*YEAR7 0.16 0.03 0.63
student transmissionist *YEAR8 0.20 0.10 0.66
MALE*YEAR8 0.13 0.04 0.56
MALE* student transmissionist * YEAR10 0.04 0.01 0.66
MALE*teacher transmissionist*YEAR10 0.04 0.01 0.67
Whole solution 0.58 n/a 0.63
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sample generally had higher dispositions towards mathematics than those in years 10 and 11 (see
Pampaka and Williams 2016). Therefore it makes sense that those with low dispositions are those
with a particular set of circumstances – high teacher and student perceptions of transmissionist
teaching. In this case, it is boys who have an inconclusive relationship between their transmissionist
scores and their dispositions.

For female students in year 8, having a high score only in the student perceived transmissionist
measure is quasi-sufficient for low dispositions. Considering the results for high dispositions for year
8 students along with these results we see that, for girls in year 8, there is an almost symmetrical
relationship between their perception of whether teaching is transmissionist and their dispositions.
In other words, girls in year 8 with perceptions that the teaching they receive is not very transmis-
sionist have high dispositions but those who perceive their teaching to be transmissionist have low
dispositions. For boys, the relationship between their perceptions of transmissionist teaching and
dispositions is asymmetrical: when they perceive the teaching they encounter to have low levels
of tranmissionism, they have high dispositions but perceived high level of transmissionism does
not necessarily lead to low dispositions for them.

For female students in years 9 and 10, the transmissionist or otherwise nature of teaching has no
relationship with their dispositions – these are low regardless. This is also the case for male students
in year 11 though the strength of the consistency relationship is weaker than it is for the girls in years
9 and 10. Further work is needed to explore these results as they show a possible relationship
between curriculum stage, gender and dispositions.

In Table 3, we see that students’ perceptions of high student transmissionism is quasi-sufficient
for low dispositions for both boys and girls in years 9 and 11. For students in year 11, high levels of
teacher transmissionism alone are quasi-sufficient for low dispositions. We suggest possible reasons
for this in the discussion section.

Discussion

Methodologically, our contribution in this paper has thus been two-fold: (a) we demonstrated how a
set-theoretic approach such as QCA can be used in education and in particular with dispositional
measures to understand more about their configuration/formation in students’ secondary edu-
cation, and (b) we have also showed for the first time how this approach can be combined with
the results of measurement models (i.e. Rasch). One might ask regarding the former: what’s the
extra benefit of using this approach? Our earlier work using only linear models (as well as the
model presented in Appendix 1), did not alert us to the asymmetry shown here. In particular,
relationships between, for example, gender and dispositions for different year groups were averaged
out in the previous linear model – leading us to conclude that girls had lower dispositions in
general. Table 3 shows us that, for students in year 11, the opposite relationship holds.

In our QCA, the process of calibration has been aided by the use of measurement theory which was
employed to construct the original measures used in the model. Thus, we can proceed to calibrate the
measures into fuzzy sets using some external criteria knowing that this will bemeaningful. Without this,

Table 3. Results for low dispositions.

Raw coverage Unique coverage consistency

male*TEACHER TRANSMISSIONIST*STUDENT TRANSMISSIONIST*YEAR7 0.06 0.06 0.72
male* STUDENT TRANSMISSIONIST *YEAR8 0.10 0.10 0.71
male *YEAR9 0.14 0.05 0.61
STUDENT TRANSMISSIONIST *YEAR9 0.13 0.04 0.74
male*YEAR10 0.11 0.11 0.67
MALE *YEAR11 0.06 0.01 0.58
TEACHER TRANSMISSIONIST *YEAR11 0.10 0.01 0.74
STUDENT TRANSMISSIONIST *YEAR11 0.10 0.01 0.75
Whole solution 0.58 n/a 0.67
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wewould have to consider a relative calibration of themeasures – obtained by equating 0.5 in the fuzzy
setwith somecentre-point in eachmeasure (e.g. themean). Any interpretationof the resultswould have
to reflect this – for example, we would talk of ‘high mathematical disposition for this group’ rather than
‘high mathematical disposition’ in general. It would then be hard to say what the applicability of the
resultswouldbe tootherpopulationsof students. Theuseof theRasch scoresaddresses thus a keymeth-
odological issue that ariseswhenQCA to large sample size datasets, which is how to replicate the kind of
case-level familiarity that is possible with small sample size datasets and avoid error in the coding of
cases (see Fiss, Sharapov, and Cronqvist 2013). As scores constructed through Rasch measurement
have already undergone a process of validation, the conversion of item responses into a score makes
this score robust quantitatively and also meaningful qualitatively.

Given the novelty of the approach and its implementation in educational research there are some
further methodological issues to be noted.

The first point is the unavoidable comparison of the method with more straightforward
approaches like regression models. For the interested reader we provide the results of two
regression models with the same variables and with the same sample in Appendix 1 – one with inter-
action terms and one without - but opt out of direct comparisons as this cancels out our initial inten-
tion (i.e. to show the potential of combining Rasch measurement with QCA to explain complicated
relationships between attitudes to mathematics) and because these models are not directly compar-
able with a QCA model. It is worth mentioning that interaction terms in regression models behave
slightly differently to the configurations in QCA as interaction terms assume a symmetric relationship
whereas conjunctions of characteristics do not (see Thiem, Baumgartner, and Bol 2016 for a very
detailed and extended comparison of the two).

Debate is also ongoing between QCA users as to whether multilevel data, such as this, needs to be
analysed differently or can be analysed using a standard QCA approach. Denk (2010) was the first, to
our knowledge, to propose an adapted QCA procedure for multilevel data but, as Rohlfing (2012)
argues persuasively, this can often lead to unnecessarily complex solutions which offer little
added insight balanced against their more challenging interpretation. Rohlfing (2012) also argues,
as would we, that standard QCA shows if any configurations across systems (in this case, schools)
typically have a relationship with the outcome in question.

Substantively, one could ask ‘what this novel analytical approach adds to our knowledge about
students’ mathematics dispositions at secondary school?’ Our configurational analysis indicates
interesting substantial findings regarding the formation of maths disposition at the different
stages of formal secondary education. First, we see that transmissionist teaching does not necessarily
lead to high or low dispositions in general – but that in conjunction with other characteristics and
particular school stages, both transmissionist and non-transmissionist teaching practices are associ-
ated with both high and low dispositions.

As with previous results, student perceptions of whether teaching is transmissionist or not seems
to be more strongly connected with dispositions (Pampaka and Williams 2016). However, the
approach taken here allows us to understand the complexity of this relationship. In earlier work,
we found that the year 7 students in the sample generally had higher dispositions towards math-
ematics than those in years 10 and 11 (Pampaka and Williams 2016). Our results here show that
year 7 students with low dispositions are typically female students with high student and teacher
perceptions of transmissionist teaching and whilst they may not make up the majority of the year
7 cohort, their experiences can be pinpointed using this approach.

Second, we can also identify that, for particular sub-groups of students, teacher perceptions of
transmissionist practices may explain dispositions. The association of teaching related variables
with students’ disposition has been recently explored in post-secondary maths (Pampaka et al.
2018) and in regards to its complex effect on mathematics self-efficacy (Lei and Pampaka 2018;
2019). Riconscente (2014) also recently found that teacher-related variables contribute to students’
interest, self-efficacy and achievement after controlling for demographics and initial levels of interest
and self-efficacy, with a sample of Latino students in USA.
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Third, the relationship between the teacher measures and dispositions seems to be strongest for
year 11 and may be related to the increased emphasis on formal assessment in the later stages of
secondary school. In England, GCSEs are taken by most students in year 11 but students will
study towards them from year 10. For students in year 11, high levels of teacher transmissionism
alone are quasi-sufficient for low dispositions and this may be a result of the pressure on teachers
to prepare students for high-stakes examinations in this year.

Conclusion

Our paper has shown that the relationship between student perceptions of teaching/learning experi-
ence, teaching practices and mathematical dispositions is complex. Such complexity is common in
educational research and a challenge for researchers to explore; nevertheless, this complexity can be
understood by employing QCA as an analytical technique especially when used in combination with
other qualitative and quantitative methods. This paper is seminal in that it introduces the fs/QCA
with a practical real example with a large dataset and also in combination with interval measures.
As the measures themselves have been validated using the Rasch model, our use of them here
allows us to say something in general about student dispositions and the relationships with percep-
tions of teaching/learning experience and perceived practices.

We have discussed in depth how this method works and drawn attention to a particular stage of
analysis – the calibration stage – that usually requires the researcher to make a judgement about
how the raw data should be transformed into a collection of set-membership scores. In our case,
this decision is informed by measurement theory as the measures of attitudes and practices in
our original dataset have a meaningful zero value and upper and lower bounds that produce sen-
sible analogues for the set-membership scores of 0 and 1.

By exploring the solutions for both high and low dispositions, we find that these relationships are
asymmetric and differ by year group and gender. Identifying these differences allows for interven-
tions to be more precisely targeted and suggests that for some groups of students, transmissionist
teaching may be more damaging to their dispositions than for others.

Notes

1. There is not space here to detail the literature on students’ dispositions and why the study of them is important
but see Allexsaht-Snider and Hart (2001), Archer et al. (2005), Brown, Brown, and Bibby (2008) and Pustjens et al.
(2004) for more on this.

2. This was complemented by interview data collected from students and teachers in two case study schools. We
focus here on the analysis of the survey data from the 40 schools that participated in the study from the start,
and not this interview data.

3. A recent MSc dissertation had focused on the implications of missing data on national comparability and did not
find evidence of bias (Brown 2017).

4. A condition may be one characteristic or a configuration of characteristics.
5. More details about the specific calibration process for this analysis are provided later in the paper, in the results

section.
6. A corresponding analysis could be done for ‘low maths disposition’. A case’s score in the set ‘low maths disposi-

tion’ can be calculated from the formula: 1-(score in ‘high maths disposition’).
7. Note here that QCA will allocate cases to rows in the truth table (or to analytic types) based on their set member-

ship scores in different sets. This will produce ‘clusters’ of cases of a similar type but the allocation of cases to
types is not affected by the distribution of set-membership scores as it would be if conducting a cluster analysis.
See Cooper and Glaesser (2010) for a detailed exploration of the differences between fsQCA and fuzzy cluster
analysis.

8. This is standard QCA notation and will be adopted throughout.
9. As explained earlier, this is not the same as a creating a multiplicative interaction term in a regression model.

10. Throughout, we will refer to all situations where the sufficiency relationships deduced are not perfect as quasi-
sufficiency

11. To do this, fuzzy set scores in the ‘negated outcome’ are calculated from the formula: (1-score in outcome). Then
analysis proceeds as above.
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12. The alternative is to include all years as crisp sets but then have many redundant rows which contain non-poss-
ible scenarios e.g. being in years 7 and 8.

13. Note that this does not equate to 58% of cases.
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Appendix 1

Model 1 Model 2

Coef. s.e. t p Coef. s.e. t p
Gender (Ref: Male) −0.289 0.043 −6.7 <0.001 −0.201 0.079 −2.56 0.01
Year Group (Ref: Year 7)
Year 8 −0.240 0.056 −4.26 <0.001 −0.224 0.087 −2.57 0.01
Year 9 −0.619 0.062 −9.92 <0.001 −0.634 0.103 −6.18 <0.001
Year 10 −0.486 0.069 −7.05 <0.001 −0.159 0.106 −1.5 0.135
Year 11 −0.668 0.074 −9.09 <0.001 −0.648 0.111 −5.85 <0.001

Students Transmissionism −0.680 0.041 −16.51 <0.001 −0.677 0.041 −16.44 <0.001
Teachers Transmissionism −0.124 0.038 −3.23 0.001 −0.12 0.038 −3.12 0.002
Constant 0.947 0.047 20.18 <0.001 0.893 0.062 14.51 <0.001
Gender*Year Group (Ref: Male@Year7)
Female-Year8 −0.023 0.114 −0.20 0.839
Female-Year9 0.015 0.129 0.12 0.907
Female-Year10 −0.561 0.137 −4.08 <0.001
Female-Year11 −0.033 0.145 −0.22 0.823

Model 1: F(7,5014)=90.13, p<0.001, R-square=0.112, Adjusted R-square=0.111, n=5022
Model 2: F(11,5010)=59.43, p<0.001, R-square=0.115, Adjusted R-square=0.114, n=5022
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