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Abstract: The apoptotic antiproliferative actions of our previously reported CB1 allosteric modulators
5-chlorobenzofuran-2-carboxamide derivatives VIIa–j prompted us to develop and synthesise a novel
series of indole-2-carboxamide derivatives 5a–k, 6a–c, and 7. Different spectroscopic methods of anal-
ysis were used to validate the novel compounds. Using the MTT assay method, the novel compounds
were examined for antiproliferative activity against four distinct cancer cell lines. Compounds 5a–k,
6a–c, and 7 demonstrated greater antiproliferative activity against the breast cancer cell line (MCF-7)
than other tested cancer cell lines, and 5a–k (which contain the phenethyl moiety in their backbone
structure) demonstrated greater potency than 6a–c and 7, indicating the importance of the phenethyl
moiety for antiproliferative action. Compared to reference doxorubicin (GI50 = 1.10 µM), compounds
5d, 5e, 5h, 5i, 5j, and 5k were the most effective of the synthesised derivatives, with GI50 ranging
from 0.95 µM to 1.50 µM. Compounds 5d, 5e, 5h, 5i, 5j, and 5k were tested for their inhibitory impact
on EGFR and CDK2, and the results indicated that the compounds tested had strong antiproliferative
activity and are effective at suppressing both CDK2 and EGFR. Moreover, the studied compounds
induced apoptosis with high potency, as evidenced by their effects on apoptotic markers such as
Caspases 3, 8, 9, Cytochrome C, Bax, Bcl2, and p53.

Keywords: indole; carboxamide; apoptosis; antiproliferative; multi-target

1. Introduction

In response to increased global morbidity and mortality rates from so-called incurable
diseases, medication research and development has never been static but has grown
increasingly dynamic. Traditionally, therapeutic drug discovery has relied on the design of
highly selective chemical entities that target a single biological entity assumed to play a
dominant role in a particular disease [1,2]. By means of this method, researchers hoped to
eliminate any unwanted side effects and ensure that drug candidates had more drug-like
properties. Highly selective or specific therapeutic medicines focused on single molecular
targets, on the other hand, have shown to be ineffective, particularly in the treatment
of complicated disorders. Drug resistance has been linked to the use of highly selective
therapeutic agents.

However, due to the low efficacy of single target medications against multifactorial
disorders whose aetiology is based on a collection of biochemical processes and many biore-
ceptors acting concurrently, drug design methodologies have to be reconsidered. Over the
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last few years, medicinal chemistry has been exploring new tools and alternatives to attain
more agility, security, and efficiency in the synthesis and prospection of drug candidates.

Because of the ineffectiveness of certain single-drug therapies, the hunt for improved
clinical outcomes has prompted the introduction of polypharmacology as a novel therapeu-
tical technique. Polypharmacology is the development or application of pharmacological
drugs that operate on several molecular targets or metabolic pathways. This multi-target
strategy can take several forms, such as drug associations, drug combinations, or a single
agent with numerous ligands, all of which are aimed at multiple targets. HIV/AIDS treat-
ment, cancer treatment, TB treatment, and hypertension medication are all examples of
combination therapy [3–5]. However, the inefficiency of combination therapy, as well as
the negative consequences of drug–drug interactions, different pharmacokinetics, toxicity,
and costs, has fuelled the development of new drug discovery methodologies. This current
technique promotes combining diverse structural components in a single scaffold to allow
molecular recognition by more than one bioreceptor, operating in many targets associated
with biochemical networks responsible for multifactorial disease pathophysiology [6–8].

A breakdown of balance between cell proliferation and apoptosis is a symptom that
enhances the inability of damaged cells to be removed by apoptosis. Activating apoptotic
pathways in tumour cells is a critical practise for cancer treatment [9]. Apoptosis is triggered
by extracellular or intracellular cues, which initiate a signalling cascade with characteristics
such as nuclear condensation and DNA fragmentation [10]. Furthermore, the deregulations
responsible for cancer genesis and progression involve hundreds of genes or signalling
cascades [11]

Caspase, a highly specialized family of cysteine proteases, is known to mediate an
important stage of the apoptotic process [12]. Numerous in vitro and in vivo research
demonstrated that aberrant caspase activation control is critical to avoiding cancer cell
death [13]. Furthermore, other genes, including Bcl-2 and p53, are known to be involved in
apoptotic pathways. Overexpression of anti-apoptotic Bcl-2 has been linked to a variety of
cancers [14]. The suppression of caspase proteins is thought to be the mechanism by which
Bcl-2 prevents apoptosis [15]. p53 has been discovered to be required for cellular senescence
caused by mutations in genes involved in mitosis and chromosomal segregation [16]. To
maintain genomic integrity, the p53 gene can activate cell cycle checkpoints, DNA repair,
and apoptosis (Ahmad et al., 2012). Most malignancies are caused by p53 mutations or
deletions [17].

Antiproliferative actions have been documented for cannabinoids such as THC (I)
and the CB1 allosteric modulator CBD (II) [18–22], but no data for other CB1 allosteric
modulators such as the 5-chloroindole-2-carboxamide derivatives III and IV, and their
furan congeners V and VI have been reported (Figure 1). Recently, we reported on the
antiproliferative action of 5-chlorobenzofuran-2-carboxamide CB1 allosteric modulators
V and VI for the first time [23]. Based on this, we designed and synthesised a novel
series of 5-chlorobenzofuran-2-carboxamide derivatives VIIa–j (Figure 1). The newly
synthesized compounds were tested for their antiproliferative effects in A549 lung, MCF-7
breast, Panc-1 Pancreatic, and HT-29 colon cancer cell lines. VIIa–j compounds showed
significant antiproliferative action, the most potent derivative of VIIa–j had a GI50 value of
1.35 µM against the four examined cell lines, being equipotent to the reference doxorubicin
(mean GI50 = 1.13 µM) and even more potent than doxorubicin in MCF-7. The compounds
examined had a strong apoptotic effect, with significant increases in caspase 3, 8, and 9,
as well as Cytochrome C levels. Furthermore, compared to doxorubicin, the investigated
compounds triggered a significant rise in Bax levels and a decrease in anti-apoptotic Bcl-2
protein levels in MCF-7 cells [23].
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Figure 1. Structures of compounds I–VI and VIIa–j.

In the present work, the apoptotic antiproliferative actions of our previously reported 5-
chlorobenzofuran-2-carboxamide derivatives VIIa–j (Figure 1) prompted us to develop and
synthesise a novel series of indole-2-carboxamide derivatives 5a–k, 6a–c, and 7 (Figure 2).
A small library of fifteen new compounds in which the methyl group was kept as a sub-
stituent at C3. To investigate the effect of substituent modification, the para positions of the
phenethyl tails in the newly synthesised compounds were left unsubstituted or substituted
with 4-dimethylamino, morpholin-4-yl, piperidin-1-yl, or 2-methylpyrrolidine-1-yl. To
investigate the impact of the linker nature on anticancer activity, the phenethyl amino
carbonyl moieties were modified to 4 phenylpiperazin-1-yl carbonyl as in compounds
6a–c or benzyl carbonyl as in compound 7. The position and number of halogen atoms on
the indole moiety’s phenyl ring were also investigated. The antiproliferative activity of
compounds 5a–k, 6a–c, and 7 against a panel of cancer cell lines were investigated. The
most active compounds were evaluated for mechanistic activity as multi-targeted kinase
inhibitors such as EGFR and CDK2. Furthermore, the compounds were evaluated for
apoptotic activity against caspases 3, 8, and 9, as well as Cytochrome C, Bax, Bcl2, and p53.
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2. Results and Discussion
2.1. Chemistry

Scheme 1 depicts the synthesis of target compounds 5a–k, 6a–c, and 7. Derivatives
of phenyl hydrazine Hydrochloride 1a–d under Fisher Indole cyclization were reacted
with 2-oxopropanoic acid 2 in the presence of PTSA (p-toluenesulfonic acid) to provide 3-
methylindole-2-carboxylates 3a–d [24]. The carboxylic acids 4a–d was obtained by alkaline
hydrolysis of the esters 3a–d [25]. The appropriate amines were coupled with carboxylic
acids 4a–d in the presence of DIPEA in DCM using BOP as a coupling reagent [23], yielding
target carboxamides 5a–k, 6a–c, and 7. 1H NMR, 13C NMR, and HRESI-MS were used
to identify the newly synthesised derivatives. The 1H NMR spectrum of 5d revealed the
appearance of three singlet signals: one at δ 11.34 ppm (1H) consistent with indole NH,
one at δ 7.89 ppm (1H) relating to amidic NH, and one at δ 2.41 ppm (3H) corresponding
to the methyl group. The spectrum also indicated the existence of signals corresponding
to ethylene protons at δ 3.48 (q, J = 7.1 Hz, 2H, NHCH2) and δ 2.77 (t, J = 7.4 Hz, 2H,
NHCH2), in addition to the morpholine group’s distinctive signals at δ 3.70 (t, J = 4.8 Hz,
4H, morph-H) and δ 3.02 (t, J = 4.8 Hz, 4H, morph-H). HRESI-MS revealed a peak for [M +
H]+ at m/z 398.1629, which corresponds to the molecular formula C22H25ClN3O2.

2.2. Evaluation of Biological Activities
2.2.1. In Vitro Anticancer Activity
Cell Viability Assay

The MCF-10A (human mammary gland epithelial) cell line was used in the cell
viability experiment. Compounds 5a–k, 6a–c, and 7 were incubated with MCF-10A cells
for 4 days at 50 µM concentration, and the viability of cells was determined using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. [26]. All compounds
had no cytotoxic effects, and the vitality of the cells was more than 83% for most of the
compounds examined.

Antiproliferative Activity

Using the MTT assay with doxorubicin as the reference drug, the antiproliferative
activities of 5a–k, 6a–c, and 7 against four human cancer cell lines, including pancreas
cancer cell line (Panc-1), breast cancer cell line (MCF-7), colon cancer cell line (HT-29),
and epithelial cancer cell line (A-549) were investigated [27]. Table 1 shows the results
of calculating the median inhibitory concentration (IC50) for all derivatives. Generally,
compounds 5a–k, 6a–c, and 7 demonstrated greater antiproliferative activity against the
breast cancer cell line (MCF-7) than other tested cancer cell lines, and 5a–k (which contain
the phenethyl moiety in their backbone structure) demonstrated greater potency than 6a–c
and 7, indicating the importance of the phenethyl moiety for antiproliferative action.
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Table 1. Antiproliferative activity of compounds 5a–k, 6a–c, 7, and Doxorubicin.
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6b 91 2.50 ± 0.20 2.30 ± 0.20 2.65 ± 0.20 2.80 ± 0.20 2.60
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The 2-methylpyrrolidin-4-yl phenethyl derivative 5e (R1 = Cl, R2 = R3 = H, R4 = 2-
methylpyrrolidin-1-yl) was the most potent derivative, with a GI50 value of 0.95 µM against
the four cell lines, being more potent than the reference doxorubicin (GI50 = 1.10 µM) and
also it was more potent than doxorubicin in A-549, MCF-7, and Panc-1 cell lines (IC50 =
0.95, 0.80, and 1.00 µM, respectively, while for doxorubicin IC50 = 1.20, 0.90, and 1.40 µM,
respectively). The unsubstituted derivative 5a (R1 = Cl, R2 = R3 = R4 = H) was roughly four-
fold less effective than 5e, with a GI50 = 3.70 µM, whereas the 4-dimethylamino derivative
5b (R1 = Cl, R2 = R3 = H, R4 = dimethylamino) had a GI50 = 3.30 µM.

Compound 5d (R1 = Cl, R2 = R3 = H, R4 = morpholin-4-yl) rated second in activity with
a GI50 of 1.05 µM against the four cancer cell lines, being somewhat less potent (1.1-fold)
than 5e but equipotent to doxorubicin and even more potent than doxorubicin against
A-549 and Panc-1 cell lines.

Replacement of the 2-methylpyrrolidin-4-yl moiety in compound 5e or the morpholin-
4-yl in 5d by 4-piperidin-1-yl in compound 5c resulted in at least 1.8- and 1.6-fold reduction
of the mean GI50 values, respectively, signifying the importance of the 2-methylpyrrolidin-
4-yl and 4-morpholinophenethyl moieties for the antiproliferative activity.

The 5-substitution impact was also investigated. As indicated in Table 1, compound
5g (R2 = Cl, R1 = R3 = H, R4 = 4-piperidin-1-yl) had much lower antiproliferative efficacy
(3 times) than compound 5c (R1 = Cl, R2 = R3 = H, R4 = 4-piperidin-1-yl). Compound 5f (R2
= Cl, R1 = R3 = H = R4 = H) was, on the other hand, more potent (1.9 times) than compound
5a (R1 = Cl, R2 = R3 = R4 = H).

Furthermore, we attempt to explore the effect of increasing the number of halogen
atoms on antiproliferative activity. For instance, the dihalo derivatives 5h (R1 = R3 = Cl,
R2 = H, R4 = 4-piperidin-1-yl) and 5k (R1 = R3 = F, R2 = H, R4 = 4-piperidin-1-yl) had
higher antiproliferative activity than the monohalo derivative 5c (R1 = Cl, R2 = R3 = H, R4
= 4-piperidin-1-yl) with GI50 values of 1.10 µM and 1.40 µM, respectively, compared to 5c
(GI50 = 1.70 µM), indicating the relevance of dihalo atoms for antiproliferative activity and
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that the chlorine atom is better tolerated than the fluorine one. The same is true for 5j (R1 =
R3 = F, R2 = R4 = H), which has higher potency (GI50 = 1.20 µM) than 5a (R1 = Cl, R2 = R3 =
R4 = H, GI50 = 3.7 µM) and 5f (R2 = Cl, R1 = R3 = H = R4 = H, GI50 = 1.95 µM). The situation
is somewhat different in the case of 5,7-dichloro derivative 5i (R1 = R3 = Cl, R2 = H, R4 =
morpholin-4-yl), which demonstrated lower potency (GI50 = 1.50 µM) than the 5-chloro
derivative 5d (R1 = Cl, R2 = R3 = R4 = morpholin-4-yl) with a GI50 value of 1.05 µM.

Furthermore, among the tested compounds, the 4-benzyl carbonyl derivative 7 and
the 4-phenylpiperazin-1-yl carbonyl derivatives 6a–c had the lowest mean GI50 values,
implying that the N-phenethyl carboxamide architecture is important for antiproliferative
action and correlating with previous SAR studies [23].

2.2.2. EGFR Inhibitory Activity

The inhibitory efficacy of 5d, 5e, and 5h–k against EGFR was evaluated using the
EGFR-TK assay [28], and the findings are presented in Table 2. The results of this test
supplement the findings of the cancer-cell-based investigation. All the tested derivatives
(5d, 5e, and 5h–k) inhibited EGFR significantly, with IC50 values ranging from 89 to
137 nM. Based on the findings given, three derivatives 5d, 5e, and 5j were found to
be the most potent, with EGFR inhibitory effects (IC50 = 89 ± 6 nM and 93 ± 8 nM,
and 98 ± 8 nM, respectively) comparable to the positive erlotinib (IC50 = 80 ± 5 nM).
Again, the 2-methylpyrrolidin-1-yl phenethyl derivative 5e (R1 = Cl, R2 = R3 = H, R4 =
2-methylpyrrolidin-1-yl) and the 4-morpholin-4-yl phenethyl 5d (R1 = Cl, R2 = R3 = H, R4
= morpholin-4-yl) were the most potent of all synthesized derivatives, with IC50 value of
93 nM and 89 nM being equipotent to the reference erlotinib.

2.2.3. CDK2 Inhibitory Assay

Compounds 5d, 5e, and 5h–k were further examines for their ability to inhibit the
CDK2 enzyme [29]. The IC50 values are shown in Table 2. In comparison to the reference
dinaciclib (IC50 = 20 nM), all investigated derivatives inhibited CDK2 effectively, with IC50
values ranging from 11 nM to 34 nM. Three derivatives, 5e, 5h, and 5k, were shown to be
superior to the standard dinaciclib as CDK2 inhibitors, with IC50 values of 13, 11, and 19
nM, respectively. Compound 5e, the most potent antiproliferative derivative, displayed
significant anti-CDK2 activity with an IC50 value of 13 nM, which is 1.5-fold more active
than the reference dinaciclib. On the other hand, compounds 5d, 5i, 5j, and 5k exhibited
significant activity against CDK2 (IC50 = 23, 27, 34, and 19 µM) comparable to dinaciclib.
The findings of the EGFR and CDK2 tests revealed that the examined compounds exhibit
significant antiproliferative activity and are efficient at suppressing both CDK2 and EGFR.

2.2.4. Apoptosis Assay

A previous report has shown that CBD (2), a CB1 allosteric modulator, can trigger
apoptosis [30]. Therefore, to assess the proapoptotic potential of our target compounds,
we evaluated the most active compounds 5d, 5e, and 5h for their capacity to initiate the
apoptosis cascade in the breast cancer (MCF-7) cell line.

Activation of Proteolytic Caspases Cascade

Caspases play a crucial role in the initiation and completion of the apoptotic pro-
cess [31]. Caspase-3 is a crucial caspase that cleaves a variety of proteins in cells, causing
apoptosis [32]. The effects of compounds 5d, 5e, and 5h on caspase 3 were assessed and
compared to doxorubicin, which was used as a control [33]. The results showed that when
compared to control cells, the tested compounds increased the level of active caspase 3 by
8–10 folds and that 5d, 5e, and 5h induce outstanding overexpression of caspase-3 protein
level (570.00 ± 5.00, 635.50 ± 5.50 and 537.50 ± 5.00 pg/mL, respectively) compared to
doxorubicin (503.50 ± 4.50 pg/mL). In comparison to the control untreated cells, the most
active antiproliferative derivative 5e increases caspase 3 levels by 9.70 times.
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Table 2. Effects of compounds 5d, 5e, 5h–k, and Erlotinib on EGFR and Dinaciclib.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

Table 2. Effects of compounds 5d, 5e, 5h–k, and Erlotinib on EGFR and Dinaciclib. 

 

Compd. R1 R2 R3 R4 
EGFR Inhibition 

IC50 ± SEM (nM) 

CDK2 Inhibition 

IC50 ± SEM (nM) 

5d Cl H H 

 
89 ± 6 23 ± 2 

5e Cl H H 

 

93 ± 8 13 ± 1 

5h Cl H Cl 

 
118 ± 10 11 ± 1 

5i Cl H Cl 

 
137 ± 12 27 ± 3 

5j F H F H 98 ± 8 34 ± 3 

5k F H F 

 
129 ± 11 19 ± 2 

Erlotinib -- -- -- -- 80 ± 5 ND 

Dinaciclib -- -- -- -- ND 20 ± 2 

2.2.3. CDK2 Inhibitory Assay 

Compounds 5d, 5e, and 5h–k were further examines for their ability to inhibit the 

CDK2 enzyme [29]. The IC50 values are shown in Table 2. In comparison to the reference 

dinaciclib (IC50 = 20 nM), all investigated derivatives inhibited CDK2 effectively, with IC50 

values ranging from 11 nM to 34 nM. Three derivatives, 5e, 5h, and 5k, were shown to be 

superior to the standard dinaciclib as CDK2 inhibitors, with IC50 values of 13, 11, and 19 

nM, respectively. Compound 5e, the most potent antiproliferative derivative, displayed 

significant anti-CDK2 activity with an IC50 value of 13 nM, which is 1.5-fold more active 

than the reference dinaciclib. On the other hand, compounds 5d, 5i, 5j, and 5k exhibited 

significant activity against CDK2 (IC50 = 23, 27, 34, and 19 µM) comparable to dinaciclib. 

The findings of the EGFR and CDK2 tests revealed that the examined compounds exhibit 

significant antiproliferative activity and are efficient at suppressing both CDK2 and EGFR. 

  

Compd. R1 R2 R3 R4

EGFR
Inhibition

IC50 ± SEM
(nM)

CDK2
Inhibition

IC50 ± SEM
(nM)

5d Cl H H

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

Table 2. Effects of compounds 5d, 5e, 5h–k, and Erlotinib on EGFR and Dinaciclib. 

 

Compd. R1 R2 R3 R4 
EGFR Inhibition 

IC50 ± SEM (nM) 

CDK2 Inhibition 

IC50 ± SEM (nM) 

5d Cl H H 

 
89 ± 6 23 ± 2 

5e Cl H H 

 

93 ± 8 13 ± 1 

5h Cl H Cl 

 
118 ± 10 11 ± 1 

5i Cl H Cl 

 
137 ± 12 27 ± 3 

5j F H F H 98 ± 8 34 ± 3 

5k F H F 

 
129 ± 11 19 ± 2 

Erlotinib -- -- -- -- 80 ± 5 ND 

Dinaciclib -- -- -- -- ND 20 ± 2 

2.2.3. CDK2 Inhibitory Assay 

Compounds 5d, 5e, and 5h–k were further examines for their ability to inhibit the 

CDK2 enzyme [29]. The IC50 values are shown in Table 2. In comparison to the reference 

dinaciclib (IC50 = 20 nM), all investigated derivatives inhibited CDK2 effectively, with IC50 

values ranging from 11 nM to 34 nM. Three derivatives, 5e, 5h, and 5k, were shown to be 

superior to the standard dinaciclib as CDK2 inhibitors, with IC50 values of 13, 11, and 19 

nM, respectively. Compound 5e, the most potent antiproliferative derivative, displayed 

significant anti-CDK2 activity with an IC50 value of 13 nM, which is 1.5-fold more active 

than the reference dinaciclib. On the other hand, compounds 5d, 5i, 5j, and 5k exhibited 

significant activity against CDK2 (IC50 = 23, 27, 34, and 19 µM) comparable to dinaciclib. 

The findings of the EGFR and CDK2 tests revealed that the examined compounds exhibit 

significant antiproliferative activity and are efficient at suppressing both CDK2 and EGFR. 

  

89 ± 6 23 ± 2

5e Cl H H

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

Table 2. Effects of compounds 5d, 5e, 5h–k, and Erlotinib on EGFR and Dinaciclib. 

 

Compd. R1 R2 R3 R4 
EGFR Inhibition 

IC50 ± SEM (nM) 

CDK2 Inhibition 

IC50 ± SEM (nM) 

5d Cl H H 

 
89 ± 6 23 ± 2 

5e Cl H H 

 

93 ± 8 13 ± 1 

5h Cl H Cl 

 
118 ± 10 11 ± 1 

5i Cl H Cl 

 
137 ± 12 27 ± 3 

5j F H F H 98 ± 8 34 ± 3 

5k F H F 

 
129 ± 11 19 ± 2 

Erlotinib -- -- -- -- 80 ± 5 ND 

Dinaciclib -- -- -- -- ND 20 ± 2 

2.2.3. CDK2 Inhibitory Assay 

Compounds 5d, 5e, and 5h–k were further examines for their ability to inhibit the 

CDK2 enzyme [29]. The IC50 values are shown in Table 2. In comparison to the reference 

dinaciclib (IC50 = 20 nM), all investigated derivatives inhibited CDK2 effectively, with IC50 

values ranging from 11 nM to 34 nM. Three derivatives, 5e, 5h, and 5k, were shown to be 

superior to the standard dinaciclib as CDK2 inhibitors, with IC50 values of 13, 11, and 19 

nM, respectively. Compound 5e, the most potent antiproliferative derivative, displayed 

significant anti-CDK2 activity with an IC50 value of 13 nM, which is 1.5-fold more active 

than the reference dinaciclib. On the other hand, compounds 5d, 5i, 5j, and 5k exhibited 

significant activity against CDK2 (IC50 = 23, 27, 34, and 19 µM) comparable to dinaciclib. 

The findings of the EGFR and CDK2 tests revealed that the examined compounds exhibit 

significant antiproliferative activity and are efficient at suppressing both CDK2 and EGFR. 

  

93 ± 8 13 ± 1

5h Cl H Cl

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

Table 2. Effects of compounds 5d, 5e, 5h–k, and Erlotinib on EGFR and Dinaciclib. 

 

Compd. R1 R2 R3 R4 
EGFR Inhibition 

IC50 ± SEM (nM) 

CDK2 Inhibition 

IC50 ± SEM (nM) 

5d Cl H H 

 
89 ± 6 23 ± 2 

5e Cl H H 

 

93 ± 8 13 ± 1 

5h Cl H Cl 

 
118 ± 10 11 ± 1 

5i Cl H Cl 

 
137 ± 12 27 ± 3 

5j F H F H 98 ± 8 34 ± 3 

5k F H F 

 
129 ± 11 19 ± 2 

Erlotinib -- -- -- -- 80 ± 5 ND 

Dinaciclib -- -- -- -- ND 20 ± 2 

2.2.3. CDK2 Inhibitory Assay 

Compounds 5d, 5e, and 5h–k were further examines for their ability to inhibit the 

CDK2 enzyme [29]. The IC50 values are shown in Table 2. In comparison to the reference 

dinaciclib (IC50 = 20 nM), all investigated derivatives inhibited CDK2 effectively, with IC50 

values ranging from 11 nM to 34 nM. Three derivatives, 5e, 5h, and 5k, were shown to be 

superior to the standard dinaciclib as CDK2 inhibitors, with IC50 values of 13, 11, and 19 

nM, respectively. Compound 5e, the most potent antiproliferative derivative, displayed 

significant anti-CDK2 activity with an IC50 value of 13 nM, which is 1.5-fold more active 

than the reference dinaciclib. On the other hand, compounds 5d, 5i, 5j, and 5k exhibited 

significant activity against CDK2 (IC50 = 23, 27, 34, and 19 µM) comparable to dinaciclib. 

The findings of the EGFR and CDK2 tests revealed that the examined compounds exhibit 

significant antiproliferative activity and are efficient at suppressing both CDK2 and EGFR. 

  

118 ± 10 11 ± 1

5i Cl H Cl

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

Table 2. Effects of compounds 5d, 5e, 5h–k, and Erlotinib on EGFR and Dinaciclib. 

 

Compd. R1 R2 R3 R4 
EGFR Inhibition 

IC50 ± SEM (nM) 

CDK2 Inhibition 

IC50 ± SEM (nM) 

5d Cl H H 

 
89 ± 6 23 ± 2 

5e Cl H H 

 

93 ± 8 13 ± 1 

5h Cl H Cl 

 
118 ± 10 11 ± 1 

5i Cl H Cl 

 
137 ± 12 27 ± 3 

5j F H F H 98 ± 8 34 ± 3 

5k F H F 

 
129 ± 11 19 ± 2 

Erlotinib -- -- -- -- 80 ± 5 ND 

Dinaciclib -- -- -- -- ND 20 ± 2 

2.2.3. CDK2 Inhibitory Assay 

Compounds 5d, 5e, and 5h–k were further examines for their ability to inhibit the 

CDK2 enzyme [29]. The IC50 values are shown in Table 2. In comparison to the reference 

dinaciclib (IC50 = 20 nM), all investigated derivatives inhibited CDK2 effectively, with IC50 

values ranging from 11 nM to 34 nM. Three derivatives, 5e, 5h, and 5k, were shown to be 

superior to the standard dinaciclib as CDK2 inhibitors, with IC50 values of 13, 11, and 19 

nM, respectively. Compound 5e, the most potent antiproliferative derivative, displayed 

significant anti-CDK2 activity with an IC50 value of 13 nM, which is 1.5-fold more active 

than the reference dinaciclib. On the other hand, compounds 5d, 5i, 5j, and 5k exhibited 

significant activity against CDK2 (IC50 = 23, 27, 34, and 19 µM) comparable to dinaciclib. 

The findings of the EGFR and CDK2 tests revealed that the examined compounds exhibit 

significant antiproliferative activity and are efficient at suppressing both CDK2 and EGFR. 

  

137 ± 12 27 ± 3

5j F H F H 98 ± 8 34 ± 3

5k F H F

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

Table 2. Effects of compounds 5d, 5e, 5h–k, and Erlotinib on EGFR and Dinaciclib. 

 

Compd. R1 R2 R3 R4 
EGFR Inhibition 

IC50 ± SEM (nM) 

CDK2 Inhibition 

IC50 ± SEM (nM) 

5d Cl H H 

 
89 ± 6 23 ± 2 

5e Cl H H 

 

93 ± 8 13 ± 1 

5h Cl H Cl 

 
118 ± 10 11 ± 1 

5i Cl H Cl 

 
137 ± 12 27 ± 3 

5j F H F H 98 ± 8 34 ± 3 

5k F H F 

 
129 ± 11 19 ± 2 

Erlotinib -- -- -- -- 80 ± 5 ND 

Dinaciclib -- -- -- -- ND 20 ± 2 

2.2.3. CDK2 Inhibitory Assay 

Compounds 5d, 5e, and 5h–k were further examines for their ability to inhibit the 

CDK2 enzyme [29]. The IC50 values are shown in Table 2. In comparison to the reference 

dinaciclib (IC50 = 20 nM), all investigated derivatives inhibited CDK2 effectively, with IC50 

values ranging from 11 nM to 34 nM. Three derivatives, 5e, 5h, and 5k, were shown to be 

superior to the standard dinaciclib as CDK2 inhibitors, with IC50 values of 13, 11, and 19 

nM, respectively. Compound 5e, the most potent antiproliferative derivative, displayed 

significant anti-CDK2 activity with an IC50 value of 13 nM, which is 1.5-fold more active 

than the reference dinaciclib. On the other hand, compounds 5d, 5i, 5j, and 5k exhibited 

significant activity against CDK2 (IC50 = 23, 27, 34, and 19 µM) comparable to dinaciclib. 

The findings of the EGFR and CDK2 tests revealed that the examined compounds exhibit 

significant antiproliferative activity and are efficient at suppressing both CDK2 and EGFR. 

  

129 ± 11 19 ± 2

Erlotinib – – – – 80 ± 5 ND
Dinaciclib – – – – ND 20 ± 2

The impact of compounds 5d, 5e, and 5h on caspases 8 and 9 was also investigated
to highlight the involvement of the intrinsic and extrinsic apoptotic pathways in the
antiproliferative actions of these compounds, Table 3. When compared to control cells,
compound 5e increased caspase 8 and 9 levels by 10.90 and 18.15 folds, respectively,
while compound 5d increased caspase 8 and 9 levels by 9.70 and 17.80 folds, respectively,
indicating activation of both intrinsic and extrinsic pathways with a stronger effect on the
intrinsic pathway because caspase 9 levels were higher [34].

Table 3. Effects of compounds 5d, 5e, 5h and doxorubicin on active Caspases 3, 8, 9 and Cytochrome
C in MCF-7 breast cancer cell line.

Compound
Number

Caspase-3 Caspase-8 Caspase-9 Cytochrome C
Conc

(pg/mL)
Fold

Change
Conc

(ng/mL)
Fold

Change
Conc

(ng/mL)
Fold

Change
Conc

(ng/mL)
Fold

Change

5d 570.00 ± 5.00 8.70 1.94 9.70 16.90 17.80 0.70 14
5e 635.50 ± 5.50 9.70 2.17 10.90 17.25 18.15 0.80 16
5h 537.50 ± 5.00 8.20 1.88 9.50 16.65 17.50 0.65 13

Doxorubicin 503.50 ± 4.50 7.70 1.80 9.00 16.25 17.00 0.60 12
Control 65.50 1 0.20 1 0.95 1 0.05 1
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Cytochrome C Assay

The quantity of cytochrome C within the cell is important for activating caspases and
commencing the intrinsic apoptosis process [35]. Table 3 shows the findings of testing
indole-2-carboxamide derivatives 5d, 5e, and 5h as Cytochrome C activators in the MCF-7
human breast cancer cell line. Compounds 5d, 5e, and 5h increased Cytochrome C levels in
the MCF-7 human breast cancer cell line by 14, 16, and 13 times, respectively, compared to
untreated control cells. The findings add to the evidence that apoptosis can be attributed to
Cytochrome C overexpression and activation of the intrinsic apoptotic pathway triggered
by the investigated compounds.

Bax and Bcl-2 Levels Assay

The most potent caspase activators, 5d and 5e, were investigated further for their
influence on Bax and Bacl-2 levels in a breast cancer cell line (MCF-7) using doxorubicin
as a control [36]. Table 4 shows that 5d and 5e caused a significant increase in Bax levels
when compared to doxorubicin. Compound 5e demonstrated a comparable induction of
Bax (296.50 pg/mL) compared to doxorubicin (276 pg/mL) with a 36-fold increase over
control untreated breast cancer cells, followed by compound 5d (290 pg/mL and 35-fold
rise). Finally, compound 5e reduced the anti-apoptotic Bcl-2 protein levels to 0.87 ng/mL
in MCF-7 cells, followed by compound 5d (0.89 ng/mL) in comparison to doxorubicin
(0.98 ng/mL).

Table 4. Effects of compounds 5d, 5e, and doxorubicin on Bax and Bcl-2.

Compd. No.
Bax Bcl-2

Conc (pg/mL) Fold Change Conc (ng/mL) Fold Change

5d 289.70 ± 2.50 35 0.89 5.70
5e 296.50 ± 2.50 36 0.87 5.90

Doxorubicin 275.80 ± 2.50 33 0.98 5.20
Cont. 8.25 1 5.10 1.00

Effect of Compounds 5d and 5e on p53 Transcription in MCF-7

p53 is a unique protein that participates in several physiological processes such as
cell metabolism [37], stem cell maintenance [38], and cell adhesion [39]. Because p53 is
frequently inactivated in cancer cells, the cells are unable to undergo apoptosis [40,41].
Similarly, activating, or stabilizing p53 aids cancer cells in normalizing p53-controlled
physiological processes and increasing apoptotic activity [42]. The effects of 5d and 5e on
p53 transcription were evaluated and compared to doxorubicin as a control [43], Table 5.
The results revealed an increase of at least 27-folds in p53 level compared to the test cells
and that the p53 protein level of 5d and 5e was significantly inductive (1375 and 1435
pg/mL, respectively) in relation to doxorubicin (1265 pg/mL).

Table 5. Effects of compounds 5d, 5e, and doxorubicin on p53.

Compd. No.
p53

Conc (pg/mL) Fold Change

5d 1375 ± 15 27
5e 1435 ± 15 28

Doxorubicin 1265 ± 10 25
Cont. 51.50 1

2.3. Docking Study

Interestingly, running docking simulations of compounds 5d and 5e within EGFR
active site revealed docking scores (S; −6.90 and −6.79 kcal/mol; respectively), so much
close to that of co-crystallized ligand, erlotinib (−7.30 kcal/mol), which co-insides with
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what obtained in-vitro against EGFR enzyme (as shown in Table 2). Moreover, visual
inspection of the best docking poses of compounds 5d and 5e showed their close distance
to key amino acids lining EGFR active site. Additionally, compounds 5d and 5e showed
a number of H-bonding and pi–H interactions with LEU 694 and THR 766 amino acid
residues (as listed in Table 6 and shown in Figure 3).

Table 6. MD of compounds 5d and 5e within EGFR and CDK2 active sites.

Compd.

EFGR (PDB ID: 1M17) CDK2 (PDB ID: 1PYE)

S a RMSD
(Å)

Binding Interactions

S
RMSD

(Å)

Binding Interactions

a.a.
Residue Type Distance

(Å)
a.a.

Residue Type Distance
(Å)

5d −6.90 1.49
THR 766 H-acceptor 2.91 −6.03 1.77 GLN 131 H-donor 3.60LEU 694 pi-H 3.99

5e −6.79 1.51 LEU 694 pi-H 3.70 −6.99 1.68 LYS 33 pi-cation 4.65

Ref −7.3 b 1.28
GLN 767 H-donor 3.15 −5.89

c 1.84
GLU 81 H-donor 3.05

MET 769 H-acceptor 2.70 LEU 83 H-acceptor 3.07
a S: docking score (kcal/mol); b Ref: co-crystallized ligand (Erlotinib); c Ref: co-crystallized ligand (Dinaciclib).

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 11 of 18 
 

 

Table 6. MD of compounds 5d and 5e within EGFR and CDK2 active sites. 

Compd. 

EFGR (PDB ID: 1M17) CDK2 (PDB ID: 1PYE) 

S a 
RMSD 

(Å) 

Binding Interactions 

S 
RMSD 

(Å) 

Binding Interactions 

a.a. 

Residue 
Type 

Distance 

(Å) 

a.a. 

Residue 
Type 

Distance 

(Å) 

5d −6.90 1.49 
THR 766 H-acceptor 2.91 

−6.03 1.77 GLN 131 H-donor 3.60 
LEU 694 pi-H 3.99 

5e −6.79 1.51 LEU 694 pi-H 3.70 −6.99 1.68 LYS 33 pi-cation 4.65 

Ref −7.3 b 1.28 
GLN 767 H-donor 3.15 

−5.89 c 1.84 
GLU 81 H-donor 3.05 

MET 769 H-acceptor 2.70 LEU 83 H-acceptor 3.07 
a S: docking score (kcal/mol); b Ref: co-crystallized ligand (Erlotinib); c Ref: co-crystallized ligand 

(Dinaciclib). 

Both compounds 5d and 5e showed a common settling profile within EGFR active 

represented by U-shaped bending of the whole molecule, so its indole ring interacts with 

LEU 694 (as shown in Figure 3). On the other hand, compound 5d showed additional H-

acceptor bonding with THR 766 that resulted in its better docking score over its congener, 

compound 5e. 

  

Figure 3. Schematic 2D representation of best docking poses of 5d (left) and 5e (right) within EGFR 

(PDB ID: 1M17) active site showing pi-H (green-dotted line) and H-acceptor interactions (green 

arrow). 

Additionally, and as shown in Table 6, MDs of compound 5e within the CDK2 active 

site revealed its better docking score (S = −6.99 kcal/mol) over its congener 5d (S = −6.03 

kcal/mol), although its inability to have strong H-bonding with amino acid residues lining 

active site, its close proximity to key amino acid residues (revealed by its proximity con-

tour as shown in Figure 4) could explain its better scoring over 5d. 
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(green arrow).

Both compounds 5d and 5e showed a common settling profile within EGFR active
represented by U-shaped bending of the whole molecule, so its indole ring interacts with
LEU 694 (as shown in Figure 3). On the other hand, compound 5d showed additional
H-acceptor bonding with THR 766 that resulted in its better docking score over its congener,
compound 5e.

Additionally, and as shown in Table 6, MDs of compound 5e within the CDK2 active
site revealed its better docking score (S = −6.99 kcal/mol) over its congener 5d (S =
−6.03 kcal/mol), although its inability to have strong H-bonding with amino acid residues
lining active site, its close proximity to key amino acid residues (revealed by its proximity
contour as shown in Figure 4) could explain its better scoring over 5d.
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3. Materials and Methods
3.1. Chemistry

3-Methylindole-2-carboxylates 3a–d [24], carboxylic acids 4a–d [25], and carboxamides
5a–k, 6a–c, and 7 [23] were synthesized according to previously reported procedures.

3.1.1. 5-Chloro-3-methyl-N-phenethyl-1H-indole-2-carboxamide (5a)

Yield % 91, m.p 182–184 ◦C, 1H NMR (400 MHz, CDCl3) δ 9.21 (s, 1H, indole NH), 7.53
(d, J = 2.2 Hz, 1H, Ar-H), 7.39–7.17 (m, 7H, Ar-H), 5.97 (s, 1H, amide NH), 3.81 (q, J = 6.4 Hz,
2H, NHCH2), 2.97 (t, J = 6.8 Hz, 2H, NHCH2CH2), 2.26 (s, 3H, CH3). 13C NMR (101 MHz,
CDCl3) δ 162.10 (C=O), 138.50, 133.32, 128.85, 128.81, 128.53, 126.84, 125.53, 125.00, 119.38,
112.79, 110.80, 40.83, 35.51, 9.88. HRESI-MS m/z calcd for [M + H]+ C18H18ClN2O: 313.1102,
found: 313.1104.

3.1.2. 5-Chloro-N-(4-(dimethylamino)phenethyl)-3-methyl-1H-indole-2-carboxamide (5b)

Yield % 89, m.p 202–204 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.34 (s, 1H, indole
NH), 7.87 (t, J = 5.6 Hz, 1H, amide NH), 7.62 (d, J = 2.0 Hz, 1H, Ar-H), 7.37 (d, J = 8.6
Hz, 1H, Ar-H), 7.16 (dd, J = 8.7, 2.1 Hz, 1H, Ar-H), 7.06 (d, J = 8.6 Hz, 2H, Ar-H), 6.66 (d,
J = 8.7 Hz, 2H, Ar-H), 3.46 (q, J = 6.7 Hz, 2H, NHCH2), 2.82 (s, 6H, N(CH3)2), 2.74 (t, J = 6.6
Hz, 2H, NHCH2CH2), 2.41 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 162.01 (C=O),
149.54, 134.07, 129.94, 129.59, 129.55, 127.31, 124.06, 123.97, 119.35, 113.92, 113.13, 112.93,
41.47, 40.79, 34.69, 9.98. HRESI-MS m/z calcd for [M + H]+ C20H23ClN3O: 356.1524, found:
356.1522.

3.1.3. 5-Chloro-3-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (5c)

Yield % 92, m.p 216–218 ◦C, 1H NMR (400 MHz, CDCl3) δ 9.17 (s, 1H, indole NH), 7.53
(s, 1H, Ar-H), 7.29 (d, J = 8.6 Hz, 1H, Ar-H), 7.20 (dd, J = 8.6, 0.7 Hz, 1H, Ar-H), 7.13 (d, J =
8.6 Hz, 2H, Ar-H), 6.92 (d, J = 8.6 Hz, 2H, Ar-H), 5.97 (s, 1H, amide NH), 3.76 (q, J = 6.6 Hz,
2H, NHCH2), 3.17–3.09 (m, 4H, piperidin-H), 2.87 (t, J = 6.7 Hz, 2H, NHCH2CH2), 2.27 (s,
3H, CH3), 1.74–168 (m, 4H, piperidin-H), 1.63–1.53 (m, 2H, piperidin-H). 13C NMR (101
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MHz, CDCl3) δ 162.03 (C=O), 151.21, 133.26, 129.74, 129.37, 128.77, 128.68, 125.48, 124.90,
119.37, 116.95, 112.75, 110.71, 50.82, 40.92, 34.48, 25.79, 24.25, 9.94. HRESI-MS m/z calcd for
[M + H]+ C23H27ClN3O: 396.1837, found: 396.1837.

3.1.4. 5-Chloro-3-methyl-N-(4-morpholinophenethyl)-1H-indole-2-carboxamide (5d)

Yield % 91, m.p 210–212 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.34 (s, 1H, indole
NH), 7.89 (t, J = 5.6 Hz, 1H, amide NH), 7.62 (s, 1H, Ar-H), 7.38 (d, J = 8.6 Hz, 1H, Ar-H),
7.21–7.08 (m, 3H, Ar-H), 6.85 (d, J = 8.3 Hz, 2H, Ar-H), 3.70 (t, J = 4.8 Hz, 4H, morph-H),
3.48 (q, J = 7.1 Hz, 2H, NHCH2), 3.02 (t, J = 4.8 Hz, 4H, morph-H), 2.77 (t, J = 7.4 Hz, 2H,
NHCH2), 2.41 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 162.05 (C=O), 149.99, 134.08,
130.44, 129.91, 129.62, 129.59, 124.08, 124.00, 119.36, 115.72, 113.94, 112.98, 66.57, 49.17, 41.29,
34.71, 9.98. HRESI-MS m/z calcd for [M + H]+ C22H25ClN3O2: 398.1630, found: 398.1629.

3.1.5. 5-Chloro-3-methyl-N-(4-(2-methylpyrrolidin-1-yl)phenethyl)-1H-indole-2
-carboxamide (5e)

Yield % 85, m.p 186–188 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.67 (s, 1H, indole NH), 7.53
(d, J = 2.0 Hz, 1H, Ar-H), 7.32 (d, J = 8.6 Hz, 1H, Ar-H), 7.20 (dd, J = 8.7, 2.0 Hz, 1H, Ar-H),
7.10 (d, J = 8.5 Hz, 2H, Ar-H), 6.57 (d, J = 8.5 Hz, 2H, Ar-H), 6.07 (t, J = 5.5 Hz, 1H, amide
NH), 3.91–3.71 (m, 3H, pyrrolidin-H, NHCH2), 3.47–3.37 (m, 1H, pyrrolidin-H), 3.18–3.12
(m, 1H, pyrrolidin-H), 2.87 (t, J = 6.7 Hz, 2H, NHCH2CH2), 2.31 (s, 3H, CH3), 2.15–1.94
(m, 3H, pyrrolidin-H), 1.73–1.70 (m, 1H, pyrrolidin-H), 1.17 (d, J = 6.2 Hz, 3H, CHCH3).
13C NMR (101 MHz, CDCl3) δ 162.23 (C=O), 146.18, 133.48, 129.68, 129.54, 128.78, 125.34,
124.78, 124.45, 119.29, 112.92, 112.16, 110.77, 53.67, 48.26, 41.25, 34.42, 33.09, 23.28, 19.29,
10.01. HRESI-MS m/z calcd for [M + H]+ C23H27ClN3O: 396.1837, found: 396.1832.

3.1.6. 6-Chloro-3-methyl-N-phenethyl-1H-indole-2-carboxamide (5f)

Yield % 80, m.p 170–172 ◦C, 1H NMR (400 MHz, CDCl3) δ 9.67 (s, 1H, indole NH), 7.46
(d, J = 8.6 Hz, 1H, Ar-H), 7.42–7.22 (m, 6H, Ar-H), 7.07 (dd, J = 8.6, 1.9 Hz, 1H, Ar-H), 6.00
(s, 1H, amide NH), 3.82 (q, J = 6.4 Hz, 2H, NHCH2), 2.98 (t, J = 6.7 Hz, 2H, NHCH2CH2),
2.28 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 162.39 (C=O), 138.53, 135.49, 130.42, 128.84,
128.83, 127.88, 127.20, 126.81, 120.92, 120.67, 111.61, 40.89, 35.53, 9.94. HRESI-MS m/z calcd
for [M + H]+ C18H18ClN2O: 313.1102, found: 313.1101.

3.1.7. 6-Chloro-3-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (5g)

Yield % 75, m.p 218–220 ◦C, 1H NMR (400 MHz, CDCl3) δ 9.19 (s, 1H, indole NH),
7.47 (d, J = 8.6 Hz, 1H, Ar-H), 7.37 (d, J = 1.8 Hz, 1H, Ar-H), 7.13 (d, J = 8.6 Hz, 2H, Ar-H),
7.08 (dd, J = 8.6, 1.8 Hz, 1H, Ar-H), 6.92 (d, J = 8.6 Hz, 2H, Ar-H), 5.97 (s, 1H, amide
NH), 3.76 (q, J = 6.6 Hz, 2H, NHCH2), 3.17–3.09 (m, 4H, piperidin-H), 2.88 (t, J = 6.6 Hz,
2H, NHCH2CH2), 2.29 (s, 3H, CH3), 1.76–1.66 (m, 4H, piperidin-H), 1.64–1.54 (m, 2H,
piperidin-H). 13C NMR (101 MHz, CDCl3) δ 162.12 (C=O), 151.17, 135.22, 130.41, 129.39,
128.87, 128.04, 127.32, 120.95, 120.70, 116.97, 111.44, 111.39, 50.86, 40.93, 34.51, 25.79, 24.24,
9.97. HRESI-MS m/z calcd for [M + H]+ C23H27ClN3O: 396.1837, found: 396.1837.

3.1.8. 5,7-Dichloro-3-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2
-carboxamide (5h)

Yield % 85, m.p 178–180 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 11.43 (s, 1H, indole NH),
8.36 (t, J = 5.6 Hz, 1H, amide NH), 7.66 (d, J = 1.8 Hz, 1H, Ar-H), 7.36 (d, J = 1.9 Hz, 1H,
Ar-H), 7.07 (d, J = 8.0 Hz, 2H, Ar-H), 6.83 (d, J = 8.3 Hz, 2H, Ar-H), 3.45 (q, J = 7.3 Hz, 2H,
NHCH2), 3.03 (t, J = 5.4 Hz, 4H, piperidin-H), 2.75 (t, J = 7.5 Hz, 2H, NHCH2CH2), 2.46 (s,
3H, CH3), 1.63–1.43 (m, 6H, piperidin-H). 13C NMR (101 MHz, DMSO-d6) δ 161.24 (C=O),
150.70, 131.41, 130.65, 130.24, 129.68, 129.53, 124.16, 123.24, 118.73, 117.38, 116.60, 116.52,
50.33, 41.27, 34.69, 25.76, 24.34, 10.19. HRESI-MS m/z calcd for [M + H]+ C23H26Cl2N3O:
430.1447, found: 430.1448.
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3.1.9. 5,7-Dichloro-3-methyl-N-(4-morpholinophenethyl)-1H-indole-2-carboxamide (5i)

Yield % 84, m. p 185–187 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.25 (s, 1H, indole NH),
7.43 (d, J = 1.7 Hz, 1H, Ar-H), 7.25 (d, J = 1.8 Hz, 1H, Ar-H), 7.15 (d, J = 8.5 Hz, 2H, Ar-H),
6.88 (d, J = 8.7 Hz, 2H, Ar-H), 6.02 (s, 1H, amide NH), 3.90–3.83 (m, 4H, morph-H), 3.77 (q,
J = 6.6 Hz, 2H, NHCH2), 3.17–3.09 (m, 4H, morph-H), 2.89 (t, J = 6.7 Hz, 2H, NHCH2CH2),
2.28 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 161.59 (C=O), 150.23, 130.98, 130.33, 129.69,
129.53, 129.33, 125.41, 123.94, 118.19, 117.65, 116.11, 111.86, 66.86, 49.47, 41.01, 34.48, 10.12.
HRESI-MS m/z calcd for [M + H]+ C22H24Cl2N3O2: 432.1240, found: 432.1240.

3.1.10. 5,7-Difluoro-3-methyl-N-phenethyl-1H-indole-2-carboxamide (5j)

Yield % 82, m.p 198–200 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 11.95 (s, 1H, indole NH),
8.45 (t, J = 5.6 Hz, 1H, amide NH), 7.69–7.50 (m, 6H, Ar-H), 7.42 (t, J = 11.6 Hz, 1H, Ar-H),
3.86 (q, J = 7.8 Hz, 2H, NHCH2), 3.20 (t, J = 7.4 Hz, 2H, NHCH2CH2), 2.75 (s, 3H, CH3). 13C
NMR (101 MHz, DMSO-d6) δ 161.91 (C=O), 140.15, 130.98, 129.46, 129.17, 126.95, 120.88,
116.06, 101.43, 101.15, 99.81, 99.61, 99.50, 41.29, 35.83, 10.49. HRESI-MS m/z calcd for [M +
H]+ C18H17F2N2O: 315.1303, found: 315.1305.

3.1.11. 5,7-Difluoro-3-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2
-carboxamide (5k)

Yield % 88, m.p 192–194 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 11.61 (s, 1H, indole NH),
8.07 (s, 1H, amide NH), 7.25 (dd, J = 9.3, 2.2 Hz, 1H, Ar-H), 7.13–7.04 (m, 3H, Ar-H), 6.84 (d,
J = 8.6 Hz, 2H, Ar-H), 3.46 (q, J = 7.2 Hz, 2H, NHCH2), 3.05 (t, J = 5.4 Hz, 4H, piperidin-H),
2.74 (t, J = 7.4 Hz, 2H, NHCH2CH2), 2.42 (s, 3H, CH3), 1.64–1.55 (m, 4H, piperidin-H),
1.51–1.48 (m, 2H, piperidin-H). 13C NMR (101 MHz, DMSO-d6) δ 161.50 (C=O), 157.34,
155.00, 150.69, 147.63, 131.03, 129.65, 120.65, 116.52, 115.77, 101.08, 99.44, 99.24, 50.33, 41.24,
34.64, 25.76, 24.35, 10.17. HRESI-MS m/z calcd for [M + H]+ C23H26F2N3O: 398.2038, found:
398.2038.

3.1.12. (5-Chloro-3-methyl-1H-indol-2-yl)(4-phenylpiperazin-1-yl)methanone (6a)

Yield % 85, m.p 165–167 ◦C, 1H NMR (400 MHz, CDCl3) δ 9.0 (s, 1H, indole NH),
8.25 (d, J = 8.8 Hz, 1H, Ar-H), 7.56 (d, J = 2.0 Hz, 1H, Ar-H), 7.40 (dd, J = 8.7, 2.0 Hz, 1H,
Ar-H), 7.35–7.21 (m, 5H, Ar-H), 3.76 (t, J = 7.6 Hz, 4H, piperazin-H), 3.00 (t, J = 8.0 Hz, 4H,
piperazin-H), 2.65 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 164.41 (C=O), 150.78, 134.46,
129.28, 128.23, 127.44, 125.47, 124.14, 120.80, 119.61, 118.01, 116.80, 112.67, 49.87, 18.26, 14.76.
HRESI-MS m/z calcd for [M + H]+ C20H21ClN3O: 354.1368, found: 354.1367.

3.1.13. (6-Chloro-3-methyl-1H-indol-2-yl)(4-phenylpiperazin-1-yl)methanone (6b)

Yield % 80, m.p 180–182 ◦C, 1H NMR (400 MHz, CDCl3) δ 9.68 (s, 1H, indole NH), 7.47
(d, J = 8.5 Hz, 1H, Ar-H), 7.37–7.25 (m, 2H, Ar-H), 7.08 (d, J = 8.0 Hz, 1H, Ar-H), 6.95–6.92
(m, 3H, Ar-H), 3.88 (t, J = 5.1 Hz, 4H, piperazin-H), 3.22 (t, J = 5.3 Hz, 4H, piperazin-H), 2.38
(s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 164.69 (C=O), 150.82, 136.51, 129.76, 129.29,
127.52, 126.64, 120.73, 120.67, 120.56, 116.78, 112.10, 111.53, 49.88, 10.18. HRESI-MS m/z
calcd for [M + H]+ C20H21ClN3O: 354.1368, found: 354.1368.

3.1.14. (5,7-Difluoro-3-methyl-1H-indol-2-yl)(4-phenylpiperazin-1-yl)methanone (6c)

Yield % 82, m.p 171–173 ◦C, 1H NMR (400 MHz, CDCl3) δ 9.61 (s, 1H, indole NH),
7.29 (t, J = 7.9 Hz, 2H, Ar-H), 7.13–6.66 (m, 5H, Ar-H), 3.89 (t, J = 5.8 Hz, 4H, piperazin-H),
3.23 (t, J = 5.7 Hz, 4H, piperazin-H), 2.34 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 163.99
(C=O), 150.78, 129.34, 129.28, 120.79, 116.82, 100.35, 100.31, 100.12, 100.08, 99.28, 99.08, 98.78,
49.94, 10.12. HRESI-MS m/z calcd for [M + H]+ C20H20F2N3O: 356.1569, found: 356.1568.

3.1.15. N-Benzyl-5-chloro-3-methyl-1H-indole-2-carboxamide (7)

Yield % 84, m.p 203–205 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 11.38 (s, 1H, indole
NH), 8.43 (t, J = 5.9 Hz, 1H, amide NH), 7.64 (d, J = 2.1 Hz, 1H, Ar-H), 7.41–7.20 (m, 6H,
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Ar-H), 7.17 (dd, J = 8.7, 2.1 Hz, 1H, Ar-H), 4.50 (d, J = 5.9 Hz, 2H, NHCH2), 2.48 (s, 3H,
CH3). 13C NMR (101 MHz, DMSO-d6) δ 162.16 (C=O), 139.83, 134.16, 129.66, 129.56, 128.76,
127.82, 127.28, 124.10, 119.41, 113.96, 113.46, 42.92, 10.07. HRESI-MS m/z calcd for [M + H]+

C17H16ClN2O: 299.0946, found: 299.0946.

3.2. Biology
3.2.1. In Vitro Anticancer Activity
Cell Viability Assay

The MCF-10A (human mammary gland epithelial) cell line was used in the cell
viability experiment. Compounds 5a–k, 6a–c, and 7 were incubated with MCF-10A cells
for 4 days at 50 µM concentration, and the viability of cells was determined using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test [26].

Antiproliferative Activity

Using the MTT assay with doxorubicin as the reference drug, the antiproliferative
activities of 5a–k, 6a–c, and 7 against four human cancer cell lines, including pancreas
cancer cell line (Panc-1), breast cancer cell line (MCF-7), colon cancer cell line (HT-29), and
epithelial cancer cell line (A-549) were investigated [27].

3.2.2. EGFR Inhibitory Activity

The inhibitory efficacy of 5d, 5e, and 5h–k against EGFR was evaluated using the
EGFR-TK assay [28].

3.2.3. CDK2 Inhibitory Assay

Compounds 5d, 5e, and 5h–k were further examined for their ability to inhibit the
CDK2 enzyme [29].

3.2.4. Apoptosis Assay
Activation of Proteolytic Caspases Cascade

The effects of compounds 5d, 5e, and 5h on caspases 3, 8, and 9 were assessed and
compared to doxorubicin, which was used as a control [33].

Cytochrome C Assay

Indole-2-carboxamide derivatives 5d, 5e, and 5h were evaluated as Cytochrome C
activators in the MCF-7 human breast cancer cell line [35].

Bax and Bcl-2 Levels Assay

The most potent caspase activators, 5d and 5e, were investigated for their influence on
Bax and Bacl-2 levels in a breast cancer cell line (MCF-7) using doxorubicin as a control [36].

Effect of Compounds 5d and 5e on p53 Transcription in MCF-7

The effects of 5d and 5e on p53 transcription were evaluated and compared to doxoru-
bicin as a control [43].

4. Conclusions

A new series of EGFR/CDK2 dual inhibitors containing indole-2-carboxamides has
been reported. A total of fifteen target compounds were synthesized and evaluated in vitro
against four cancer cell lines as well as these two kinases. The majority of the compounds
examined had promising antiproliferative activity. The most effective of these compounds
were 5d, 5e, 5h, 5i, 5j, and 5k. The novel compounds induced apoptosis and increased
Caspase 3, 8, 9, and Cytochrome C levels. Furthermore, the investigated compounds
increased Bax and p53 levels while decreasing anti-apoptotic Bcl2 protein levels. Following
optimization, these compounds form a novel class of compounds capable of acting as
potent apoptotic anticancer agents for both EGFR and CDK2.
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