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Abstract 12 
Early medieval architecture is notably difficult to trace in northern Britain. The fortuitous survival of an 13 
intact floor of a building located just outside a ringfort at Cairnmore, a high-status early medieval 14 
ringfort enclosure in Aberdeenshire, Northeast Scotland, allowed the targeted deployment of a 15 
paleoethnobotanical approach that utilized microbotanical (i.e., phytoliths) and micro-algae residues 16 
(e.g., diatom frustules) to illuminate the character of the unusual survival of an early medieval building in 17 
Scotland. This research revealed novel data on the architecture of the early medieval roundhouse floor in 18 
this poorly documented region and era for settlement remains, securely identifying the use of turf for 19 
walling in an early medieval lowland building. Evidence for roofing material was also preserved in the 20 
phytolith signature. Moreover, the microbotanical assemblage from Cairnmore was found to represent a 21 
use of a variety of ecological niches providing important evidence for landscape use. The presence (and 22 
absence) of particular microbotanical indicators also allowed interpretation of the possible uses of the 23 
structure. The results from this research demonstrate that microbotanical approaches can be critical in 24 
understanding architecture in regions where settlement survival is poor, highlighting the merits of 25 
microbotanical and micro-algae analyses in northern environments. The article concludes by advocating 26 
for the in-tandem assessment of these proxies in archaeological investigations where macrobotanical and 27 
other organic residues are poorly preserved.  28 
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 31 
Introduction 32 
Paleoethnobotanical approaches to archaeological deposits have provided valuable insights into how 33 
people in the past interacted with plant communities. Several recent studies have demonstrated the value 34 
of these approaches to illuminate past landscapes, foodways, and spatial activities (e.g., Borderie et al. 35 
2020; Dal Corso et al. 2017; Juhola et al. 2019; Wade et al. 2021). Within northern British archaeological 36 
contexts, highly acidic soil conditions along with later land use (Ralston 1997; Hunter 2007:48–50; Noble 37 
et al. 2019ba; Noble et al. 2020:328) often inhibit the preservation of macrobotanical residues, floors, 38 
artifacts and structural remains, leading to poor understanding of settlement and early landscape use. 39 
These limitations are particularly evident for early medieval Scotland where our knowledge of 40 
architectural traditions is notably limited (Ralston 1997:24; Noble et al. 2020:320, 327–328). While in 41 
Scotland handfuls of early medieval structures are known in lowland contexts, in neighbouring areas such 42 
as early medieval Ireland or England, tens of thousands of sites are known (e.g., Hamerow 1993, 2012; 43 
O’Sullivan 2008, O’Sullivan et al. 2014:47–138; Carver 2019:139–303). Thus, in areas where settlement 44 
remains are sparse, such as Scotland, our knowledge of architecture is notably deficient compared to that 45 
of contemporary nearby cultural groups. For early medieval Scotland, the dearth in settlement architecture 46 
may have partly been due to a shift towards using material such as turf, and architectural traditions where 47 
earth-fast structural elements were less common in the late and post-Roman era, though these 48 
assumptions are often based on absence of evidence rather than direct attestation (Ralston 1997:24; Noble 49 
et al. 2020:320, 327–328). 50 
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 Where preservation is poor, microbotanical methods can provide crucial insights into settlement 51 
traditions where other evidence is lacking. Microbotanical analyses target more durable residues such as 52 
phytoliths (plant microfossils), and such analyses are often effective where macrobotanical remains (such 53 
as seeds) are limited in the archaeological record (Pearsall 2015:253; Piperno 2006:1; Shillito 2013:72). 54 
This study shows the efficacy of procuring phytoliths and other durable microstructures (e.g., diatom 55 
frustules) from archaeological deposits in challenging preservation contexts – such as within a floor layer 56 
from an early medieval site in northeast Scotland. 57 
 Phytoliths and diatom frustules are microfossils composed of biogenic silica, and the morphology 58 
of these silicious cell walls can be taxonomically diagnostic (Pearsall 2015:253; Piperno 2006; Smol and 59 
Stoermer 2010; Stone and Yost 2020). Microscopic algae are often present in archaeological samples that 60 
target phytoliths and other microbotanical structures; however, these microscopic residues are rarely 61 
examined together in archaeological investigations (e.g., Vuorela et al. 1996). Other types of multi-proxy 62 
archaeological approaches, often termed “piggy-back” approaches, have targeted phytoliths, starch grains, 63 
calcareous spherulites and other microscopic residues together (Canti and Nicosia 2018:32; Portillo and 64 
Albert 2011), but diatoms and other micro-algae are rarely incorporated into these studies beyond a count 65 
of specimens present in archaeological samples (Stone and Yost 2020:23). This hesitancy toward 66 
targeting diatoms and other micro-algae specimens in archaeological investigations is presumably a 67 
response to the skill required for accurate identification of these silicious microstructures as diatom 68 
species are incredibly diverse (Battarbee 1988; Stone and Yost 2020:23). However, like phytoliths, 69 
diatoms can provide detailed information about their environmental contexts when retrieved from in situ 70 
archaeological deposits (Juggins and Cameron 2010; Mannion 1987; Smol and Stoermer 2010:3). The 71 
presence of diatom residues (i.e., frustules) allows archaeologists to investigate the aquatic and semi-72 
aquatic components of human-environment relationships, such as the collection and movement of aquatic 73 
and semi-aquatic resources (e.g., turf, drinking water, clay, etc.) (Beneš et al. 2022; Flower 2006; Hill et 74 
al. 2019; Juggins and Cameron 2010; Rippon 2000). 75 

 76 



 77 
Figure 1. Location of Cairnmore (Aberdeenshire, Scotland) and contemporaneous site Burghead, both 78 
located to the west of the city of Aberdeen; a) plan of the double-walled ringfort at Cairnmore with b) 79 
small roundhouse structure located just outside the outermost rampart (the structure is the subject of 80 
analysis of this article). 81 
 82 
Cairnmore, Scotland 83 
 84 
In this article we assess phytoliths, diatom frustules, and chrysophycean cysts procured from a single 85 
roundhouse floor layer within the complex at Cairnmore (Aberdeenshire, Scotland). Cairnmore is an 86 
unusual and rare complex bivallate fort that overlooks the Upper Strathbogie Valley, where at Rhynie, a 87 
high status early medieval settlement enclosure, metalworking area, and cemetery have been found over 88 
the course of six seasons of excavation (Noble et al. 2019b). Cairnmore sits on the shoulder of a hill and 89 
comprises two rubble rampart walls that were strengthened by a complex post revetment (Noble et al. 90 
2019c; Noble et al. 2019c). At both Rhynie and Cairnmore, settlement remains were poorly represented in 91 
the centre of the settlements where later cultivation had removed the majority of floor layers. These later 92 
agricultural activities left behind only fragmentary postholes and other architectural features, as is the 93 
case with nearly all lowland early medieval settlements in eastern Scotland (Ralston 1997). However, at 94 
Cairnmore the collapse of the outer ramparts had fortuitously preserved the floor layer of a better 95 
preserved structure, located beside the outermost enclosure wall (Fig. 1). This building survived under 96 
extensive stone spread from rampart decay and was located abutting the outermost rampart wall. 97 
 The floor layer for the structure comprised a deposit over 6 m in diameter and up to 0.12 m thick 98 
(Fig.1 & 2) and consisted of a dark brown clayey silt with burnt bone and charcoal incorporated 99 
throughout the deposit (Noble et al. 2022). The floor layer appeared to form part of a circular roundhouse 100 
structure, though only one part of the floor was excavated as the rest underlay or was truncated by a later 101 



stone boundary wall. A small number of artifacts were recovered from the floor layer, including a 102 
fragment of a shale bracelet and a small iron object (Fig. 1). Three pit features were present within the 103 
floor layer, potentially representing hearths (Noble et al. 2022). Macrobotanical remains included 104 
charcoal fragments of oak (Quercus sp.) and birch (Betula sp.), along with charred plant seeds from black 105 
mustard (Brassica nigra), ribwort plantain (Plantago lanceolata) and sedges (Carex sp.) (Niehaus 2021). 106 
No structural features such as postholes or evidence of roofing were preserved to give any indication of 107 
the appearance or form of the building. Radiocarbon dating suggests the floor layer is of 5th – 6th century 108 
AD date, and was therefore contemporary with the ringfort settlement, the dates for which span the 5th to 109 
7th centuries AD. 110 
 The objectives of this paleoethnobotanical study were to 1) evaluate the effectiveness of 111 
microbotanical analysis for archaeological investigations in areas where these techniques have rarely been 112 
attempted such as Scotland, 2) assess if this microbotanical assemblage could address the nature of the 113 
Cairnmore structure and illuminate the architectural details of a rare roundhouse building in a region with 114 
a very limited settlement record, and 3) assess the spatialization of activities within the building and wider 115 
landscape use (both terrestrial and aquatic environments). 116 
 117 
Material and methods 118 
The paleoethnobotanical approach for this study was oriented to address the often shallow (e.g., < 0.3 m) 119 
archaeological deposits at Pictish sites and to interpret the spatial deposition of microarchaeological 120 
residues from the roundhouse. The sampling and laboratory procedures outlined below follow standard 121 
protocols for phytolith analysis and were successful in isolating microbotanical and micro-algae 122 
specimens. 123 
 124 
Sampling 125 
Twenty-one samples were taken from the floor layer using a horizontal sampling technique and “pinch” 126 
sampling method (Fig. 2 & 3). Horizontal sampling allows for variation in plant taxa to be seen more 127 
clearly and can be used to identify activity areas and assess architectural features (Lennstrom and Hastorf 128 
1992; Pearsall 2015:275). The floor area was sampled by establishing a 1 m x 1 m sampling grid and the 129 
“pinch” sampling method was employed for each unit within the grid. Several pinches of sediment (~ 1 130 
Tbsp each) were taken within and across each unit which created a composite sample that amounted to 131 
approximately 200 grams from each unit. Two samples were procured from areas believed to be outside 132 
the floor layer context (samples 18 and 21) to examine ‘natural’ signatures of microbotanical and 133 
microalgae residues for comparison with the floor layer. 134 
 135 



 136 
Figure 2. Pinch sampling grid and sample numbers of the roundhouse floor context 137 
 138 

 139 
Figure 3. Pinch sampling diagram 140 



 141 
Laboratory Processing 142 
Samples were sent to the McMaster Paleoethnobotanical Research Facility (MPERF) where they were 143 
processed following MPERF protocols for extracting phytoliths from sediments (Piperno 2006; Morell-144 
Hart 2018). This process involves soil sterilization, deflocculating samples in water, dividing soils into 145 
A/B and S fractions, clay removal, microwave chemical digestion and flotation of phytoliths. For the 146 
Cairnmore context, processing took twenty-six days for the batch of 21 samples. 147 
 As the samples were processed outside of Scotland, soils were first sterilized in a muffle furnace 148 
at 200 degrees Celsius for six hours to remove the risk of soil borne-contamination. The samples were 149 
then transferred to 1000mL beakers, and 2 Tbsp of sodium bicarbonate was added, then beakers were 150 
filled with hot water and stirred every 15 minutes to break up clumps of soil. Next, the samples were 151 
divided into sand (S), larger sediments (D) and fine/coarse sediments (A/B) using U.S.A. Standard 152 
Testing sieves No. 35, No. 60, No. 270, and base pan. S fractions were collected from sieve No. 270 into 153 
50mL centrifuge tubes, and A/B fractions from the base pan were each transferred to a 1000mL beaker. 154 
These A/B fractions required a clay removal step and so the samples were stirred, allowed to sit for one 155 
hour, slowly poured off the upper 400mL, re-added hot water, then repeated until the water was clear of 156 
suspended clay for all samples. Once clear, the A/B samples were transferred to 50mL centrifuge tubes. 157 
 Samples were centrifuged for 5 minutes at 1000rpm to concentrate the sample at the base of the 158 
centrifuge tube, and excess water was poured off, leaving a damp sediment plug in the tube. Ten grams of 159 
each sediment plug was weighed into 600mL beakers for the chemical digestion process, using 3mL of 160 
hydrochloric acid (10% aqueous solution), 5mL of nitric acid (68 –70% aqueous solution) and 1mL of 161 
hydrogen peroxide (30% aqueous solution). Once all three chemicals were added, samples were 162 
transferred to microwave vessel tubes and heated in the MARS 6 microwave digestion system for 130 163 
minutes. Samples were allowed to sit in the microwave overnight after processing, then transferred from 164 
microwave tubes into 50mL centrifuge tubes and centrifuged at 3000rpm for 5 minutes. The chemical 165 
supernatant from each tube was poured off, then samples were subject to two rinses using ultra-pure 166 
water. 167 
 Following chemical digestion and rinsing, the samples were floated using heavy liquid (sodium 168 
polytungstate solution). This solution was added to each 50mL centrifuge tube sample, agitated, then 169 
centrifuged for 5 minutes at 1000rpm to allow phytoliths to rise to the surface of the tube. Phytoliths were 170 
extracted using a pipet to skim the surface of each sample and transferred to a 15mL centrifuge tube. This 171 
process was repeated for two extractions total from each sample. The samples were then isolated by 172 
removing the heavy liquid by filling the 15mL tube with ultra-pure water, centrifuged for 10 minutes at 173 
1000 rpm and poured off. This process was repeated for a total of three washes until the sample was clear. 174 
After the final pour off, approximately 3mL of acetone was added to the sample, centrifuged for 10 175 
minutes at 1500rpm and poured off. Samples were uncapped, covered with parafilm, and placed under a 176 
fume hood for one week to dry completely. Once dry, the samples were mounted onto glass microscope 177 
slides using a pipet, covered with 1–3 drops of immersion oil and a glass coverslip. 178 
 179 
Analyses 180 
Tabulation and analysis were conducted at the MPERF using a Zeiss microscope for transmitted light 181 
microscopy (200x, 400x and 630x magnifications). Primary analysis involved identifying and tabulating 182 
diagnostic phytolith morphotypes to a minimum of 200 counts per sample (A/B and S fractions) 183 
following recommended practice (Albert et al. 1999; Albert and Weiner 2001; Pearsall 2015). 184 
Morphotypes were identified using the International Code for Phytolith Nomenclature (ICPN) 1.0 and 2.0 185 
when possible (Madella et al. 2005; Neumann et al. 2019). Micro-algae such as diatoms and chrysophytes 186 
were counted separately (although synchronously) from the phytoliths, and were tentatively identified 187 
using ICPN 2.0, Jüttner et al. (2022), Spaulding et al. (2022) and Stone and Yost (2020). 188 
 Secondary analyses included calculating 1) the relative prominence of ecological indicators (e.g., 189 
wetland taxa), 2) the relative prominence of human activities (e.g., grain processing), 3) the ubiquity of 190 



major plant groups (e.g., monocots and dicots) and micro-algae, and 4) the richness of plant taxa within 191 
the roundhouse floor layer. All secondary analyses were carried out using Excel pivot tables. 192 
 193 
Results 194 
Microbotanical results 195 
 196 
The procedure for extracting phytoliths from archaeological soil samples successfully isolated phytoliths, 197 
diatoms, chrysophycean cysts, and microcharcoal from the Cairnmore roundhouse. Some phytoliths 198 
appeared partially dissolved or weathered which likely reflects the acidic soil conditions. Degraded 199 
phytoliths were not counted, but many were of the elongate entire and scutiform morphotypes. 200 
Monocotyledonous plant taxa, which germinate with a single embryonic leaf (typical of grasses), were the 201 
most commonly represented in all of the samples and phytoliths from the grass family (Poaceae) had the 202 
highest total counts for this assemblage. This is unsurprising as the grass family is known as one of the 203 
highest producers of phytoliths (Delhon 2010; Delhon et al. 2020:231; Morell-Hart 2019:236; Twiss 204 
1992). Within this sampling context the Panicoideae (characteristically xerophytic – thriving in dry 205 
environments) (Morell-Hart 2019:236) and Pooideae (characteristically temperate – consisting of pasture 206 
and cereal grasses) subfamilies of the grass family are the most prominent, with rarer occurrences of 207 
likely Arundinoideae (as evidenced by the bulliform morphotype). The Chlorideae subfamily may also be 208 
represented by these bulliform specimens; however, Arundinoideae is more likely given the climate and 209 
plant communities known for this region. Overall, the grass family is represented at Cairnmore through 210 
bilobate, polylobate, trapeziform, and elongate morphotypes (Fig. 4). Phytoliths representative of cereal 211 
inflorescence bracts (i.e., elongate dendritic and papillae phytoliths) were also recovered in trace 212 
quantities (see discussion). Sedge family (Cyperaceae) cones were occasionally identified, indicating the 213 
presence of sedges (Carnelli et al. 2004: 51; Morris et al. 2009; Ollendorf 1992) and occasional acicular 214 
morphotypes appear very similar to those present in common club-rush (Schoenoplectus lacustris) (Fig. 215 
5). The presence of sedges can be used to infer resource procurement from wetland ecological niche 216 
zones as these plants thrive in areas with wet and inundated soils. 217 
 Dicotyledonous morphotypes (representing plants that germinate with two embryonic leaves) 218 
such as opaque perforated plates were also frequent within the roundhouse floor context, and likely 219 
indicated the aster family (Asteraceae) (Fig. 4 G-H). However, several perforated plate morphotypes also 220 
resemble the heather family (Ericaceae) forms identified by Carnelli et al. (2004) and others appear 221 
similar to vascular tissues, potentially from tubers (Fig. 4I). Research on phytolith production in the 222 
Ericaceae family is limited (e.g., Bujan 2013; Thorn 2006), and further investigations should focus on 223 
identifying diagnostic morphotypes for this family of plants. This would be especially useful for northern 224 
European phytolith research as this family of plants is well represented in temperate European 225 
environments and within Scotland specifically (e.g., Calluna vulgaris). Lastly, tabular and spheroid 226 
morphotypes were also present in the floor layer and these morphotypes were counted as dicot specimens 227 
(Albert et al. 1999; Danu et al. 2020:7; Delhon et al. 2020:232). Overall, dicotyledonous morphotypes 228 
were less represented in the floor layer than monocotyledonous morphotypes; however, this follows the 229 
general pattern observed in archaeological investigations (Carnelli et al. 2004; Dal Corso et al. 2017:15; 230 
Tsartsidou et al. 2007).  231 
 232 

Sample 
/ Unit 

Fraction Floor Context Identified 
morphotypes 

Phytolith 
count 

Diatom 
count 

Chrysophyte 
count 

1 A/B north east wall edge 11 102 15 142 

1 S north east wall edge 7 200 2 31 

2 A/B north east floor area 7 100 10 160 



Sample 
/ Unit 

Fraction Floor Context Identified 
morphotypes 

Phytolith 
count 

Diatom 
count 

Chrysophyte 
count 

2 S north east floor area 12 108 7 60 

3 A/B central floor area & 
hearth/pit feature 

8 169 3 0 

3 S central floor area & 
hearth/pit feature 

9 100 5 48 

4 A/B central floor area & 
hearth/pit feature 

9 136 5 22 

4 S central floor area & 
hearth/pit feature 

7 142 3 25 

5 A/B central floor area 6 182 8 49 

5 S central floor area 9 107 3 41 

6 A/B north east wall edge 12 102 0 199 

6 S north east wall edge 9 102 0 26 

7 A/B north east floor area 6 100 2 90 

7 S north east floor area 6 104 2 62 

8 A/B central floor area 10 100 12 89 

8 S central floor area 11 101 3 19 

9 A/B central floor area & 
hearth/pit feature 

5 134 3 70 

9 S central floor area & 
hearth/pit feature 

8 104 8 85 

10 A/B central floor area & 
hearth/pit feature 

8 100 12 163 

10 S central floor area & 
hearth/pit feature 

12 108 4 194 

11 A/B western floor area & 
hearth/pit feature 

8 115 0 92 

11 S western floor area & 
hearth/pit feature 

8 102 11 137 

12 A/B western wall edge 10 128 8 69 

12 S western wall edge 9 102 3 152 

13 A/B north wall edge 9 162 14 37 



Sample 
/ Unit 

Fraction Floor Context Identified 
morphotypes 

Phytolith 
count 

Diatom 
count 

Chrysophyte 
count 

13 S north wall edge 10 104 4 75 

14 A/B north floor area 8 140 8 70 

14 S north floor area 10 102 4 16 

15 A/B north floor area 8 109 3 93 

15 S north floor area 10 105 3 54 

16 A/B north west floor area 9 180 2 19 

16 S north west floor area 11 103 5 87 

17 A/B north west wall edge 8 107 10 20 

17 S north west wall edge 8 101 12 52 

18 A/B western wall edge 6 138 3 73 

18 S western wall edge 12 104 2 61 

19 A/B north west wall edge 8 102 9 65 

19 S north west wall edge 8 107 3 101 

20 A/B north west wall edge 8 110 6 61 

20 S north west wall edge 9 105 3 96 

21 A/B presumed ‘natural’ 
outside floor layer 

feature 

7 100 4 411 

21 S presumed ‘natural’ 
outside floor layer 

feature 

9 102 3 169 

Table 1. Results of microbotanical and micro-algae residues from roundhouse floor samples 233 
 234 
Micro-algae: diatoms and chrysophycean cysts 235 
Diatom frustules and chrysophycean cysts were present throughout the roundhouse floor samples and 236 
were counted synchronously alongside the phytoliths in each sample. These aquatic microstructures are 237 
essential for illuminating the presence of semi-aquatic and aquatic environments. Accurate identification 238 
of diatom frustules can be challenging as diatoms are the most diverse protists (Spaulding et al. 2022; 239 
Stone and Yost 2020:23); however, this presents interdisciplinary opportunities for paleoethnobotanists 240 
and microbiologists (among other specialists) to work together on environmental archaeology research to 241 
aid future identification. Within the context of the floor samples, tentative identifications were assigned 242 
for several complete diatoms with redundant morphotypes (Fig. 6). All diatoms were pennate in form, and 243 
included araphid pennate and raphid pennate examples. The provisional identifications include the genera 244 
Achnanthidium, Hantzschia, Pinnularia, Eunotia and Navicula. Following Jüttner et al. (2022), Spaulding 245 
et al. (2022), Stone and Yost (2020) and Denys (1991) it appears that most of these diatoms are 246 



freshwater species and lived within subaerial and terrestrial environments. Chrysophytes largely consisted 247 
of small spherical forms (Fig. 6G) and stomatocysts with smooth and rugose ornamentation (Fig. 6H & I). 248 
The round chrysophyte specimens appear similar to the C. pseudodiachloros and C. elegans forms 249 
recovered from peat bogs by Cambra (2010) in Spain. However, verification from diatomists is needed to 250 
fully confirm these identifications. 251 
 252 
Contexts 253 
Overall, the counts of diatoms and chrysophycean cysts were often higher around the edge of the floor 254 
layer, within the assumed ‘natural’ units (18 and 21), and within units with pit/hearth features. Although 255 
the taxonomic identification of these specimens is unverified, their presence indicates concentrations of 256 
damp or inundated deposits where these micro-algae were present.  257 
 258 
Discussion 259 
This multiproxy study provides robust data to interpret the architectural features of the Cairnmore 260 
roundhouse such as the wall and roof materials. This data also contributes to our knowledge of the use of 261 
space within the roundhouse and activities associated with the Cairnmore complex more broadly. 262 
 263 
Architecture – walls and roof 264 
Intact floor layers uncovered during excavation allow archaeologists to examine the use of space, 265 
architectural details, activities and site formation processes (Borderie et al. 2020:151; Macphail et al. 266 
2004; Milek 2012; Robertson and Roy 2019). However, in situ floor deposits are rare for lowland 267 
structures within Britain (e.g., for prehistoric roundhouses see Ghey et al. 2007; Webley 2007) and 268 
exceptionally uncommon in early medieval eastern Scotland (Ralston 1997; Noble et al. 2020:320). Initial 269 
observations by the excavators noted that this structure was potentially constructed of turf or other earthen 270 
materials (Noble et al. 2022), as has been suggested for other early medieval lowland structures (e.g., 271 
Ralston 1997:24; Noble et al. 2020:320), and this hypothesis is supported by the absence of postholes and 272 
stakeholes surrounding the floor layer which could have supported an earthfast timber structure to brace 273 
the walls and roof. One of the aims of this study was to test the hypothesis for turf walling by examining 274 



the microbotanical and micro-algae assemblages present in and around the floor of this structure that lay 275 
just outside the ringfort. 276 

Figure 4. Common phytolith morphotypes from roundhouse floor samples (viewed at 400x). (A) 277 
cylindrical polylobate – Poaceae, (B) bilobate – Poaceae, (C) elongate entire – Poaceae (D – E) elongate 278 
dendritic [inflorescence bract] – Poaceae, (F) Cyperaceae cones, (G – H) Asteraceae or possibly Ericaceae 279 
opaque perforated plates, (I) Vascular tissue, possibly from a tuber. 280 



Figure 5. (A) Acicular hair morphotype from modern Schoenoplectus lacustris viewed at 100x (Prado 281 
2022) and (B) acicular hair from roundhouse floor, viewed at 400x. 282 

Figure 6. Diatoms and chrysophycean cysts extracted from roundhouse floor (viewed at 400x). All 283 
identifications are unverified by a diatomist (A) cf. Achnanthidium sp., (B) cf. Hanzschia sp., (C) cf. 284 
Pinnularia sp., (D) cf. Eunotia sp., (E) cf. Pinnularia sp., (F) possible burnt fragment of Navicula sp., (G 285 
– I) chrysophycean cysts. 286 
 287 
The phytolith evidence indicates a consistent presence of wetland plant taxa (e.g., Cyperaceae sp.) in the 288 
Cairnmore floor deposit. Although present in lower quantities than Poaceae morphotypes, above average 289 
counts of Cyperaceae cones were retrieved from 54% of the outer floor units where the wall of a 290 
superstructure may be expected. This is a remarkable finding as Cyperaceae phytoliths are considered to 291 
have relatively low visibility (Dal Corso et al. 2017:16; Novello and Barboni 2015; Ollendorf 1992). The 292 
micro-algae assemblage, consisting of diatoms and chrysophycean cysts, was also ubiquitous across the 293 
floor, often in similar counts and concentrations to the Cyperaceae cones. Although these microfossils 294 
were retrieved from 90% of the sampling area (each present in 20 out of 21 units), elevated counts around 295 
the edge of the floor deposit and from supposed ‘natural’ units (18 and 21) indicate wetland plants and 296 
algae were concentrated around the edge of the structure. 297 
 The most likely explanation of this pattern is that the wetland indicator species come from a 298 
turf/peat wall, with turfs cut from a wetland context the likely source. Analogous construction techniques 299 
are also known from Viking Age and later historical turf structures in Iceland, where turf was typically 300 
cut from lowland bogs and transported to the uplands for house construction (Bathurst et al. 2010; van 301 
Hoof and van Dijken 2008). Several diatom genera from the roundhouse floor at Cairnmore appear to 302 
overlap with the findings of Bathurst et al. (e.g., Achnanthes, Eunotia, Navicula and Pinnularia) and these 303 



taxa are notably often found in peat-bogs (Bathurst et al. 2010:2925). The study by Bathurst et al. is an 304 
excellent example of the advantages of targeting micro-algae residues in archaeological research; 305 
however, this is a rare case as most archaeological approaches to past environments, especially in 306 
northern regions, do not prioritize the recovery of diatom frustules. Within northern environments there 307 
are very few studies that analyze microbotanical and micro-algae residues in-tandem (e.g., Vuorela et al. 308 
1996) and to our knowledge, no archaeological studies have targeted chrysophycean cysts for analysis.  309 

Wetland turf has often been a preferred material over grassland turf because of its denser root mat 310 
which makes it better suited to absorbing water; therefore, making it more suitable for insulation in cool 311 
and wet climates (Milek 2012:120–122; van Hoof and van Dijken 2008:1026). The practice of targeting 312 
wet environments for turf extraction has been attributed to areas across the northern hemisphere including 313 
Scotland, Iceland, Greenland, the Faroe Islands, Germany, Ireland, the Netherlands, and Norway 314 
(Huisman and Milek 2017: 113). Within Scotland, turf was often procured from wet environments such as 315 
sedge marshes, peat bogs, and heathlands (Huisman and Milek 2017:113; Walker 2006:7–8) as these 316 
environments yield turf with deep root systems which results in a robust building material. Within 317 
Scotland, Cyperaceae plants are mostly found in wet environments including fen, heathland, and marsh 318 
environments. The phytolith signature in the Cairnmore floor deposit containing Cyperaceae and 319 
Asteraceae (possibly Ericaceae) forms could therefore reflect turfs procured from a variety of wet 320 
environments. Few Cyperaceae plant species grow in drier locales within Scotland as most sedges thrive 321 
in wet and inundated soils (Preston et al. 2002). Coupled with the micro-algae evidence, we suggest that 322 
the sedges in this floor deposit are unlikely to originate from dry environments. Overall, the phytoliths, 323 
diatom frustules, and chrysophycean cysts retrieved from the Cairnmore floor signature suggest that the 324 
turfs procured for this structure came from wet environments, likely peat bogs and other wet locales (e.g., 325 
heathland and fens). 326 

Wetland areas still exist close to Cairnmore today and turf could have been sourced nearby for the 327 
walls of the Cairnmore structure. The ubiquitous nature of wetland taxa across the roundhouse floor may 328 
have resulted from the redeposition and movement of wall detritus across the floor (e.g., through 329 
sweeping) and through decay from weathering and decomposition of the turf walls over time. The 330 
presence of elevated counts of chrysophycean cysts and diatom frustules in units 18 and 21, which were 331 
believed to be outside of the floor layer (and therefore were assumed to be ‘natural’ contexts), likely 332 
suggests the context of these units relates to the inner fabric of the turf wall. Therefore, it is recommended 333 
that sampling of ‘natural’ contexts should be targeted at a greater distance from an intact floor deposit to 334 
avoid sampling other unseen structural elements such as turf walling. Shovel test pits at a greater distance 335 
from excavated areas could potentially be useful for sampling ‘natural’ contexts. Although the samples 336 
from units 18 and 21 do not appear to be wholly ‘natural’ in derivation they were still useful for 337 
comparison with the floor layer as these signatures strongly contrasted with the floor signature (i.e., 338 
elevated counts of chrysophycean cysts and diatom frustules). This contrast also suggests that the 339 
signatures from the floor are not representative of ‘natural’ growth on the floor after the structure was 340 
abandoned. 341 
 In historical contexts turf walls could be reasonably thick, often comprising two ‘faces’ and a 342 
core, similar in form to our modern cavity walls, with turf constructed in two parallel lines with earth 343 
between (van Hoof and van Dijken 2008:1026–1027). Turf structures are thought to be relatively efficient 344 
in terms of time and labour investment required for their construction and upkeep (Loveday 2007) and are 345 
also excellent structures to use in areas where wood for building is scarce. Turf structures are also 346 
particularly valued in cold and wet regions as these structures have excellent insulation properties 347 
(Bathurst et al. 2010:2920; Milek 2012:120), a pertinent observation for the northern environments of 348 
northeast Scotland. The hillslope setting of Cairnmore would have been an exposed location and warmth 349 
and insulation would have been particularly valued in this context.  350 
 Interpreting the roof material of this turf walled structure is complicated as the samples in this 351 
study were procured from what may be a mixed context of floor and roof material. It is difficult to 352 
differentiate collapsed roof material from floor deposits in this context; therefore, to understand the 353 
character of the roof we compared the microbotanical signature with broader archaeological and 354 



ethnographic evidence. Overall, we did not differentiate between floor materials and collapsed roof 355 
materials as this context was likely a mix of both; however, we have provided tentative interpretations for 356 
the roof structure below. 357 

The low counts of reed type phytoliths (e.g., bulliform morphotypes) across the floor layer 358 
suggests that the roof, and the roundhouse structure broadly, did not significantly rely on these wetland 359 
plants, as has been argued for some prehistoric roundhouse structures in Britain (Ghey et al. 2007; Pope 360 
2008:17). Instead, the high degree of grass family (Poaceae) and aster family (Asteraceae) phytoliths 361 
potentially suggest the roof was thatched using dried grasses and other wild plants (Morell-Hart 362 
2019:236; Portillo and Albert 2011:3232). Aster family phytoliths and other dicot morphotypes were 363 
recovered across most of the floor layer, and prominent deposits of dicot residues were identified within 364 
several units (Fig. 7). Within the contemporary environment, aster family species include (but are not 365 
limited to) hawkweed, daisy, yarrow, knapweed and coltsfoot. However, further research is needed on 366 
Asteraceae phytoliths within northern Europe as some phytoliths recovered within this context were semi-367 
translucent and resembled heather family (Ericaceae) microstructures identified by Carnelli et al. 368 
(2004:56). Ethnographic and historic research on Scottish shielings and other types of upland dwellings 369 
reference the use of heather (Calluna vulgaris) for thatched roofs (e.g., the blackhouses from the outer 370 
Hebrides and The Black Barn in Northumberland) (Dower 2015; Scott 2007; Walker 2006), and this 371 
could potentially explain the representation of Asteraceae and possible Ericaceae morphotypes recovered 372 
from this context. 373 

Figure 7. Monocotyledon and dicotyledon ubiquity within the roundhouse floor 374 
 375 
Spatial analysis 376 
The microbotanical assemblage does not strongly indicate the division of space for specific activities, 377 
such as cooking, crop processing, or sleeping, though only part of the structure was revealed in 378 
excavation (Fig. 9). However, small concentrations of specific morphotypes were present. For example, 379 
dicot phytoliths and chrysophytes show a similar spatial pattern across the roundhouse floor with higher 380 
counts around the edges of the roundhouse and in the central units near the probable hearth features (i.e., 381 
units 9, 10, 11 & 15). Cabanes et al. (2010) discusses a similar pattern within late Mousterian cave 382 
occupations in Cantabria, Spain, where dicotyledonous residues were largely recovered from hearth 383 
deposits whereas monocotyledon residues surrounding hearth features were interpreted as bedding areas. 384 
The concentrations of chrysophytes related to probable hearth features may indicate that peat was also 385 



being used for fuel within the roundhouse, a known practice from historical and ethnographic examples 386 
(Loveday 2007:87). Alternatively, perhaps some material from the wall and floor detritus was used to fill 387 
and close the hearths when abandoned or infiltrated what may have been sunken bowl-shaped hearths, 388 
through later processes of decay and dissolution of the turf superstructure. 389 
 Food processing may have been carried out in or in the vicinity of the building. Trace 390 
macrobotanical evidence from Cairnmore recovered granary weevils (Sitophilus granarius) from the 391 
roundhouse floor (Niehaus 2021:43), possibly indicating a crop processing area or storage facility located 392 
within or near the Cairnmore roundhouse. The microbotanical residues add more potential evidence for 393 
this. A small number of inflorescence bract phytoliths were retrieved, with the highest counts reaching 5 394 
elongate dendritic forms in units 14 and 16 (Fig. 8). Grass inflorescences are typically formed in the later 395 
summer or early autumn and robust phytolith evidence of these foodstuffs is usually represented through 396 
articulated multicellular structures of elongate dendritic and papillae phytoliths (Delhon et al. 2020). 397 
Without multicellular forms or the use of morphometric analysis (Ball et al. 1996; Ball et al. 2009; Ball et 398 
al. 2016; Portillo, Ball and Manwaring 2006; Rosen 1992) it is challenging to interpret the taxa 399 
represented through these morphotypes. Many of these phytoliths were fragmented and were difficult to 400 
confidently match with reference examples in the McMaster Microbotanical Research Database (Prado 401 
2022). However, the most likely identification is barley (Hordeum vulgare), the dominant crop type for 402 
the region in this period (Jones et al. 2021). 403 

Figure 8. Counts of inflorescence bract phytoliths within the roundhouse floor 404 
 405 



 406 
Figure 9. Spatial representation of microbotanical and micro-algae residues across the roundhouse floor 407 
 408 
In regard to function, the presence of a rare intact floor layer suggests that this structure was repeatedly 409 
used; however, the activities within the structure are challenging to interpret. As already discussed, only 410 
weak signatures indicating food processing or bedding areas were recovered from this context. Given the 411 
relative lack of such indicators it is possible the building was mainly an auxiliary vernacular structure 412 
such as a workshop or agricultural building, an interpretation that may chime with the presence of the 413 
structure outside of the ringfort. The use of this building as a domestic space cannot be fully dismissed 414 
however, as trace residues of food processing were recovered (e.g., elongate dendritic phytoliths) and the 415 
floor layer suggests some level of repeated use of the structure. Lastly, other forms of domestic evidence 416 
could have lain elsewhere in the building outside of the accessible sampling area. 417 
 418 

Family Number of units where present 
(max 21) 

Frequency (%) 

Poaceae 21 100 

Asteraceae 20 95 

Cyperaceae 20 95 

Poaceae (inflor. bracts) 16 76 



Family Number of units where present 
(max 21) 

Frequency (%) 

Arundinoideae 3 14 

Table 2. Ubiquity of plant families represented by phytoliths in roundhouse floor 419 
 420 
Conclusions 421 
This article has addressed microbotanical and micro-algae assemblages within a floor context from a 422 
building located outside of an early medieval ringfort in eastern Scotland – a rare survival of a settlement 423 
context from a region that has a relative dearth of settlement evidence. The findings suggest 424 
microbotanical analysis is a very useful technique for archaeological sites and contexts where settlement 425 
remains are sparse and difficult to interpret, as is the case for early medieval Scotland. 426 
 Microbotanical residues can be used to interpret architectural details otherwise lacking direct 427 
evidence such as the character of the materials used for flooring or roofing. At Cairnmore, the ubiquity of 428 
chrysophytes, diatom frustules, and sedge family (Cyperaceae) phytoliths throughout the floor layer and 429 
the concentrations of these microalgae and wetland phytoliths around the perimeter of the floor suggest 430 
the use of nearby wetlands for turf which was utilised to build the outer walls of the roundhouse. More 431 
tentatively, the presence of semi-opaque perforated plate phytoliths, suggests the presence of aster and 432 
potentially heather thatch. The microbotanical assemblage from Cairnmore was also found to represent a 433 
use of a variety of ecological niche zones providing important evidence for landscape use. Grasslands, 434 
wetlands (e.g., bogs, marshes, and fens), and likely heathlands were represented through grass, sedge and 435 
aster phytolith morphotypes. Semi-aquatic and aquatic environments were represented through diatom 436 
frustules and chrysophycean cysts that likely originated from subaerial and terrestrial inundated 437 
environments such as peat bogs. The presence (and absence) of particular microbotanical indicators also 438 
allowed interpretation of the possible uses of the structure, with evidence for potential crop processing in 439 
the structure or nearby, while the lack of multicellular phytoliths possibly suggests the building may not 440 
have been a primary occupation space but could have been a secondary structure such as an agricultural 441 
building, which may fit with its location outside the ramparts of the ringfort. However, more excavation 442 
would be needed to clarify this.  443 
 Microbotanical assessments of floor layers have been proven to be useful for the identification of 444 
plant resources from storage areas, ovens, hearths, and sleeping areas (Rosen 2005) and this study has 445 
contributed to our understanding of floor deposits in a northern European region and era where our 446 
knowledge and understanding of settlement traditions is very limited. The recovery of phytoliths from 447 
intact floor layers is not always straightforward, as taphonomic processes are not always clear and 448 
contamination during excavation can complicate these assemblages (Shillito 2013:76). However, the 449 
distinct signatures from Cairnmore suggest that this floor layer was not significantly disturbed post-450 
abandonment nor during the excavation process. Microbotanical analysis successfully retrieved desired 451 
counts of phytoliths across the sampling area and this methodology was effective in providing new data, 452 
which also incorporated micro-algae residues, to interpret this roundhouse and the activities that may 453 
have been carried out inside the structure, nearby and in the wider landscape. Such microbotanical and 454 
micro-algae approaches should be encouraged in northern environments where organic preservation has 455 
limited our knowledge of past settlement traditions. 456 
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