nature REVIEWS

Nature Reviews referee guidelines

Review articles

Nature Reviews publishes timely, authoritative articles that are of broad interest and exceptional quality. Thank you for taking the time to help us to ensure that our articles meet these high standards.

Review articles in *Nature Reviews* journals provide accessible, authoritative and balanced overviews of a field or topic. These articles are targeted towards readers from advanced undergraduate level and upwards, including researchers, academics and clinicians, and should be accessible to readers working in any discipline.

Please submit your report in narrative form and provide detailed justifications for all statements. Confidential comments to the editor are welcome, but it is helpful if the main points are stated in the comments for transmission to the authors.

Please note that all *Nature Reviews* articles will be thoroughly edited before publication and all figures will be redrawn by our in-house art editors. We therefore request that you concentrate on the scientific content of the article, rather than any minor errors in language or grammar.

Please consider and comment on the following points when reviewing this manuscript:

- Is the article timely and does it provide a useful addition to the existing literature?
- Are the scope and aims of the article clear?
- Are the ideas logically presented and discussed?
- Is the article accessible to a wide audience, including readers who are not specialists in your own field?
- Does the article provide a balanced overview of the literature? Please bear in mind that it may not be possible to cover all aspects of a field within such a concise article.
- Does the article provide new insight into recent advances?
- Is the discussion fair and accurate? Although our authors are encouraged to be opinionated, they should not ignore alternative points of view.
- Do the figures, boxes and tables provide clear and accurate information? Are there any additional or alternative display items that you think that the authors should include?
- Are the references appropriate and up-to-date? Do they reflect the scope of the article?
- Are you aware of any undeclared conflicts of interest that might affect the balance, or perceived balance, of the article?

Nature Reviews Urology

3 **Consensus Statement:**

4

5 Unanswered questions in prostate cancer: Findings of an 6 international multi-stakeholder consensus by the PIONEER 7 Consortium

8

Muhammad Imran Omar, Steven MacLennan, Maria Ribal, Monique J. Roobol, Konstantinos
 Dimitropoulos, Thomas van den Broeck, Sara MacLennan, Susan Evans Axelsson, Giorgio Gandaglia,
 Peter-Paul Willemse, Ken Mastris, John Butler, Zsuzsanna Devecseri, Thomas Abbott, Bertrand De
 Meulder, Anders Bjartell, Alex Asiimwe, James N'Dow, and The PIONEER Consortium*

13 *The PIONEER Consortium (will submit as a list containing names of all consortium members)

14

15 Abstract

16 PIONEER is a European network of excellence for big data in prostate cancer, consisting of 37 17 private and public stakeholders from 9 countries across Europe. Major stakeholders including 18 healthcare professionals and patients were consulted to propose the most critical questions 19 in the field of prostate cancer to be answered using big data. Through this process, 44 key 20 questions were identified. The PIONEER consortium conducted a two-round modified Delphi 21 survey aiming to build consensus between the two stakeholder groups: healthcare 22 professionals and prostate cancer patients. Respondents were asked to consider what impact 23 answering the proposed questions would have on better diagnosis and treatment outcomes 24 for prostate cancer patients, while scoring these questions on a scale of 1 (not important) to 25 9 (critically important). In total, 73 healthcare professionals and 57 patients participated in 26 round one. Twelve additional questions were proposed during this first round. For the second 27 round 169 patients (including 53 English; 19 French; 31 German; 53 Italian; 13 Spanish) 28 participated. The results were analysed by calculating the percentage of respondents scoring 29 each question as not important, important, or critically important. The mean of the 30 percentages across the two stake-holder groups scoring each of the 56 questions as "critically 31 important" was calculated and used to rank the questions in terms of those scoring highest 32 in the "critically important" category. Three questions (Q1, Q2 and Q4) focused on prognostic 33 factors and two (Q4 and Q5) on the role of medical interventions on patient outcomes. The 34 disease stages that were covered are also varied, including localized (Q1, Q2, Q3), recurrent 35 (Q4) and metastatic (Q5) disease. Hence prioritisation does not seem to be biased towards 36 the opinion of a subgroup of HCPs (urologists versus medical oncologists for example). 37 Although the prioritisation of the first 5 questions was overall similar between HCPs and 38 patients, for two questions (Q3 and 4) there was a +/- 10% difference in the percentage of 39 respondents categorizing the question as critically important. For Q3 this was 91.8% by HCPs 40 versus 82.3% by patients and for Q4 79.6% versus 92.5%. Identification of critical questions 41 will help the PIONEER consortium to answer those questions that are critical to various 42 stakeholders.

43

44 Background information

45 Prostate cancer represents the most common cancer diagnosed in men in Europe with more 46 than 1,400,000 estimated cases in the year 2020 and the fifth cause of mortality for cancer 47 with more than 375,000 new deaths per year worldwide (1). Although prostate cancer is 48 characterized by a relatively prolonged natural history, the outcomes of prostate cancer 49 patients are heterogeneous and profoundly vary according to disease features as well as 50 individual characteristics (2). Over the last few years, the introduction of novel imaging 51 modalities, biomarkers, genomics and personalized medicine revolutionized the management 52 of prostate cancer patients (3, 4) (5). Nonetheless, several questions on the most optimal 53 management of prostate cancer at different stages of the disease still remain unanswered and further research is needed in all stages of the disease with the aim of developing 54 55 approaches that improve oncologic control and survival and minimize the detrimental effects 56 on health-related quality of life.

57

58 Prostate cancer management is typically based on stratification into risk categories, which 59 provide an estimate of the probability of experiencing recurrence after primary treatment or 60 indeed the likelihood of disease progression should a non-curative intent management 61 strategy such as Active Surveillance (AS) was adopted. However, this classification relies 62 mainly on clinical factors such as PSA values, clinical stage, and biopsy grade group (6). 63 Moreover, its accuracy in the identification of men who would die from the disease itself or 64 who would suffer from side effects of the disease versus those who are more likely to die 65 from other causes and has no burden of his prostate cancer is suboptimal. Therefore, the 66 impact of novel available tools on risk stratification at diagnosis still needs to be clarified.

68 When focusing on patients with clinically localized disease, deferred treatment, which mainly 69 consists of active surveillance (AS) and watchful waiting (WW), as well as curative intent 70 treatments such as surgery to remove the prostate (radical prostatectomy) and radiation 71 treatment, all represent valid options. Although both AS and WW aim at avoiding unnecessary 72 therapies and their treatment-related side effects, they have substantial differences. AS 73 represents an alternative for selected patients with low- or intermediate-risk localized disease 74 with the aim of avoiding treatment-related side effects without missing the correct timing for 75 the delivery of curative-intent therapies (7). Several selection criteria for the inclusion in AS 76 protocols have been proposed. However, which are the patient- and tumor-specific factors 77 that could accurately guide the prognosis in this setting and identify the optimal AS candidates 78 are still unknown (8). For example, multiparametric MRI and genetic testing has been 79 proposed to identify men suitable for the inclusion in AS protocols (9, 10). Nonetheless, the 80 role of these factors and their impact on survival still needs to be elucidated. Similarly, the 81 optimal follow-up and triggers for intervention in patients enrolled in AS protocols have been 82 poorly addressed so far.

83

Patients considered for WW are deemed as unsuitable for curative treatments due to their life expectancy or significant comorbidities and therefore, are typically monitored until the development of local or systemic symptoms. The natural history of contemporary patients managed with WW and the rates of disease progression and survival still need to be investigated. Moreover, the improved life expectancy and different impact of comorbidities on survival would preclude the generalizability of their results to contemporary cohorts.

90

97

When focusing on men with more advanced disease (i.e., locally advanced or metastatic prostate cancer), several questions remain unanswered. Recent studies suggested that the treatment of the primary tumor in oligo-metastatic patients at diagnosis, as well as the delivery of metastases-directed therapies in the oligo-recurrence setting, might improve outcomes (12, 13). However, the impact of these local therapies on long-term outcomes in the metastatic setting still remains unknown.

67

98 Over the last few years, several novel systemic therapies have been introduced for the 99 treatment of metastatic hormone-sensitive and castration-resistant prostate cancer, such as 100 novel androgen-receptor targeted therapies (ARTA), chemotherapy, PARP inhibitors or 101 immunotherapy. However, which is the best sequencing of these molecules is still largely 102 unknown. Similarly, little is known regarding the use of biomarkers for the delivery of an 103 individualized approach.

104

Finally, it should be highlighted that each local or systemic therapy for the management of prostate cancer patients is associated with specific treatment-related side effects which have a profound impact on health-related quality of life. One of the main challenges in the management of prostate cancer patients in the next decade would be to identify which is the therapeutic approach with the best trade-off between toxicity and efficacy for each patient in order to improve oncologic control without affecting quality of life.

111

112 **PIONEER project**

PIONEER (Prostate Cancer DlagnOsis and TreatmeNt Enhancement through the power of big data in EuRope) is a European network of excellence for big data in prostate cancer project, consisting of 37 private and public stakeholders from 9 countries across Europe. Launched by the Innovative Medicines Initiative 2 under grant agreement No.777492 and part of the Big Data for Better Outcomes Programme (BD4BO), the overarching goal of PIONEER is to provide high-quality evidence on prostate cancer management to improve health outcomes and healthcare systems in Europe by unlocking the potential of big data.

Prostate cancer is the most common cancer diagnosed in men in Europe, representing 1 in 10 of all cancer deaths in men (14) Prostate cancer healthcare costs were estimated at €8.43 billion per year in the EU in 2009 and accounted for 7% of all cancer costs in Europe (15). At present, there are a number of critical knowledge gaps in relation to the screening, diagnosis and treatment of prostate cancer patients, including:

- lack of standardisation of prostate cancer outcomes definitions across all stages of
 the disease;
- insufficient knowledge of the risk factors for developing prostate cancer;

- insufficient knowledge of appropriate patient stratification and patient prognostic
 characteristics, including genetic profiles, for optimal stratification of patients at
 time of diagnosis;
- Iack of meaningful engagement of all key stakeholders, including patients, when
 defining disease-specific core outcome sets (COS);
- ineffective implementation of knowledge and real-world clinical data into clinical
 practice including care pathways.

The vision of PIONEER is to transform the management and clinical practice of prostate cancer across all disease stages (Stage I to IV) towards a data-driven and outcome-driven, valuebased, and patient-centric health-care system. By applying advanced big data analytics, and developing a data platform of unparalleled scale, quality and diversity, PIONEER will empower meaningful improvement in clinical practice, prostate cancer disease-related outcomes, and health economic outcomes across the European health care landscape (16). Specific objectives of PIONEER project include:

- 142
- 143 1- To improve disease understanding and deliver a core set of clinically relevant
 144 standardised prostate cancer -related outcomes
- 145 2- To optimise diagnosis and therapeutic management of prostate cancer patients across
 146 different stages of the disease and across multiple geographies by delivering valuable
 147 insights from real-world data and sharing best practices
- To provide unique tools for standardisation and analysis of complex prostate cancer
 data sets from a variety of sources, using different data models and different
 terminology, whilst comprising different layers of information (e.g., genetic, omics,
 imaging, biomarkers)
- 4- To develop a large and harmonised repository of prostate cancer data that can be used
 to improve evidence-based decision-making for all prostate cancer patients, and
 enable a wide variety of data re-use scenarios
- 155 Knowledge gap and PIONEER's approach

156 It is PIONEER's ultimate vision to re-orient the management and clinical practice of prostate 157 cancer across all stages of the disease towards a more outcome-driven, value-based, and 158 patient-centric healthcare system. Clinical research is traditionally led by scientists, clinical 159 professionals or commercial interest. In 2009, Chalmers and Glasziou, among others, argued 160 strongly for a more efficient research culture in which scientists study health conditions that 161 are not only the greatest burden on the population, but also address questions about 162 interventions and outcomes that patients and clinicians consider to be the most important 163 (17). Although the distinction between a scientific problem and a research question is 164 perhaps not always clear, we can consider a research question as identifying the particular 165 piece of knowledge a project seeks to generate to (partially) solve a problem. Generating 166 relevant research questions, with respect to novelty, scientific and practical impact, 167 feasibility, and clarity requires different types of pre-existing knowledge. Despite the fact that 168 PIONEER will have the availability of ample data, we must remain critical on what will be 169 feasible to address. In general, available patient-centered prostate cancer datasets can be 170 divided into three categories i.e., clinical, genomics and imaging, and availability of each 171 category will influence feasibility of solving a particular research question. However, as shown 172 above, the success of big data analysis does not solely depend on access to data. The 173 interaction between prostate cancer experts, patients, IT and data experts is crucial and calls 174 for a multi-disciplinary approach (18, 19).

175

The PIONEER consortium initiated a research prioritisation exercise aiming to identify the major unmet questions in the field. First, the PIONEER consortium identified critical prostate cancer evidence gaps from the perspectives of academic and industry professionals and patients and then used modified Delphi methods to come to a consensus on a prioritised list of research questions.

181

182 Methods

The most important stakeholder groups for identifying the top unanswered questions in prostate cancer are healthcare professionals (HCPs), because they design and administer care and drive the research agenda and the patient group because they are the recipients of the benefits and harms of care and research. The modified Delphi method was identified as appropriate to assess agreement within and between these stakeholder groups, and to facilitate consensus (20). The modified Delphi method allows for anonymous controlled feedback, whereby participants are first asked to score a series of items, then, in subsequent 190 rounds are shown a summary of the scores that other participants attributed to each item in

191 the previous round. They are then asked to re-score the items (21).

192

193 Key Opinion Leaders including EAU Prostate Cancer Guideline panel members and other 194 urologists, oncologists, radiologists, nurses, health economists, and researchers were 195 consulted to propose the most critical questions in the field of prostate cancer to be answered 196 using big data. These KOLs work in a variety of different setting including academic/university 197 environments, hospitals, and primary care. They were asked to provide critical unanswered 198 research questions for prostate cancer, considering what we do not know for sure about 199 prostate cancer but would be important to know and answering these questions 200 can/could transform practice and patient outcomes. Through this process, 44 key questions 201 were identified. Afterwards, the PIONEER consortium conducted a two-round modified 202 Delphi survey in order to assess and build consensus between the two stakeholder groups: 203 healthcare professionals (including representatives from pharmaceutical companies who are 204 medically gualified and work in either R&D or medical affairs branches of industry and not 205 from marketing departments) and prostate cancer patients. Several organisations helped us 206 with the dissemination of the surveys including the EAU, EAUN, Ecancer, ECPC, EUROPA 207 UOMO, Prostate Cancer UK, and UCAN. Respondents were asked to consider what impact 208 answering the proposed questions would have on better diagnosis and treatment outcomes 209 for prostate cancer, while scoring these questions on a scale of 1 (not important) to 9 210 (critically important). The results were analysed by calculating the percentage of respondents 211 scoring each question as: not important (score 1 to 3), important (score 4 to 6) or critically 212 important (score 7 to 9). In the second round, participants were shown a summary of the 213 percentage of other participants' (patients and healthcare professionals) who considered the 214 question "critically important" in round one.

215

216 **Results**:

In total, 73 healthcare professionals and 57 patients participated in round one of the modified
Delphi survey. Twelve additional questions were proposed during this first round. For the
second round, the patients' surveys were translated into French, German, Italian and Spanish.
49 healthcare professionals and 169 patients (including 53 English; 19 French; 31 German; 53
Italian; 13 Spanish) participated in round two of the surveys (Figure 1).

The mean of the percentages across the two stake-holder groups scoring each of the 56 questions as "critically important" was calculated and used to rank the questions in terms of those scoring highest in the "critically important" category. The top ten questions are listed in **Table 1** and the process is illustrated in **Figure 2**. The complete results are in **Appendix 1**.

227

228 The five questions with highest prioritisation were overall deemed critically important by 229 more than 85% of all respondents (Table 1). None of the questions that were added after the 230 first modified Delphi round were retained within the final top 10 prioritised questions. All top 231 5 questions were also part of the top 10 questions after the first modified Delphi voting round. 232 Three questions (Q1, Q2 and Q4) focused on prognostic factors and two (Q4 and Q5) on the 233 role of medical interventions on patient outcomes. The disease stages that were investigated 234 are also varied, including localized (Q1, Q2, Q3), recurrent (Q4) and metastatic (Q5) disease. 235 Hence prioritisation does not seem to be biased towards the opinion of a subgroup of HCPs 236 (urologists versus medical oncologists for example). Although the prioritisation of the first 5 237 questions was overall similar between HCPs and patients, for two questions (Q3 and 4) there 238 was a +/- 10% difference in the percentage of respondents categorizing the question as 239 critically important. For Q3 this was 91.8% by HCPs versus 82.3% by patients and for Q4 79.6% 240 versus 92.5%.

241

242 The remaining 5 questions (Q6 - Q10) had an overall prioritisation score around 85% with the 243 exception of Q10 which scored lower, at 80.5%. Three questions (Q6, 7 and 9) were part of 244 the top 10 questions identified by the healthcare professionals and patients after the first 245 modified Delphi voting round. Two questions (Q8 and Q10) were also part of the 10 questions 246 prioritised by the HCP group after Round 1. Three out of the 5 questions focused on 247 treatment-related benefits and harms and sequencing of available treatment options (Q6, Q9 248 and Q10), while Questions 7 and 8 revolved around optimising patient selection for treatment 249 at various clinical stages, and using genetic profile to maximise treatment effect. While 250 prioritisation scores were similar between the groups of patients and HCPs for Questions 7 251 and 8 (~85%), patient prioritisation scores for Questions 6, 9 and 10 were ~10-15% higher 252 than the scores provided by the HCPs (91.4%, 90.8% and 88.1% versus 79.6%, 77.6% and 253 72.9%, respectively).

Overall, both groups' prioritised questions related to four specific question types in their top ten. These question types were comparisons of treatments or specific diagnostic / treatment questions for specific stages e.g. CRPC, timing of treatment and care pathways, comparison of side effects, or genetics and understanding patient types / risk profiles and treatment. The main difference between the two groups was that the patients also prioritised questions related to co-ordination of care and skill of care provider within their top ten list of priorities.

262 The top ten priorities for patients relate to five specific question types – comparisons of 263 treatments or specific treatment questions for specific stages e.g. CRPC, timing of treatment 264 and care pathways, understanding of side effects, co-ordination of care and skill of care 265 provider or genetics and understanding patient types and treatment. Examples include 266 questions related to the comparison of rates of side effects between different treatments; 267 questions related to tumour-specific and patient-specific variables, prognosis and active 268 surveillance; and questions related to sequencing of therapeutic options to support best 269 outcomes. The most rated question was around treatment options and timing of treatment 270 following recurrence of prostate cancer (for full details see **Appendix 1**).

271

These are all key dimensions of evidence-based decision making which would help increase patient understanding of their diagnosis, their potential treatment options and inform their outcome expectancies. Greater evidence to support a more complete understanding of these questions would support appropriate decision-making and could minimise decisional regret. The co-ordination of care and skill sets of care providers are important dimensions of confidence and trust in the process of care.

278

The top ten priorities for healthcare providers relate to four specific question types comparisons of treatments or specific diagnostic / treatment questions for specific stages e.g. CRPC, timing of treatment and care pathways, comparison of side effects, or genetics and understanding patient types / risk profiles and treatment. Examples include questions related to best models for risk stratification; questions related to understanding which specific groups of patients benefit from specific treatments such as upfront chemotherapy; questions related to diagnosis and use of pre-biopsy mpMRI (for full details see **Appendix 1**).

Interestingly, whilst there was a clear emphasis on developing better understanding of treatment options and aspects of tailoring these to specific patient groups, there was less emphasis on the delivery and co-ordination of care or the particular expertise or skill set of the healthcare professionals involved in care.

291

292 Discussion

293 Both the abandonment of the paternalistic model of the doctor-patient relationship and the 294 increasing knowledge of prostate cancer biology has led to a change in how prostate cancer 295 patients are treated. General cancer treatments made way for patient-tailored treatments, 296 not only taking tumour features into consideration, but also patients' quality of life, their 297 personal expectations and desires. Although practice has already dramatically changed, the 298 plethora of unanswered questions identified from this prioritisation exercise clearly reflects 299 that this transition is not yet complete. The prioritised questions reflect the main concerns of 300 both patients and HCPs on the natural history of prostate cancer, importance of improved 301 disease stratification, its treatment options, their effectiveness and associated side effects or 302 complications.

303

304 Notably, the two highest ranked questions are focussed on conservative strategies and are 305 focussed on identifying patients who can be treated conservatively and safely in the active 306 surveillance (AS) and watchful waiting (WW) setting. Although both treatment options are 307 being used in daily practice, many uncertainties still exist. Among others, this is reflected by 308 the recently published DETECTIVE Study, which was designed to formulate consensus 309 statements on AS due to the lack of higher levels of evidence {Lam, 2019, EAU-EANM-ESTRO-310 ESUR-SIOG Prostate Cancer Guideline Panel Consensus Statements for Deferred Treatment 311 with Curative Intent for Localised Prostate Cancer from an International Collaborative Study 312 (DETECTIVE Study)}.

313

Questions 3-5 and 8 are also a reflection of the increasing appreciation of disease and patient heterogeneity {Joniau, 2015, Stratification of high-risk prostate cancer into prognostic categories: a European multi-institutional study}{Van den Broeck, 2019, Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review}. Big data will allow for a better risk stratification of patients and disease with meaningful real world clinical endpoints. Further, this big data could lead to optimised risk stratification using both clinical and omics data (Q7), which could ultimately lead to the development of clinical prediction models, allowing for more patient-tailored treatment strategies with less toxicity and higher efficacy.

323 Not only would big data allow for the development of prognostic models, it could also allow 324 for better prediction of therapeutic response. Management of the various stages of prostate 325 cancer is becoming more challenging as we gain more knowledge on disease biology and with 326 the introduction of new technologies and treatments. In an ever-changing field, 327 understanding the safety profile of the available treatments, and determining the optimal 328 sequencing of the various types of multimodal treatments that are now part of the treatment 329 armamentarium are critical (Q 6 and Q10). Finally, the management of complex and less 330 common clinical scenarios (such as the management of oligometastatic disease) remains 331 unclear (Q9), which could be answered using big data as well.

332

333 Future directions

334 PIONEER is a consortium dedicated to improving the diagnosis, treatment and care of patients 335 with prostate cancer through the development and implementation of research studies to 336 address clinical knowledge gaps. Members of the PIONEER Consortium can form Research 337 Question (RQ) Teams. . These RQ Teams are dedicated to address specific Research Questions 338 and each data contributor has the right to participate in the research teams developing the 339 protocols. Any PIONEER beneficiary or data contributor (including industry participants) can 340 propose the creation of a new Research Question Team to focus on specific Research 341 Questions identified from either the list of 56 prioritized questions or by proposing a new 342 question (non-prioritized questions must be justified).

343

In order to support and sanction the establishment of RQ Teams, a PIONEER RQ Oversite Committee was formed with membership designated by the PIONEER Executive Committee. The RQ Oversite Committee is made up of senior clinicians and researchers from both public and private partners with the aim of ensuring transparency and efficiency when using the PIONEER big data platform to answer the most relevant questions pertaining to prostate cancer patients, and generate high-quality publications with results that provide evidencebased data to underpin clinical practice guideline recommendations as well as informing the
 decision-making processes by healthcare providers and patients.

352

The committee process is covered in the Research Committee Charter, which is available to all PIONEER members. Briefly, to initiate the formation of a new RQ Team, the beneficiary or associated partner will submit an application to the Chair of the RQ Oversite Committee at least 7 days prior to the next Research Committee Meeting, which are held once monthly. A thorough review of the merits of the proposed application is made on the basis of:

a) Does the proposed team address a scientifically or clinically relevant question?

b) Does the proposed team overlap an existing team's activities?

360 c) Does PIONEER have sufficient data to support the proposed investigation?

361 d) Does the proposed team meet the basic qualifications as set out in the application?

362 In addition to the above criteria, there are a number of points that must be addressed before 363 approval is given. To warrant a true collaborative team, the RQ Team membership must 364 include a minimum of 2 Public and 2 EFPIA partners. Once the application is approved then 365 membership to the RQ Team is open to all PIONEER partners. Also within the proposal, the 366 applicant should clearly explain the RQ to be tackled, address the knowledge gaps that are 367 associated with the question, present the study design and methods to be used, state the key 368 variables (inclusion/exclusion criteria, endpoints, covariates/controls) and indicate expected 369 key findings; including how the findings will be used to improve patient care, outcomes and 370 lives.

Finally, the applicant must identify a list of at least 3 datasets that will be used to answer thequestion along with a timeline and publication/dissemination plan.

The Research Committee bylaws state that in order for a proposal to be considered, a minimum of 80% of the RQ Oversite Committee members must be present at the meeting and a decision to sanction a new RQ team will require at least 60% majority of the committee members present at the meeting. The decision will be announced to the applicant within 3 days of the committee meeting.

For example, the research question 1 which focuses on the natural history of PCa patients and
the impact of life expectancy and comorbidities on outcome of conservative management,
was approved by the PIONEER Research Committee. The research team organised the

381 PIONEER Study-A-Thon held in March 2020 in collaboration with EHDEN (The European 382 Health Data & Evidence Network) and OHDSI The Observational Health Data Sciences and 383 Informatics) aimed to characterise the long-term outcomes (clinical characterisation) of 384 prostate cancer patients managed with conservative treatment and to build a prediction 385 model to generate risk scores that could inform patients about their possible risks. Out of 12 386 data bases analysed at the time of the Study-A-Thon, there were 1,557,114 PCa patients 387 identified (patients diagnosed between 1989 and 2021). Out of these patients, 896,318 388 received immediate treatment whereas 536,235 received conservative 389 management. Critically, patients were actively participated from start to finish of the Study-390 A-Thon, they shared their experiences of living with prostate cancer, impact of treatment and 391 their experiences of survivorship including gaps in care that exist and outcomes of most 392 importance for them. Results will be presented in a separate publication. PIONEER has formed 393 other RQ teams to answer some of the top questions. Patients will again be central to the 394 planning, protocol development and execution of the research questions.

395 By successfully answering the prioritised research questions, the expectation is that the 396 findings would constitute real world evidence that would be relevant and used to fill gaps in 397 clinical practice guidelines (underpinning recommendations) and further improving clinician-398 patient shared decision making.

399

400 Strengths and weaknesses of the study

401 Main strengths of our modified Delphi approach are that the online format facilitated a large 402 and diverse sample, and the anonymous feedback allowed participants to know both 403 stakeholder groups' scores without giving undue influence to dominant voices or to those 404 with perceived authority. A limitation of our approach is that additional patient group 405 participants were added in round two, whereas methods guidance supports not adding 406 participants (21). Although we did accept this as a limitation, the decision to invite further 407 participants was to boost sample size, target maximum diversity in opinion and to mitigate 408 against the anticipated critique that our original English speaking-only sample may not have 409 adequately included opinions from other native European languages, in case these opinions 410 systematically deviated from the English-speaking sample.

411

A further limitation was the inclusion of pharmaceutical industry representatives who may be seen as having a conflict of interest in driving the prioritisation of research questions. Nonetheless, our anonymous scoring process, and the definition of consensus being applied as a percentage and to the two stakeholder groups separately means that industry voice has been considered, but had no more weight than any other stakeholder group in the results.

418 **Conclusions**

- 419 PIONEER has conducted an international multi-stakeholder consensus in order to identify and
- 420 prioritise the most important questions in the field of prostate cancer. Identification of critical
- 421 questions will help the PIONEER consortium to answer those questions that are critical to key
- 422 stakeholders including patients.
- 423

participated in round two of the surveys.

427 Figure 1: Graphical illustration of participants who took part in an international multi-

- 428 stakeholder consensus by PIONEER Consortium

	PIONEER - Unanswered questions in prostate cancer: Findings of an international multi-stakeholder consensus by the PIONEER Consortium			
Final Ranking	Questions	HCPs centred	Patients centred	All respondents
1	What are the relevant tumour-specific and patient-specific variables that affect prognosis of PCa patients suitable for active surveillance? (Q4)	prioritiation 89.6	prioritiation 90.2	89.9
2	What is the natural history of PCa patients undergoing conservative management (i.e., watchful waiting) and what is the impact of comorbidities and life expectancy on long-term	85.4	89.0	87.2
3	outcomes? Currently, the scientific community generally applies the EAU Guidelines PCa risk stratification, stratifying patients into low-, intermediate- and high-risk PCa. This is based on the risk of recurrent disease of patients after radical treatments. However, this risk stratification still has its limits and patients still have very heterogeneous outcomes especially in the high- risk group. What we still do not know is what differentiates patients with lethal vs non-lethal disease, irrespective of their risk stratification.	91.8	82.3	87.1
4	When should we treat patients who experience prostate cancer recurrence after primary treatment and which are the most effective therapeutic approaches?	79.6	92.5	86.0
5	Which specific patient groups benefit most of upfront chemotherapy? What are the side effects and What is impact on quality of life in real-life practice of chemotherapy in this setting? the benefit of potentially toxic upfront chemotherapy appears to be highly individual. Other factors to predict who would benefit most are needed, the benefit of chemotherapy in the subgroup patients who have recurrence after primary treatment is not known.	87.8	83.3	85.5
6	How does the rate of side effects / local problems (including secondary / palliative treatments needed) compare between treatments (open, laparoscopic, robot surgery, with or without lymph node dissection; brachytherapy, different forms of external beam radiation therapy), and which patient specific factors are associated with these adverse secondary endpoints?	79.6	91.4	85.5
7	What is the clinical benefit of determining patients' genetic risk profile regarding PCa management, especially in the screening setting? (Q1)	85.1	84.8	85.0
8	Which specific patient benefits from different available treatment options for CRPC? Is there a therapeutic benefit of treating the local tumour in patients diagnosed with (plipo)metastatic PCa?	85.1	84.7	84.9 84.2
10	How should the available therapeutical options be sequenced in order to achieve response and best outcomes in individual patients and in specific settings? effects ideally need to be	72.9	88.1	80.5
11	maximized while limiting side effects. We still do not know whether in a real life setting, pre-biopsy mpMRI would be successful at predicting biopsy and patient outcomes. Furthermore, the added value of targeted biopsies in positive mpMRI investigations remains unclear as well.	79.2	79.6	79.4
12	Which is the best prognostic marker for prostate cancer patients treated with active surveillance?	77.6	79.8	78.7
13	At the moment we still do not know whether PSA screening is a vable strategy to detect PCa and it there are any other strategies detining patients who should under PSA screening. For example in patients with a positive family history, BRCA screening fab sheen proposed and its results could be applicable to increase PSA screening. This based on small but valuable studies. Furthermore, other genetic tests (germline mutations in DNA damage repair genes or SNP studies for example) could be proposed to define this subset of patients that could benefit from PSA screening.	77.1	75.8	76.4
14	which is the best test to be used during toilow-up in prostate cancer patients? What is the rate of long-term side effects specified per treatment type (surgery versus radiation)? How does surgeon training and experience impact outcomes?	59.2	85.8	75.2
16	Should we individualize follow-up according to treatment modality and disease characteristics in patients with prostate cancer?	71.7	74.1	72.9
17	Which are the most clinically relevant functional and oncologic outcomes that should be collected during follow-up in prostate cancer patients?	58.3	83.9	71.1
18	How best to co-ordinate care between multiple health professionals during and following completion of treatment for prostate cancer?	55.1	86.2	70.6
19	Are PSA screening policies for men aged 50 years and early diagnosis improving survival as compared to opportunistic screening?	59.2	78.8	69.0
20	Although mpMRI in expert hands overall has good NPVs and PPVs, still some tumors will never be captured by imaging. We do not know whether these tumors are pathologically different.	61.2	76.5	68.9
21	How can we improve patient-physician communication in patients diagnosed with prostate cancer and what is its impact on quality of life patient-reported outcomes?	55.1	75.9	65.5
22	Which are the most effective strategies to improve functional outcomes recovery and mitigate side effects associated with systemic therapies in prostate cancer patients?	46.7	80.9	63.8
24	What is the rate of adherence to international guidelines for the diagnostic and treatment pathways of prostate cancer?	69.4	56.7	63.0
25	Which patients [demographics] experience side effects and late effects of different treatment modalities for prostate cancer? What are these side effects and late effects? When do	47.9	73.3	60.6
26	they occur in the cancer care and aftercare pathway? Should there be specialized Prostate Cancer Centers certified and re-certified according to the same criteria throughout Europe with public reporting of identical outcomes?	45.8	73.8	59.8
27	Although there is an excellent correlation between the newly introduced histological grading groups (ISUP groups) and prognosis, these results are all based on biochemical recurrence, which is a surrogate endpoint for PCa outcomes such as prostate cancer specific mortality and overall mortality. We do not know yet whether these grading groups are actually associated with hard end points such as prostate cancer specific survival.	51.1	66.1	58.6
28	Are results obtained using currently available data sources generalizable to all PCa patients?	41.7	74.1	57.9
29 30	Are available markers able to predict stronger endpoints such as metastases-free survival in prostate cancer patients? What are the most important outcomes across different parts of the prostate cancer care pathwav? The outcome domains can be subdivided into the following groups: a.	54.2	59.0 68.5	56.6
	Oncologicalb. Functionalc. Process and recoveryd. Complications and/or adverse eventse. Quality of lifef. Health economic and cost effectiveness			
31	What are the oncologic and functional outcomes of patients with clinically localized prostate cancer undergoing experimental therapies that are not currently recommended by international guidelines (e.g., high-intensity focused ultrasound) as compared to the standard of care?	52.1	59.7	55.9
32	Should we routinely implement quality control initiatives to improve the quality of data collected? How can we integrate clinical and biomarker data in prostate cancer data sources to develop novel predictive tools?	44.7	66.9 59.3	55.8
34	We do not know which risk calculator is the best risk calculator and whether there are differences between their efficiencies between populations. Furthermore, up to now it is not known either whether the use of a risk calculator would make the use of a rore-bionsy modARI obsolete.	47.9	57.3	52.6
35	How can we reduce heterogeneity in the outcomes reported by different data sources?	40.8	61.5	51.2
36 37	Lan we integrate data coming from ranoomized trais into population-based and prospective cancer (registries?) What is the best way of measuring those outcomes identified above (question 37)? The outcome measures can be sub-stratified further into the following domains: a. Definitions (e.g. biochemical recurrence following radical prostatectomy or radical radiotherapy) b. Thresholds c. Outcome measuring instrument (including PROMS for functional or quality of life outcomes) d. Metrics of measurement (change from baseline or discrete endpoints) e. Reporting statistic f. Time point of measurement	45.8	54.4	50.5
38	What are the rates of incidence, prevalence, and mortality of prostate cancer across Europe?	46.9	53.2	50.1
39	How does focal therapy compare to standard of care in terms of oncological and functional outcomes in patients affected by localized prostate cancer?	46.9	50.3	48.6
40	How do we routinely collect cancer survivorship data including current disease status, functional ability, current medications, co-morbidities, quality of life, psychological wellbeing, social outcomes, cancer treatment history and modalities used?	35.4	59.6	47.5
41	Should we offer imaging during follow-up in men treated with androgen deprivation therapy for prostate cancer?	38.8	53.7	46.2
42	Although it is generally assumed that a Gleason pattern 5 (most dedifferentiated histological subtype) is a major determinant in PCa mortality, we do not know whether a tertiary Gleason 5 component <5% in ISUP group 2 or 3 on a RP specimen has an impact on patients' outcome and whether there is a differential outcome in patients with ISUP group 4 with a Gleason 5 component <5% compared to only Gleason 4 pattern. It has been suggested before that this tertiary component is correlated with a more extensive tumor phenotype, mainly in lower grade tumors.	35.4	56.7	46.1
43	We do not know whether there is a difference in (significant) PCa occurrence based on geographical location within Europe when corrected for differential PCa management (differences in PSA screening, treatment decisions etc).	49.0	40.7	44.8
44 45	For each part of the prostate cancer care pathway, what important baseline or pre-intervention characteristics are important? What is the best way of measuring them? What support is needed for psychosocial late effects (fear, anxiety, distress, ptsd, employment) (+ = strengthened relationships, empowerment, appreciation of life) following	27.1 29.2	59.3 56.8	43.2 43.0
46	detection? When is this needed in the cancer care and aftercare pathway? What triggers the delivery of this support? At this moment, multiple commercially available biomarker tests have shown success in increasing PCa diagnosis efficiency. However, we do not know how this has contributed to PCa diagnosis downmics in Europe.	44.7	40.9	42.8
47	What support is needed for physical late effects (include musculoskeletal issues, fatigue, last of stamina, urinary / bowel problems, lymphedema, premature menopause, cognitive deficits and sexual dysfunction) following detection? When is this needed in the cancer care and aftercare pathway? What triggers the delivery of this support?	26.5	58.6	42.6
48 49	How does state-of-the-art risk assessment and treatment regimes for PC compare across major cancer centers, and how has this changed over the past decade? When should we stop follow-up in patients with localized prostate cancer?	26.5	57.1	41.8
50	What is the impact of satellite low-volume lesions next to the index lesion in patients suitable for focal therapy?	28.6	45.6	37.1
51	now au various ve uata-sources/databases compare in terms of quainty, sze, geography, and overlap? What is the risk of prostate cancer death for men on five alpha reductase inhibitors?	28.6	44.8	36.7
53	We do not know which of the proposed environmental risk factors are actually causative or protective for (significant) PCa?	36.7	29.5	33.1
55	Are currently available predictive models for prostate cancer outcomes generalizable to a population level?	16.3	26.3	20.0
56	Which individuals are most likely to drop out of employment during and following completion of treatment for prostate cancer? When does this occur in the cancer care and aftercare pathway?	14.3	22.4	18.3

447 Table 1: Unanswered questions in prostate cancer: Findings of an international multi-

448 stakeholder consensus by the PIONEER Consortium

- 449 Percentage (%) of agreement indicate the mean of the percentages across the two stake-
- 450 holder groups scoring each of the 56 questions as "critically important" was calculated and
- used to rank the questions in terms of those scoring highest in the "critically important"category.
- 453 * Blue-12 additional questions proposed in Round 1

454

Figure 2: Consensus process

References:

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

2. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2021;79(2):243-62.

3. Loeb S, Giri VN. Clinical Implications of Germline Testing in Newly Diagnosed Prostate Cancer. Eur Urol Oncol. 2021;4(1):1-9.

4. Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208-16.

 Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med. 2018;378(19):1767-77.

6. Gandaglia G, Ploussard G, Valerio M, Marra G, Moschini M, Martini A, et al. Prognostic Implications of Multiparametric Magnetic Resonance Imaging and Concomitant Systematic Biopsy in Predicting Biochemical Recurrence After Radical Prostatectomy in Prostate Cancer Patients Diagnosed with Magnetic Resonance Imaging-targeted Biopsy. Eur Urol Oncol. 2020;3(6):739-47.

7. Klotz L, Vesprini D, Sethukavalan P, Jethava V, Zhang L, Jain S, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol. 2015;33(3):272-7.

8. Lam TBL, MacLennan S, Willemse PM, Mason MD, Plass K, Shepherd R, et al. EAU-EANM-ESTRO-ESUR-SIOG Prostate Cancer Guideline Panel Consensus Statements for Deferred Treatment with Curative Intent for Localised Prostate Cancer from an International Collaborative Study (DETECTIVE Study). Eur Urol. 2019;76(6):790-813.

9. Lantz A, Falagario UG, Ratnani P, Jambor I, Dovey Z, Martini A, et al. Expanding Active Surveillance Inclusion Criteria: A Novel Nomogram Including Preoperative Clinical Parameters and Magnetic Resonance Imaging Findings. Eur Urol Oncol. 2020.

10. Carter HB, Helfand B, Mamawala M, Wu Y, Landis P, Yu H, et al. Germline Mutations in ATM and BRCA1/2 Are Associated with Grade Reclassification in Men on Active Surveillance for Prostate Cancer. Eur Urol. 2019;75(5):743-9.

11. Lu-Yao GL, Albertsen PC, Moore DF, Lin Y, DiPaola RS, Yao SL. Fifteen-year Outcomes Following Conservative Management Among Men Aged 65 Years or Older with Localized Prostate Cancer. Eur Urol. 2015;68(5):805-11.

12. Ost P, Reynders D, Decaestecker K, Fonteyne V, Lumen N, De Bruycker A, et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J Clin Oncol. 2018;36(5):446-53.

13. Parker CC, James ND, Brawley CD, Clarke NW, Hoyle AP, Ali A, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet. 2018;392(10162):2353-66.

14. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374-403.

15. Luengo-Fernandez R, Leal J, Gray A, Sullivan R. Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol. 2013;14(12):1165-74.

16. Omar MI, Roobol MJ, Ribal MJ, Abbott T, Agapow PM, Araujo S, et al. Introducing PIONEER: a project to harness big data in prostate cancer research. Nat Rev Urol. 2020;17(6):351-62.

17. Chalmers I, Glasziou P. Avoidable waste in the production and reporting of research evidence. Lancet. 2009;374(9683):86-9.

18. Beck S BT, Poets M, Sauermann H. What's the problem? How crowdsourcing contributes to identifying scientific research questions. Academy of Management Proceedings. 2019;1:15282.

19. Hulsen T. An overview of publicly available patient-centered prostate cancer datasets. Transl Androl Urol. 2019;8(Suppl 1):S64-S77.

20. Fish R, MacLennan S, Alkhaffaf B, Williamson PR. "Vicarious thinking" was a key driver of score change in Delphi surveys for COS development and is facilitated by feedback of results. J Clin Epidemiol. 2020;128:118-29.

21. Williamson PR, Altman DG, Bagley H, Barnes KL, Blazeby JM, Brookes ST, et al. The COMET Handbook: version 1.0. Trials. 2017;18(Suppl 3):280.

22. MacLennan S, Kirkham J, Lam TBL, Williamson PR. A randomized trial comparing three Delphi feedback strategies found no evidence of a difference in a setting with high initial agreement. J Clin Epidemiol. 2018;93:1-8.

Acknowledgements

PIONEER is funded through the IMI2 Joint Undertaking and is listed under grant agreement No. 777492. This joint under- taking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA.