Physica D 443 (2023) 133587

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd ==

Switching between periodic orbits in impact oscillator by N

Check for

time-delayed feedback methods

Dimitri Costa *"*, Vahid Vaziri?, Ekaterina Pavlovskaia®, Marcelo A. Savi®,
Marian Wiercigroch ®

2 Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, King’s College, Scotland, Aberdeen AB24 3FX, United Kingdom
b Center for Nonlinear Mechanics, COPPE - Department of Mechanical Engineering, Universidade Federal do Rio de Janeiro, 21.941.972 Rio de Janeiro
- RJ, P.O. Box 68.503, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 17 March 2022

Received in revised form 16 September 2022
Accepted 1 November 2022

Available online 11 November 2022
Communicated by Dmitry Pelinovsky

An ability to exchange between different attractors can bring adaptability and new functionalities to an
engineering system. While nonlinear controllers are widely used to stabilize on a preferred orbit, there
is only a few which can exchange back and forth between two or more stable periodic responses. This
work proposes a new variation of the original Time-Delayed Feedback (TDF) control method capable
to effectively switch back and forth between periodic orbits having only a limited knowledge of the
system dynamics. The stable or unstable periodic responses of the system that are inside or outside
a chaotic attractor can be targeted. The proposed control method named here as the Fractional Time-
Delayed Feedback Control (FTDF) is tested numerically and experimentally using a newly developed
impact oscillator rig. Various responses including impacting and non-impacting orbits, high period
attractors and chaos are considered. The main advantages of the FTDF over the TDF are presented by
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showcase scenarios where the TDF alone cannot safely perform the exchange between orbits.
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1. Introduction

The idea of adaptable systems has been widely applied to
various fields in engineering, ranging from origami structures
[1,2] that use folds to change their configuration, to energy har-
vesters [3] that require a wide spectrum of dynamical behaviour
depending on external excitation. This adaptability can be ex-
plored by a modification of the system parameters or by uti-
lizing the phenomenon of multi-stability where, depending on
the initial conditions, qualitatively and quantitatively different
persisting dynamical responses known as co-existing attractors
are present.

Multi-stability is an inherent fabric of many strongly nonlinear
dynamical systems, and manifests itself widely in science and
engineering. For example, in impact oscillators, multi-stability is
a common phenomenon [4,5]. Multi-stability can also be found
on microelectromechanical devices (MEMS) [6], in drill string
dynamics [7], among others. In the case of impact systems, multi-
stability between impacting and non-impacting attractors has a
crucial role in the system operation. Depending on the applica-
tion, impacts can be the desired behaviour as in the Resonance
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Enhanced Drilling [8-10], seismic mitigation [11], and energy
harvesters [12] or an undesired one that should be avoided to
prevent damages and imperfections as in machining [13,14]. In
all cases, the ability to choose the system response between im-
pacting and non-impacting co-existing attractors can be a crucial
part of the system operation [15].

In investigations of multi-stable systems, the piecewise linear
impact oscillators are extensively studied as simple models that
present such phenomena [4] and can be used to model various
applications in engineering. A significant contribution to this area
has been made by the Centre for Applied Dynamics Research
(CADR) at the University of Aberdeen often inspired by appli-
cations including a new drilling method [16] and supported by
fundamental studies involving experimentally calibrated models
like a piecewise linear impact oscillator exhibiting co-existing
solutions with chaotic and periodic co-existing attractors includ-
ing impacting and non-impacting orbits, among others [17-20].
Recently, a new direct mass excited impact oscillator capable of
high accuracy experiments has been developed and tested by the
CADR [21,22], which exhibits naturally multi-stability and can be
a platform for implementing and testing new control methods.

In contrary to the classical control methods where potential
advantages of the natural system dynamics are rarely exploited,
the general idea of chaos control, is to stabilize a dynamical
system by small perturbations on one of its desired but unstable
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periodic orbits as proposed in discrete [23] and continuous [24]
chaos controllers. In the field of continuous control, various au-
thors have based their studies on the TDF [24]. Sacollar et al. [25]
proposed one main modification by introducing the influence
of multiple delayed states into the control signal. Other works
modified the TDF itself to require less information about the
controlled system by automatically tuning its parameters such as
the proportional gain [26,27] or the time-delay [28]. Some studies
even reshaped the TDF to overcome the limitations identified
in [29] to stabilize orbits that have an odd number of positive
Floquet exponents by introducing so-called periodic gains [30,31]
or additional unstable states [32]. Pyragas and Pyragas [33-35]
proposed modifications of the TDF method to avoid the introduc-
tion of an infinite number of Floquet multipliers which facilitates
the optimization and design of the controllers, whist Jiingling
et al. [36] explored the use of variable delays for the TDF control.
De Paula et al. [37] applied the TDF method to control exper-
imentally bifurcations of a parametric pendulum, while Costa
et al. [38] used the same strategy in an SMA two-bar truss.
Other notable works on the TDF method include modelling of
frictional systems [39,40] and control of cardiac rhythms [41].
Angelo et al. [42] applied the TDF method to an atomic force
microscope and Hohne et al. [43] studied properties of the time-
delayed feedback controller with an unstable control loop (UTDF)
experimentally. Other works have utilized the TDF idea into frac-
tional [44,45] and quantum [46,47] systems. Recently, Zhang
et al. [48] analysed how the TDF control can affect the basins
of co-existing attractors near grazing in a soft impacting system,
suggesting that TDF can be used to control their co-existence.

Despite all these control efforts, the TDF control was never
applied to switch between coexisting attractors. In fact, only a
few significant works have been published on alternative con-
trol approaches for switching between attractors. One notable
example is the work by the CADR [49] that proposes a controller
to perform exchange between different attractors by temporarily
eliminating the current evolution of the system and introducing
the desired evolution using a linear control signal. After stabi-
lization, the control signal also goes to zero as the introduced
behaviour needs to be part of the system original attractors.
Although this strategy can successfully exchange between two
attractors, it requires the full knowledge of both responses, access
to all the system state variables, and tracking of the excitation
signal for non-autonomous systems. Recently, Zhi et al. [50] pro-
posed a new control approach to switch between co-existing
attractors, which needs to be further investigated.

This work proposes a new variant of the original Time-Delayed
Feedback control based on the controller time delay that is able
to switch between co-existing stable and unstable periodic orbits
with a low knowledge requirement. TDF and this new method
are tested experimentally and numerically on the newly devel-
oped impact oscillator [21,22] for few typical responses including
impacting and non-impacting orbits, high period oscillations and
chaos. Initially, the analysis of the system dynamics is performed
and four scenarios are selected to assess the control strategy
capabilities. In three scenarios, the TDF method can successfully
switch between the selected co-existing attractors. However, in
one scenario, the TDF cannot perform the exchange and the
modification proposed in this work is required for a successful
control.

The rest of the article is structured as follows. Section 2
presents the experimental apparatus, its numerical model and
describes the system dynamics used to test the control methods.
In Section 3 the TDF control and ways to analyse its proper-
ties through Floquet theory are discussed. Afterwards, the ex-
change between the co-existing attractors in four selected cases
is discussed and explored both experimentally and numerically.
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Section 4 introduces the new FIDF and compares it to the TDF
method in the last scenario where the TDF alone cannot perform
the exchange between the co-existing attractors. Section 5 draws
the main conclusions and provides some recommendations for
future works.

2. Experimental impact oscillator and example responses

In this study, the newly developed impact oscillator described
in [21,22] and modelled in [51] is used to investigate the appli-
cability of TDF based control methods. Its schematics and photo-
graph can be seen in Fig. 1(a), showing the oscillator mounted on
a rigid structure. The oscillating mass is attached to the structure
by two leaf springs which are clamped between grooved plates
on each end. A strong neodymium magnet is also attached to the
main mass by a stainless steel rod. The excitation is provided
by the interaction between the magnet and an in-house built
coil that can generate a varying magnetic field depending on the
current [ passing through it. This current is produced by a signal
generator based on a National Instruments board and a in-house
built amplifier constructed to produce a wide variety of excitation
signals. The experimental data is collected by a LabView data
acquisition system. The coil input current is sensed by a multi-
meter, while the displacement of the mass is measured by a eddy
current probe attached to the rigid structure at the base of the
leaf springs. Finally, there is a miniature force transducer placed
between the rigid structure and the coil, that senses the reaction
force due to the mass excitation. There are also accelerometers
placed on the mass, rigid structure and impact beam.

A physical model of the experimental rig is shown in Fig. 1(b).
The oscillator can be considered as a piecewise linear system, if
the displacement, X, of the oscillating mass, m, is limited to an
absolute displacement of 6 mm [22]. In the model, the force
Feoi is applied directly to the main mass while the restoring
force provided by the leaf springs is considered to be linear and
characterized by the stiffness k;. The impact beam is modelled
as another linear spring with stiffness k,, while a linear damping
coefficient c is used to describe energy dissipations, leading to the
equation of motion [22]:
j=Nx B g — g Siq el (1)

m m m
where H(-) is the Heaviside’s step function and dot represents
time derivative.

In this work, the mass displacement is considered to be the
observable variable of the system and it is acquired with the eddy
current probe. The sample rate for displacement is at least 200
times higher than the excitation frequency f = w/2x. The veloc-
ity is obtained by differentiating the filtered displacement signal
using the symmetric difference quotient [52] with a frequency at
least 10 times greater than f. Hence, the actuation frequency is
also at least 10 times greater than f, and is set to ensure that the
assumption of a continuous actuation is valid.

A calibration of the electromagnetic exciter was carried out
in [22] to determine a relationship between the applied current
and the generated force acting on the mass. The linear behaviour
between the electromagnetic force and current was observed
in the range of current amplitude up to 3.5 A and excitation
frequencies up to 10 Hz. Hence, the coil can provide a force F.o;
that is a sum of the harmonic excitation applied to the system
Fexe = alpsin(wt), where I is the excitation current amplitude
and t is time, and actuation force F,; = al, Which is dictated by
the control method.

The total force applied to the mass through the coil is then
given by:

Feoit = Fexc + Fact = a(Iexc + Iact)- (2)
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Fig. 1. Experimental impact oscillator developed in [21]; (a) 3D schematic diagram (left) and a photograph of the apparatus (right). The main components of the
system are highlighted as: sensors (eddy current probe, piezoelectric load cell and accelerometers mounted on the mass, frame and impact beam) in light blue, coil
in orange, main mass in grey, impact beams in pink, leaf springs in red and permanent magnet in dark blue [22]. (b) Schematics of physical model representing the
experimental rig with its main components: main mass m, leaf springs of stiffness k;, impact beam of stiffness k,, coil generating force F,; and the gap g between

the main mass and the impact beam.

Table 1

Parameters values for the investigated piecewise linear model.
Symbol Value Unit
m 1.325 kg
k1 4331 N/m
ky 87125 N/m
c 0.27 kg/s?
g 0.74 103 m
a 0.799 N/A
Iy 1.45 A

The complete system equations including actuation can be
then given by:

f

X
B o — ) — SX Ll + L)
m m m m

Initially, the system dynamics is explored to identify the fre-
quencies where co-existing attractors are present. The diagrams
are constructed taking the last 100 periods and discarding the
first 40 s of data for each quasi-static variation of frequency,
which practically means that at least 240 periods are discarded
as the transient response of the system. Experiments are per-
formed for the set of identified parameters as listed in Table 1
and the results are presented in Fig. 2. The responses marked

. (3)

in black and blue are obtained when increasing frequency f and
the red one when decreasing the frequency. It can be seen in
Fig. 2(b), at lower frequencies up to 7.1 Hz, there is a co-existence
between period-2 impacting and period-1 non-impacting orbits.
Afterwards, a narrow window with only period-1 orbit is visible
until a grazing incidence occurs at 7.15 Hz, which is followed
by a typical chaotic-like behaviour [20,22]. Then we see a co-
existence of a period-5 orbit with 3 impacts and a period-2
responses, shown in Fig. 2(c) up to 7.36 Hz. At this point, a graz-
ing incidence occurs on the inner loops of the period-5 response
causing the system to jump to another period-5 orbit with two
impacts, which is depicted in Fig. 2(d). The co-existence of period-
5 and period-2 lasts up to 7.50 Hz, where the period-5 orbit
becomes unstable due to the grazing of one of its inner loops.
At 7.78 Hz a period-doubling bifurcation cascade is observed
leading to a chaotic response with its attractor shown in Fig. 2(e).
The chaotic behaviour is maintained up to 8.28 Hz, where it
gives way to a period-1 orbit. The four cases at frequencies f =
6.8, 7.3, 7.4 and 8.18 Hz, shown in Fig. 2(b) to (e), are selected
to perform the exchange target control.

These cases are selected to test the control method chosen to
exchange between co-existing attractors, and they are presented
in Table 2. The case of f = 8.18 Hz, where the control stabilizes
different unstable periodic orbits embedded in the chaotic attrac-
tor, is chosen to study the TDF control for the scenario which it
was originally designed for. The two cases of period-2 and period-
5 co-existing attractors scenarios at f = 7.3 and 7.4 Hz are
chosen to evaluate how the TDF control performs. The last case
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Fig. 2. Experimentally determined responses selected to test the orbit exchange control; (a) Bifurcation diagram constructed for the current amplitude of 1.45 A;
and phase portraits of co-existing attractors recorded at (b) f = 6.8 Hz; (c) 7.3 Hz; (d) 7.4 Hz; (e) 8.18 Hz. Forward diagrams are traced in black circles (@) and
blue triangles (M), and backward diagrams are traced in red squares (M). Trajectories are presented by the respective colour of their attractors on the bifurcation

diagram and Poincaré sections are depicted in magenta diamonds (’). Dashed grey lines highlight these frequencies and dashed black lines represent the impact

boundary.
Table 2
Overview of the selected cases to analyse TDF control and its limitations.
f [Hz] Initial First Second Original Multiples  Success
behaviour target target stability
6.8 Period-2 Period-1  Period-2  Stable Yes No
7.3 Period-5 Period-2  Period-5  Stable No Yes
74 Period-5 Period-2  Period-5  Stable No Yes
8.18 Chaos Period-2  Period-1  Unstable Yes Yes

at f = 6.8 Hz, where period-1 and period-2 stable responses are
targeted is chosen to illustrate the limitations of TDF control and
the need for the new control method to perform the exchange in
such cases.

Before the control method is applied, the chaotic attractor
occurring at f = 8.18 Hz is considered in detail. Specifically, two
embedded unstable periodic orbits (UPOs) to be targeted by the
control are identified by constructing the Poincaré section of the

chaotic attractor numerically and locating the unstable periodic
orbits through the close return point method [53]. Fig. 3 shows
the chaotic attractor and both UPOs identified by this method.
The chaotic response is also verified by the calculation of its
maximum Lyapunov exponent Ape = 4.14 s~

Finally, to complement the control analysis and have a more
comprehensive overview of the system dynamics, we constructed
the basins of attraction at the selected frequencies of f = 6.8 Hz
and f = 7.3 Hz, as shown in Fig. 4. In both cases, the basins’
boundaries are close to at least one point of the attractor, indi-
cating that a relatively small deviation away from the attractor
can make the system to migrate to another basin. This is bene-
ficial to perform exchange between co-existing attractors as the
controller is only required to generate a small disturbance.

3. Controlling exchange between co-existing attractors

In this section, we focus on the exchange of co-existing at-
tractors starting with the TDF as well as the calculation of Floquet
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Fig. 3. (a) Poincaré map showing the chaotic attractor in black circles (@), identified period-1 UPO in red squares (M) and period-2 UPO in blue triangles (A). (b)
Phase portraits of the identified period-1 UPO in red and period-2 UPO in blue. The vertical dashed line represents the impact boundary.
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Fig. 4. Basins of attraction of the uncontrolled stable orbits. (a) Basin of the period-1 non-impacting orbit in purple (@) and period-2 impacting orbit in light purple
(") at f = 6.8 Hz, and their Poincaré maps in yellow () and dark purple (@) circles respectively; (b) Basin of the period-2 orbit in light yellow ( ) and period-5
orbit (") at f = 7.3 Hz, and their Poincaré maps in red (@) and blue (®) circles respectively.

exponents to evaluate orbits stability. Afterwards, the TDF control
is applied to each case and its limitations are identified. Finally,
we point out deficiencies of the TDF method in performing the
exchange between orbits and justify a need for an enhanced
control method.

3.1. Time-delayed feedback control

The time-delayed feedback control [24] was originally de-
signed to stabilize unstable periodic orbits embedded into a
chaotic attractor. Its main idea is to take advantage of the system
dynamics to obtain a periodic orbit from a chaotic response by
the feedback of delayed states instead of the present state of the
system. A dynamical system with a delayed state control can be
defined as follows [54]:

x = f(x, t) + u(y(t), y(t — 7)), (4)
y(t) = C(x),

where X is the vector of state variables, f is the system time
evolution function, y is the system observation provided by the
function C(x), and 7 is the delay. The control signal, u, of the TDF
method is defined as:

u = K(y(t — 1) —y(t)), (5)

where K is a proportional gain matrix. In the original formulation
of the method [24], the delay 7 is set to the period of the target
unstable periodic orbit enabling the control signal to reduce to
zero as the system approaches the targeted orbit as y(t — 7) —
y(t). The gain matrix K is normally set by analysing the target
orbit stability where Lyapunov exponents or Floquet theory can
be used. In the standard method, when the objective is to stabilize
an unstable periodic orbit (UPO), the setting of the controller
gains is crucial for its success and a proper analysis of the system
response is needed.

Floquet theory is an efficient tool to describe the stability of
periodic orbits as it only requires the analysis of one period of the
evaluated response. If a deviation from a periodic orbit Xep(t) =
Xob(t — T) is given by 8x(t) = X(t) — Xeb(t), Floquet theory can
describe its evolution as:

N
5X(t) = Re (Z (8%(0) - Pa(0)) exp(unt)pn(t)> : 6)
n=1

where u, is the nth Floquet exponent, - is the scalar product and
Pa(t) = pa(t — 7) is a periodic function with the same period as
the system Jacobian Vf(x) evaluated around Xqp(t).

If all Floquet exponents have negative real parts, the exponen-
tial terms decrease with time while all other terms are limited,
hence, §x tends to vanish as t — oo indicating that X,y is stable.
On the other hand, if any of the Floquet exponents has a positive
real part, the deviation §x(t) will increase with time and the
solution may diverge from the orbit. Thus, the orbit stability can
be evaluated by analysing the maximum real value of the Floquet
exponents, defined as Re(mq) > Re(un) V n. The orbit is stable
if Re(pmax) < 0.

When stabilizing UPOs, the calculation of Floquet exponents
dictates the range of gains K where the controller can stabilize
the orbit. For most mechanical systems only force can be used
as an actuation. Thus, if we assume a single degree-of-freedom
system and that y = C(x) = Xx, the resulting gain matrix will have
the form:

0 0
l(=|:Kp Kv]’ (7)

where K, is the gain related to the feedback of position and K, is
the gain related to the feedback of velocities.

To illustrate this, we analyse the chaotic case at 8.18 Hz.
Period-1 UPO real value of Floquet exponent (umgy) is calculated
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Fig. 5. Chaotic case stability analysis for the period-1 UPO. (a) Theoretical Floquet exponents varying the gain K, and maintaining a constant K, =0 N/m, for r =1
period of excitation in M and v = 2 periods of excitation in @. The red dashed line highlights the boundary of stability. State space for the initial response (grey),
target response (blue) and stabilized response (red) for control parameters (b) K, = 1.0 N s/m and t = 2 periods; (c) K, = 1.0 N s/m and t = 1 period; (d)
K, =3.2 N s/m and t = 2 periods; (e) K, = 3.2 N s/m and 7 = 1 period. The dashed vertical black line indicates the impact boundary.

by an optimization method described in Appendix for various
values of the gain K, and fixed K, = 0. Fig. 5(a) shows the
computed real value of p,,q for a delay of one period, shown by
a black curve, and the values for a delay of two periods, shown by
a blue curve. For the case of delay of one period, two important
values of the gain K, should be highlighted. The first value of
2.0 N s/m indicates the lowest value of K, where the TDF can
stabilize the orbit and the value of 6.6 N s/m is where the
maximum Floquet exponent pme reaches its minimum, which
indicates that the orbit has its maximum stability. Fig. 5(c) shows
the state space of the system response when the gain is too low
to stabilize the target period-1 UPO, in blue, and the controlled
system ends up in a different response, in red, whist Fig. 5(e)
shows a successful control as the gain K, is in the stability region
and the target and controlled orbit overlap with each other. Also,
if the delay of the controller is set to be two periods of excitation,
the wmax of the period-1 UPO becomes positive indicating that the
orbit is unstable. This can be clearly be seen in Fig. 5(b) and (d)
which show the failed stabilization of the correct period-1 target
response and the stabilization of a period-2 UPO even though the
system was initiated in the period-1 UPO.

If the objective of the control is to perform the exchange be-
tween already stable orbits, the analysis of the Floquet exponents
becomes less crucial and gains can be set on a trial and error basis
by choosing a low initial value of gains and slowly raising them
until the controller has enough energy to guide the system to the
desired response. This procedure allows the control method to
successfully perform the exchange between two periodic orbits
with only the required information being the knowledge of the
co-existence of the solutions and the target orbit period.

Finally, a special problem with TDF should be mentioned when
dealing with the exchange of co-existing solutions. Imagine that
the system is settled on a stable periodic orbit of period t
(x(t — 5s) = x(t)), and the TDF control targets another co-existing
periodic orbit with period jz; where j € N (x(t — jzs) = X(t)). In
this case, the control signal would be from Eq. (5):

u = K(y(t — jz5) — y(t)). (8)

However, as the system is initially exhibiting a periodic orbit
that obeys x(t—js) = X(t—(j—1)15), and consequently y(t —jts) =
y(t — (j — 1)t5), the control signal will be zero as:

K(y(t —jzs) — y(t)) = K(y(t — (j — 1)75) — ¥(t))
= =K(y(t — ) —y(t)) = 0. (9)

This is a drawback for the exchange using TDF in such cases
as the control signal will be zero or very small if there is some
deviation from the initial orbit or noise. Thus, TDF cannot easily
make the current orbit unstable.

If the initial behaviour of the system is an UPO with period t
which is then stabilized by the TDF control, the controller might
be able to perform the exchange to another period jt, orbit. The
exchange can happen if the initial UPO loses its stability under
the new control signal as the controller parameters change. In
these conditions, the system would naturally move away from
the initial periodic orbit and the TDF control signal would be
able to lead the system to the desired response. However, it is
important to emphasize that these specific conditions are difficult
to obtain and generally require a much greater knowledge of the
system dynamics to set the controller gains. Another possibility
is to simply turn the control off and wait for the system to natu-
rally diverge from the initial orbit and turn the control on again
targeting the desired solution. The latter option can be applied to
all unstable cases, but it still requires the chaotic response to be
resumed and a good knowledge of the system dynamics.

3.2. TDF results and limitations

The ability of the TDF method to perform an exchange be-
tween solutions is tested both numerically and experimentally.
This is done by studying various cases chosen to assess the
advantages and disadvantages of the method. In all considered
cases, the control signal is given by:

u_[o}_[o ﬂlru—m—mﬂ
T lalee | T | Ky Ko || X(E—T) —X(0) |
as the actuation current is the only accessible parameter.

The cases are sequenced and presented with an increasing
difficulty for a successful exchange of attractors, as summarized
by Table 2. The cases at f = 7.3 and 7.4 Hz are initially presented,
where the co-existing attractors do not have periods that are
multiples of themselves. Afterwards, the more difficult cases at
f = 8.18 and 6.8 Hz are presented where the attractors have
periods which are multiples of themselves.

In the cases where the TDF performs an exchange between
stable attractors, the Floquet exponents of the orbits are not used
to set controller gains as the stability of these attractors is already
assured. Hence, only the knowledge of the target orbits period is
considered in these cases and the controller gains are set on the

(10)
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trial and error basis by the following method. First, the system
starts with an undesired response and the controller gains are set
to zero. Then, the control is turned on and the controller gains
are slightly increased to evaluate whether if the controller has
enough energy to bring the system to the desired response. If the
desired orbit is reached, the gains are set to their current value
and the procedure stops. If there is no exchange, the gains are
slightly raised again. This procedure is repeated until the success-
ful exchange is achieved or if the gains exceed the experimental
safety limits, namely Io+I,; < 4 Aand |X| < 6 mm, which means
that the controller cannot experimentally perform the exchange.
In all cases, experimental results are obtained using the rig con-
figuration as reported in [22]. Experimental Poincaré sections
and control experiments are constructed with the acquisition fre-
quency set as a multiple of the excitation frequency to eliminate
any drift or error related to the mismatch between them. Also
in experiments, time windows are multiple of excitation periods
and are set manually. Numerical results are calculated by using a
fourth-order Runge Kutta method where the excitation amplitude
and initial conditions are taken directly from the experiments.

First, the case of f = 7.3 Hz is considered with the aim to
explore if the control can switch back and forth between the co-
existing period-2 and period-5 orbits. The test starts with the
system exhibiting the period-5 orbit, and then the controller is
turned on targeting the period-2 orbit with controller gains and
delay K, = 8.0 N/m, K, = 3.2 Ns/mand z = 2/f = 0.2740
s. After a successful switch is reached, the controller changes its
target to the previous period-5 orbit with controller parameters
K, = 159.86 N/m, K, = 3.2 Ns/mand v = 5/f = 0.6849 s.
The results are shown in Fig. 6 where the exchange between both
orbits is modelled numerically and experimentally confirmed.
Numerical time histories of response and control signal, shown
in Fig. 6(a) and (b), demonstrate a fast switch to the period-2
orbit, shown in Fig. 6(c), which was achieved with a small control
signal and a relatively short transition time of about 50 periods.
The transition to the period-5 orbit, shown in Fig. 6(d), is initially
dominated by an unstructured response that lasts for about 100
excitation periods and ends when the system begins to exponen-
tially converge to the period-5 orbit. This long transition suggests
a difficulty of the TDF to move the orbit away from the period-
2 orbit basin of attraction and reach the basin of the period-5
attractor, even though only a small disturbance of the state space
is required to change to the other basin, as shown in Fig. 4(b). The
corresponding experimental time histories presented in Fig. 6(e)
and (f), exhibit the same behaviour as numerical results when
the period-2 orbit, shown in Fig. 6(g), is targeted. The only ex-
ception is that the experiments require a slightly larger control
signal than the numerical simulation. During the transition to
the period-5 orbit, shown in Fig. 6(h), the experimental results
demonstrate a smaller intermediary phase, but a longer conver-
gence phase and a larger control signal than the numerical results,
leading to a longer transition time. These slight differences from
numerical results can be related to the noise in the experimental
controller and time intervals where the control signal is constant
due to the data acquisition system saving data. Overall, using
the TDF method and the strategy presented, one can success-
fully perform the exchange between the attractors without major
problems both numerically and experimentally.

Now the case of excitation frequency f = 7.4 Hz is considered,
where the control strategy outlined above encountered problems.
Specially, we were not able to find a gain that would move the
system away from the period-2 orbit and stabilize the period-
5 orbit, hence, a modified strategy was developed. Initially, the
system exhibits the period-5 response and the control targets
the period-2 orbit with gains of K, = 1.8 N/m and K, =
3.2 N s/m, and delay of t = 2/f = 0.2703 s. Once the
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period-2 orbit is reached, the controller gains are changed to push
the system away from the period-2 orbit, starting the transition
phase that lasts for 50 periods, for controller parameters of K, =
159.86 N/m, K, = 1.8 N smand t = 5/f = 0.6757
s. Afterwards, the gains are changed again to K, = 1.8 N/m
and K, = 3.2 N s/m initiating the targeting phase, where the
controller helps the system reach the period-5 orbit. The test is
shown in Fig. 7, where numerical time histories of position and
control signal, shown in Fig. 7(a) and (b), demonstrate that the
controller can easily perform the exchange from the period-5 to
the period-2 orbit, shown in Fig. 7(c), with a very short transition
time of about 20 periods and a small control signal. Afterwards,
the controller changes its target and enters its transition phase
when it moves the system away from the period-2 orbit. This is
marked by the higher control signal around 80 s. After the tran-
sition phase is finished, the controller changes to the targeting
phase where the control signal drops significantly and the system
converges to the period-5 orbit, shown in Fig. 7(d), in about
100 periods. The corresponding experimental results, shown in
Fig. 7(e) and (f), demonstrate that the controller initially takes a
longer time to reach the period-2 orbit, shown in Fig. 7(g), when
compared with numerical simulation, resulting in an exchange
time of about 150 periods. Afterwards, the controller changes its
target and enters its transition phase. Subsequently, the controller
reaches its targeting phase and the system converges to the
period-5 orbit with a slightly longer convergence time than in
numerical simulations of about 75 periods and a slightly larger
control signal.

This second scenario demonstrates that the TDF method can
experience some difficulties to switch between orbits and even
though raising gains can be used as a strategy, it can lead to
several difficulties, such as destabilizing the target orbit. It also
seems that the controller has more difficulties to perform the
exchange from a low period orbit to a high period one than
vice-versa. This limitation motivates us to look for other control
strategies.

More challenging cases are now considered where the co-
existing attractors have periods that are multiple among them-
selves, such as period-1 and period-2 orbits. Initially, the case
of excitation frequency f = 8.18 Hz is analysed where the
system presents a chaotic response. This scenario should be more
advantageous for the TDF method than the scenario of f = 6.8 Hz
as the target orbits are unstable. Also, in the chaotic case, it is
assumed that there is a full knowledge of both target orbits. In
other words, a perfect case is analysed where the period-1 UPO
Floquet exponents can be used to set the controller gains. Two
objectives are set here, to investigate if the TDF can promote the
stabilization and exchange between the identified period-1 and
period-2 UPOs in the given time windows and to confirm if the
model and numerical predictions of Floquet exponents can be
used to set experimental controller parameters.

As previously shown in Fig. 5 the change of time-delay alone
is theoretically sufficient to perform the switch between UPOs
due to the instability of the period-1 orbit when the delay is set
to two periods of excitation. Thus, the same gain K, is used for
both orbits and set in such a way that the orbit would have ;qx
around the minimum value, where the orbit is most stable, and
also be small, resulting in K, = 3.2 N s/m and K, = 0 N/m. The
exchange is then performed by adjusting the time delay 7 to the
period of the target orbit. The system initially presents a chaotic
response as the control is turned off. Afterwards, the control is
turned on to stabilize the period-2 UPO, with 7 = 2/f = 0.2445
s. If stabilization is achieved, the controller waits a few seconds
and then moves its target to the period-1 UPO with t = 1/f =
0.12225 s. If it is successful in stabilizing the period-1 UPO, the
controller readjusts its delay targeting again the period-2 UPO to
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test if it can perform the exchange in reverse. Finally, the control
is turned off so the system can regain its chaotic state.

Fig. 8 shows the numerical and experimental results for the
described strategy. Numerical results, shown in Fig. 8(a) and (b),
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initially display a chaotic response as the control is turned off.
After the control is switched on targeting the period-2 UPO, the
system rapidly stabilizes on the target orbit with a very small con-
trol signal. After stabilization is achieved, the controller changes
its time delay targeting the period-1 UPO, shown in Fig. 3(c),
and rapidly brings the system to the desired response. Next, the
controller changes again its time delay targeting the period-2
UPO, shown in Fig. 3(d), and it takes more than 200 periods to
ramp up its signal and perform the exchange. Finally, the control
is turned off and the system returns to its chaotic state. The long
period of time needed to perform the exchange is explained by
Eq. (9) as the control signal continues to be very small. After some
time the system moves away from the period-1 UPO due to the
change in stability caused by the controller delay modification,
this leads to a small deviation of the orbit and allows the control
signal to slowly ramp up, which can be seen in the detail panel
of Fig. 8(b), and perform the exchange to the period-2 UPO. The
experimental results, shown in Fig. 8(e) and (f), present the same
behaviour as the numerical up to the transition to the period-2
UPO. At this point, the experimental control diverges from the
numerical as it can rapidly perform the transition to the period-
2 UPO. This is due to the presence of noise that creates greater
deviations of the period-1 orbit enabling the control signal to
ramp up faster than in numerical simulations and quickly perform
the exchange. This can be confirmed numerically by adding a
Gaussian noise to the control force, with variance calculated from
the experimental data of 0.0102 N. In this case, the numerical
results also indicated a faster transition from the period-1 UPO
to the period-2 UPO. It is also important to note that noise in the
system is greater in the chaotic response than in all the periodic
responses. Hence, it should be emphasized that even with a
higher than 20% noise over maximum signal ratio, the controller
can stabilize both UPOs which demonstrates robustness of the
controller when controller parameters are set to maximize the
UPO stability. Finally, the experimental stabilization of both UPOs
with a high noise to signal ratio shows the possibility of setting

experimental controller gains by minimizing the real value of the
predicted maximum Floquet exponent of a UPO.

The Floquet exponents can be also estimated using experi-
mentally recorded Poincaré time history as proposed by Costa
et al. [38]. This method gives Re(jiye) = —0.94 s~!, for the
period-1 UPO and Re(jitmax) —1.16 s! for the period-2
UPO. The period-1 Re(umqe) calculated for experiments is much
higher than its numerical counterpart of —5.16 s~! but it is
still negative. Thus, it is likely that noise and other experimental
imperfections raised the value of the controlled orbit Floquet
exponent but the change was not sufficient to make the exponent
positive and so the UPO stabilization was successful.

The last case of excitation frequency of f = 6.8 Hz is now
explored. Here the control strategy is to target the period-1 non-
impacting orbit with gains K, 159.86 N/m and K, = 2.42
N s/m, and controller delay t = 1/f = 0.147 s. Once period-1
orbit is reached, the co-existing period-2 orbit is targeted initially
with the same gains K, = 159.86 N/m and K, = 2.42 N s/m, and
controller delay t = 2/f = 0.294 s. Numerical results, shown in
Fig. 9(a) and (b), demonstrate that the controller can perform the
switch to the period-1 non-impacting orbit, shown in Fig. 9(c),
easily with a very small transition time and control signal, how-
ever, it cannot bring the system from the period-1 to the period-2
response, shown in Fig. 9(d). For the experimental case, shown
in Fig. 9(e) and (f), the controller also can stabilize the period-1
orbit, shown in Fig. 9(g), with a greater transition time than in
the numerical simulations due to noise. However, the controller
is not able to perform the exchange from the non-impacting
to the impacting orbit, even though the difficulty to exchange
between orbits according to the basins of attraction, shown in
Fig. 4, is the same as the successful case at f = 7.3 Hz. In fact,
there was no value of controller gains allowing the controller to
perform the exchange without destabilizing the whole system
and producing displacements greater than the safety limits for
the experiment. This difficulty is explained by the fact that even
if a small deviation from the initial orbit is achieved, it will still
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vanish due to the stability of the orbit, which does not allow the
control signal to grow.

This last case of 6.8 Hz demonstrates that manipulating the
gain of the TDF method to move away from a periodic attractor
and destabilize a periodic orbit in some cases is not a viable
option. In addition, high gain values might not be possible to
achieve due to the actuators limitations. Hence a new approach
should be implemented to perform the exchange from a period-n
stable orbit to a period-jn stable orbit.

4. Fractional time-delayed feedback control

In this section, a new method based on the TDF control is
proposed to switch from a stable period-n orbit with period 7, to
another co-existing period-jn orbit. The idea is to initially change
the controller time-delay to a fraction of 7; aiming to destabilize
the current periodic response and to move the system away from
the current attractor. Once the system response is away from the
initial attractor, the controller time delay is set to the period of
the targeted periodic orbit. This method is more advantageous
than just increasing the controller gain K as this can lead to
instability, great increases in vibration amplitude and high control
signal.

As it was suggested previously [36,55,56], the detuning of
TDF's time delay from the current response period leads to desta-
bilization of the orbit and the creation, by the controller, of a
periodic or chaotic attractor that is constrained in a closed region
of the state space. Hence, if it is affordable for the system to
exhibit a bounded unknown response for a short period of time,
this can be a viable option to take the system state away from an
unwanted attractor. It is also important to highlight that there is
no additional information needed to implement this new method,
than the one already needed for the TDF approach.

Hence, the controller is defined by two stages where the first
stage uses a fractional time-delay to move away from an initial
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orbit and the second uses the actual period of the target orbit to
bring the system to the desired response, leading to the control
rule given by:

K- (y(t — 3)—y(t)
K- (y(t —jz5) — y(t))

where tyqs 1S a time window large enough to bring the system
away from the periodic orbit and ¢ > n,q € N is a detuning
coefficient. The condition of ¢ > n is in place so lower period
orbits are not targeted. For example, if the system response is
a period-2 orbit, n 2, and the target is a period-4 orbit, a
detuning coefficient ¢ = 2, ¢ = n, can promote the exchange to a
period-1 co-existing orbit, if it exists, which in turn, will present
the same problem to the control second stage, thus preventing
the exchange to the targeted period-4 orbit. The time t;q,s can be
set as the time needed for the system to present a steady state
response or the time needed for the system to go to another basin
of attraction if basin’s boundaries are known. Other criteria can be
a threshold distance in the state space between the original orbit
and the targeted response of the system. Finally to set the gains of
this controller, one can apply the same strategy as was previously
used for the TDF method in the cases with stable orbits.

An example of FTDF control implementation is visualized in
Fig. 10. In the first stage, the half period delay creates a periodic
control signal, shown in Fig. 10(a), which stabilizes the system
on an attractor presented in Fig. 10(b) in black. When the second
stage is reached, this control generated attractor is destroyed
as the control signal changes and the system is pushed to the
period-2 orbit given in red as the control signal decreases to
zero. In other words, the first stage generates an attractor that
is not part of the system original behaviour, which is used as a
bridge to perform the exchange from the period-1 (blue) to the
period-2 (red) orbit. It is important to highlight that the control
generated attractor, may not be a period-1 orbit as presented in
the example, but will be bounded to a region of the state space.

Jift <ty
u(t) = It < CLerans (11

otherwise,
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Fig. 11. Example of successful application of the FTDF control for the case of f = 6.8 Hz, where TDF alone cannot perform the exchange. The system response is
presented in black, target period-1 response in blue and period-2 response in red. (a-d) Numerical results and (e-h) experimental results. Dashed vertical magenta
lines represent the exact moments when the controllers change their target orbit, while dashed black lines represent the impact boundary. (a),(e) Poincaré stroboscopic
time histories of displacement. (b),(f) Control signal time histories. (c),(g) Numerical and experimental period-1 orbits respectively. (d),(h) Numerical and experimental

period-2 orbits respectively.

To demonstrate the implementation of this new method both
experimentally and numerically, the case of f = 6.8 Hz is
revisited. The control strategy is the same as described before
when applying the standard TDF control for the same scenario.
The controller is set with the same gains of K, = 159.86 N/m
and K, = 2.42 N s/m so a comparison can be made between the
TDF and the new method. The fractional time-delayed feedback
control is only used in the transition to the period-2 orbit with
Qtrans = 2 and tyqns = 50 periods.

Fig. 11 shows the experimental and numerical results demon-
strating implementation of the new FTDF method. In numerical
simulations, shown in Fig. 11(a) and (b), the controller performs
the exchange to the period-1 (Fig. 11(c)) and to the period-2 orbit
(Fig. 11(d)) with a small control signal. In the half period phase,
the controller has a bounded control signal that moves the system
away from the period-1 orbit and stabilizes another control gen-
erated period-1 orbit. This shift is enough for the targeting phase
to rump up the control signal and bring the system to the desired
period-2 orbit within 120 excitation periods. Experimental re-
sults, shown in Fig. 11(e) and (f), demonstrate that the controller
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is also able to perform the switch between these two orbits. As
can be seen from Fig. 11(c), in the fractional control first stage, the
controller does not stabilize a control generated period-1 orbit as
was expected from numerical simulation but instead it actually
brings the system response closer to the period-2 orbit. Hence, in
the targeting phase, the experimental control stabilizes the target
response much more quickly than it is done in the simulations.
These differences are likely to be the effects of noise as postulated
for other cases. It is important to mention that normally the
noise would extend the transition time which is evident in the
transition from the period-2 to the period-1 orbit.

This brief analysis indicates that the FTDF control can success-
fully switch between periodic orbits in the case where the original
TDF control has failed. It also demonstrates that this method
has more advantages than simply raising controller gains due to
reaching the required orbit with a limited control signal. How-
ever, it is important to highlight that if restrictions are applied
to the control signal even the FTDF method may not be able to
perform the exchange due to a strong stability of the original
orbit.
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5. Conclusions

Ability to switch between co-existing attractors can bring
adaptability and new features to an engineering system, but only
a few control methods can exchange back and forth between co-
existing orbits. In this work, a versatile and highly controllable
impact oscillator [21,22], developed in by the Centre for Applied
Dynamics Research at the University of Aberdeen, is chosen to im-
plement the TDF control methods and investigate its capabilities
both numerically and experimentally. Four different cases were
selected to examine the performance of the TDF control methods.
In the first two cases, the TDF method performed the exchange
between period-5 and period-2 attractors well, but showed some
difficulties to switch from a low to a high period orbit. The third
case displayed a difficulty when stabilizing and exchanging be-
tween unstable periodic orbits embedded in the chaotic attractor
with periods that are multiples among themselves. The last case
demonstrated the limitations of the classical TDF method as the
controller was not able to safely switch from a period-1 to a
co-existing period-2 orbits.

To address the last problem encountered, a new Fractional
Time-Delayed Feedback Control (FTDF) was proposed and tested.
The FTDF method is a two-stage control, where a control gen-
erated orbit is created and used as a bridge to switch between
its initial and control targeted orbits. In the first stage, it uses
a fraction of the initial orbit period to destabilize the current
attractor and to establish a control generated orbit. In the second
stage, the classical TDF approach is applied to bring the system
to the desired attractor. From our limited testing experience it
appears that the proposed control method presents a significant
advantage of creating bounded responses during the exchange of
attractor process.

The new FTDF method should be extensively tested to fully as-
sess its effectiveness and robustness. However, the initial results
look attractive as the method can be applied to various adap-
tive non-linear systems and structures where their behaviour or
configuration is required to change.
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Appendix. Calculation of Floquet exponents with time-
delayed states

In this appendix, two methods of calculation of an unstable
periodic orbits Floquet Exponents are described, following the
approach presented in [38,54]. Floquet theory focuses on the
behaviour of time-varying systems described by the differential
equation:

X=M-x (A1)

where M is a periodic matrix with period 7;. In other words,
M(t) = M(t + t5). As stated by Floquet theory, the result of
Eq. (A.1) is given by:

N
X(t) = Re (Z (X(0) - pa(0)) exp(mt)pn(t)) (A2)
n=1

where p, is a periodic function with the same period as M and
iy is the Floquet exponent associated with p, as explained in
Section 3.1.

The first method of calculation considers a system controlled
by the TDF method as in Eq. (4) that has a periodic behaviour X,
of period ;. In this case, the time evolution of a deviation §x can
be given through a linearization of Eq. (4) resulting in:

8% = (VE(Xgn) + KVC (VX(t — nty) — I)) - X (A.3)

where T is the identity matrix and V is the gradient operator.
Note that Eq. (A.3) when evaluated around X, has the same
form of Eq. (A.1) and the matrix M has a periodic behaviour with
the same period 75 as the orbit. Hence, Floquet theory can be
applied which dictates that delayed deviations must have the

form:
OX(t — 15) = exp(—H, 75) - 5X(t) (A4)

where H, is a matrix which its eigenvalues are the Floquet
exponents. Using this result Eq. (A.3) becomes:

8% = (Vf(Xon) + KVC(Xob)(exp(—H, 75) — I)) - 6%

Now that the evolution of §x is known, one way to calculate
the Floquet exponents is to evaluate the fundamental matrix of
the system ¥ that is defined as:

Sx(t) = w(t) - 5x(0)

where ¥(0) I. In sequence, by substituting Eq. (A.6) into
Eq. (A.5) the evolution of the fundamental matrix is obtained:

U = (Vf(Xob) + KVC(Xop)(exp(—H, 7) — I))¥ (A7)

Finally, the Floquet exponents are extracted by the diagonal-
ization of the fundamental matrix after one period of evolution.
In other words they are the solution for the equation:

(A.5)

(A.6)

(w(7) — exp(—pn)I) - v, = 0 (A.8)

where v, are the eigenvectors of ¥(t).

It is important to highlight two important points in this
method for the calculation of Floquet exponents. The first is that
by introducing delayed states the control actually introduces an
infinite number of Floquet exponents to the system, however,
the dimension of Eq. (A.7) is the dimension of the system N
without the control. This is achieved by using Eq. (A.6) which
maintains the dimension of the system. The second point is that
the introduction of Eq. (A.6) also makes the fundamental matrix
evolution be dependent on the Floquet exponents themselves,
(1) = ¥(t, uy). As a consequence of this dependency Eq. (A.8)
becomes transcendental with an infinite amount of solutions on
the complex plane, in fact, if there is a solution of the type
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Mn = Mre + ipim then Un+j = Kre + i[wim + 2jm], for j € Z, is
also a solution.

An optimization method can be used to solve Eq. (A.8). One
easy way is to initially have a set of guessed Floquet expo-
nents [iguess, perform the calculation of the fundamental ma-
trix ¥(7, [iguess) and afterwards calculate updated Floquet expo-
nents upew. hence, one can obtain the Floquet exponents by the
minimization of a cost function defined as:

d = |Unew — Hguess| (A9)

where |-| is the Euclidean norm. Finally, any optimization
method can be used to bring Eq. (A.9) to its minimum value.

It is important to mention that if the base of solutions is
used in the calculation of Floquet exponents then H,, becomes a
diagonal matrix which facilitates the optimization and numerical
procedure. Another important detail is that one can use the
system FE without the ETDF as an initial guess for the calculation
of the controlled FE. An example of FE calculation can be found
in [38].

Another way to calculate Floquet exponents is through a sys-
tem time series. Assume that Eq. (A.2) is valid for the deviation
8x near the periodic behaviour to be investigated.

N
5x(t) = Re D (8(0) - Pa(0)) exp(rt)pa(t)

n=1

(A.10)

If it is also assume that t >> 1, all terms of the sum in Eq. (A.10)
that have negative or low FE will be much smaller in comparison
to the maximum real-valued FE (umqx) term. This allows for the
approximation of Eq. (A.2) as follows:

8X(t) ~ Re ((6X(0) - Pmax(0)) eXP(imaxt )Pmax(t))

where pme is the periodic function related to fime. Finally if
a time series with a period of z; is taken the value of pyq(t)
becomes constant as it is a periodic function. Hence, the time
series becomes:

(A.11)

dx(nts) ~ ap exp (Re(ftmax)nTs) €OS (IM( 4 max )NT5) (A12)
where ag = (6X(0) - Pmax(0))Pmax(0).

Eq. (A.12) displays that the Poincaré time series of the dis-
placement around a periodic orbit can be modelled by a damped
cosine function which has parameters given by the real and
imaginary parts of that orbits maximum real-valued FE jtiqy.
Hence, a function calibrated using an experimental time series
can be used to extract an orbit ftpgy.
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