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ABSTRACT
Machine Learning (ML) techniques have been shown to be widely
successful in environments that require processing a large amount
of perception data, such as in fully autonomous self-driving vehi-
cles. Nevertheless, in such a complex domain, ML-only approaches
have several limitations. In this paper, we propose a hybrid Artifi-
cial Intelligence (AI) framework for fully autonomous self-driving
vehicles that uses rule-based agents from symbolic AI to supple-
ment the ML models in their decision-making. Our framework is
evaluated using routes from the CARLA simulation environment,
and has been shown to improve the driving score of the ML models.
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1 INTRODUCTION
The Society of Automotive Engineers (SAE) International, in co-
operation with the International Organisation for Standardisation
(ISO), classifies vehicle automation into six levels related to the
presence of automation, ranging from full human control with no
automation in Level 0 to fully automated with no human inter-
ference in Level 5 [17]. Despite the phenomenal progress in the
technology for autonomous self-driving vehicles from the automo-
tive industry and the research community, fully automated vehicles
are predicted to become viable only from 2035 [25].

Machine Learning (ML) techniques are a critical part of a fully
autonomous system that requires a large amount of sensing. Deep
learning in particular has been shown to be very effective in image
processing in the context of autonomous vehicles [11, 22]. Most of
the recent research and experiments available in the area of self-
driving vehicles are focused on designing and improving the ML
models to train and act efficiently.

The considerable effort and time spent to develop a suitable ML
model may never provide a perfect solution that manages to avoid
all critical scenarios (e.g., collisions, accidents) and to follow all road
rules. There will always be some situations for which the model has
not trained enough or does not have enough accuracy in its predic-
tion that can lead even the best model to fail [15]. Re-training the
model may not be a valid option due to the amount of time and diffi-
culty in preparing the training environment for those critical cases,
especially if such situations happen during real word deployments
where it can cause harm to humans. For such complex systems,
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verification and validation is usually a requirement. However, due
to the black-box nature of most deep learning techniques, formal
verification is either impractical or unfeasible [16]. Even if critical
parts of the system can be verified, formal verification will not help
in improving the autonomous behaviour. Nevertheless, verification
and validation should still be a part of the pipeline of the complete
system, but for the remainder of this paper we focus on improving
the autonomous behaviour of the vehicle.

An alternative option to improve autonomy in self-driving vehi-
cles is to combine rule-based techniques from symbolic Artificial
Intelligence (AI) with ML. This allows the system to provide more
deliberate and rational decision-making in difficult scenarios where
ML underperforms. This is known as hybrid AI, which has been
researched in the past [10, 27] and has recently seen a resurgence
in Neuro-Symbolic AI [26]. We view Neuro-Symbolic AI as a sub-
category of Hybrid AI, when neural components are intrinsically
connected to rule-based reasoning (for example, when a rule-based
system feeds into the learning procedure). Therefore, for this paper
we prefer to use the more general term of hybrid AI to describe the
combination of reasoning and learning in decision-making.

The notion of combining deliberative reasoning with learning
has been extensively studied in human decision-making and cogni-
tive theories, as described by the psychologist Daniel Kahneman
in his book “Thinking Fast and Slow” [18]. According to Kahne-
man’s theory, human decisions are made by a cooperation between
“System 1: Thinking fast” and “System2: Thinking slow”. System 1
is used for intuitive, imprecise, fast and unconscious decisions. In
contrast, System 2 is used in more complex situations that require
logical and rational thinking. Kahneman estimates that about 95%
of our thinking is using System 1 to make decisions. When applying
this concept to Hybrid AI we have that System 1 represents the ML
component (unconscious decisions learned by experience) and Sys-
tem 2 represents the symbolic AI component (rational decisions).
Humans learn how to drive through training and practice. The
more we drive in a particular route the more we rely on System
1, but any uncommon scenario we encounter (e.g., taking a new
route for the first time, or an incoming vehicle going the wrong
way) will require System 2 to take over.

In this paper, we use pre-trained ML models as our System 1 and
introduce rational rule-based agents as our System 2. When there
is a critical situation (e.g., incoming collisions or traffic jams and
congestion) that cannot be left for the ML model to decide (due
to under-fitting, over-fitting, or accuracy issues), then we should
rely on the rational reasoning of the agents. We use CARLA [13]
as our open-source simulation environment, which was developed
to support research in the development, training and testing of
autonomous urban driving systems. System 1 is a pre-trained ML
model (we tested with twomodels, LAV [7] and TransFuser [8]), and
System 2 is a rational agent based on the Belief-Desire-Intention
(BDI) model [5, 23] programmed in the Jason Multi-Agent System



(MAS) language [4]. Our main contribution is an end-to-end frame-
work, ML-MAS, that combines the pre-trained ML model and the
rational agents with the goal of improving autonomous driving in
self-driving vehicles.

At a more theoretical level, we investigate four research ques-
tions from the “Thinking Fast and Slow in AI” [2], which discussed
the theory from “Thinking Fast and Slow” [18] when applied to AI:

RQ1 How do we model the governance of System 1 (Thinking
Fast) and System 2 (Thinking Slow) in an AI?

RQ2 Which factors trigger the switch between the two systems?
RQ3 How should System 2 act once the switch is triggered?
RQ4 When should problems be handed back from System 2 to

System 1?

2 RELATEDWORK
The work in [1] proposes a verification technique for decision-
making of self-driving vehicles that combines design phase and
runtime verification. The decision-making uses a rational agent
based on the BDI model, which perceives the environment, sensor
data and feedback to follow a self-planning path. The decision is
verified by two well-known model checkers: Model Checker for
Multi-Agent Systems (MCMAS) [21], used during the design phase
to check the consistency and stability of the BDI agent logic; and
PRISM [19], a probabilistic model checker used at runtime to verify
the success probability of the decisions in order to help the rational
agent select the best choice. The BDI agent is rather simple, driving
in a parking-lot scenario, not in a complete end-to-end self-driving
environment. Furthermore, deep learning is used only as a fusion-
sensor input, and not as a hybrid AI decision-making mechanism.

Hierarchical Adaptable and Transferable Networks (HATN) [28]
is an approach used to generate driving behaviours by mimicking
the human’s cognitive level during driving. This approach proved
to be efficient in challenging scenarios such as roundabouts and
unusual intersections. The hierarchical component of the frame-
work comes from breaking complex scenarios into smaller tasks
that make the learning more efficient. The model architecture is
based on a set of Graph Recurrent Unit (GRU) networks and dense
fully connected neural networks. This approach is useful for the
specific scenarios it targets, but cannot be used as an end-to-end
solution.

Despite the recent boon in hybrid and neuro-symbolic AI [12, 24,
29], there has not been many recent works combining ML with BDI-
based agents. Some instances of work done in the past include the
work in [9], which uses a weightless neural network and a BDI agent
to extract landmark information from a map in order to determine
the location of a robot in the map. The virtual neural sensor partly
analyses the image, feeding pre-processed data to the agent (which
is a more simplistic rule-based system rather than a proper BDI
agent) for calculating the estimated location. An extension of that
work can be found in [14], this time with a more traditional BDI
agent containing beliefs and plans. The BDI agent is combined with
Artificial Neural Networks to perform active video surveillance
in two application domains, railway tunnels and outdoor storage
areas. The main architecture remains similar, the neural network
is used to generate pre-processed data from image detection and
then the agent is used to further interpret that data.

3 THE ML-MAS FRAMEWORK
The ML-MAS framework combines the decision-making of both
pre-trained ML models (System 1) and BDI agents (System 2) in an
effort to integrate learning and rational behaviours. Our framework
is applied to the self-driving vehicles domain. In order to be able to
evaluate and test our approach in practical scenarios, we use the
CARLA simulation environment [13]. CARLA provides realistic 3D
simulation of urban driving with sensors such as RGB Cameras,
LiDAR, obstacle detectors, etc. Furthermore, it includes a Python
API to interact with the simulation which facilitates its integration
with the ML models, as well as with the BDI agents. In addition,
CARLA offers dedicated route evaluation metrics via the Leader-
board library [20]. The library also offers debug functionalities such
as route replays from recorded execution logs. In the traditional
challenge, the goal is to provide full autonomous control of a vehicle
over a series of routes containing other vehicles and pedestrians
while trying to minimise accidents, collisions, and traffic violations
at the same time. The other entities in the simulation are controlled
by a centralised internal traffic manager.

Figure 1 gives an overview of the ML-MAS main components.
CARLA, the pre-trained ML model, and the Leaderboard library are
all used as external black-box resources, i.e., they are not altered in
any way. The pre-trained ML models and the Leaderboard routes
we use are explained in our evaluation section (Section 4). The
main internal components of ML-MAS are the BDI bridge, the
orchestrator, and the BDI agent.

Figure 1: ML-MAS framework overview.

The BDI agent is developed using the Jason agent programming
language [4].We use BDI agents, and specifically the Jason language
for a few reasons. BDI agents give our framework the capability of
accomplishing complex goals in a rational way by describing plans
to achieve them (e.g., to avoid front, back, crossing collisions) using
“mental states” such as beliefs, desires, and intentions. Jason [4] is
an exemplary implementation of the AgentSpeak language [23] for
programming rational BDI agents. Its reasoning cycle is sufficiently
complex to represent the situations that we wanted a BDI agent to
reason about. According to recent literature reviews [3, 6], Jason is
one of the most well-know BDI agent programming languages that
is still being actively maintained.

3.1 BDI Bridge
The BDI bridge implements a seamless communication bridge be-
tween the BDI agent and the CARLA API. The architecture of the



BDI bridge is shown in Figure 2. The bridge is based on socket
communication and consists of a client part (in Java-Jason) and
a server (in Python). The former is integrated into the BDI agent
component, and the latter is integrated into the orchestrator that
communicates with CARLA using its API.

Figure 2: BDI bridge connecting the orchestrator and Jason
agents.

To improve efficiency, both client and server run in three main
threads: a thread to send the messages, a thread to receive the
messages, and a thread to handle the messages. Each thread works
independently and passes information using a set of buffers. This
design ensures no thread conflicts or reaches a deadlock with other
threads, as only one thread can write to the specific buffer while the
others can only read from it. Moreover, the communication between
the client and the server is done automatically and handles any
disconnecting and reconnecting required, transparent to the parties
integrating it, providing a reliable communication service.

The messages are specified in the well-known JSON format. Both
client and server use a JSON unpacker and interpreter to identify
the message type and decide how to handle each message. Listing 1
shows a control (action) message in JSON format as an example of
a message being sent from the agent to the orchestrator.
1 "type": {"id": 1, "name": "control"},
2 "data": {
3 "metricsType": 1,
4 "throttle": 0.0,
5 "steer": 0.0,
6 "brake": 0.0,
7 "reverse": false,
8 "repeat": 1
9 }

Listing 1: Example of a control message in JSON format.

The message handler thread behaves differently in the server
and in the client. The server has an executor which processes the
action requested by the message received from Jason. The client
has a dedicated Beliefs Handler that manages the agents’ beliefs
based on the information received from the orchestrator. Note that
the Jason BDI client can be replaced with another BDI client to
make it compatible with other BDI-based languages.

3.2 Orchestrator
The orchestrator implements the required functions to interface
with CARLA and with the Leaderboard (in particular, the Au-
tonomous Class). A configuration file for the orchestrator can be
easily changed to allow it to integrate with any ML model that
inherits the same Autonomous Class. The functionality of the or-
chestrator includes loading the ML model, its configuration and
pre-trained weights, and forwarding the data from the required
sensors that are requested by the model. It also ensures the avail-
ability of the sensor data needed for the BDI agent, as well as
pre-processing the data and sending only what is required by the
agent. This acts as a filter which solves the common problem of
flooding the belief base of the agent with too much information
that is not being used. Communication with the BDI agent is done
through the BDI bridge. The orchestrator then waits for an action
from either the ML model or from the BDI agent. For efficiency, if
in a simulation frame there are no data to send to the agent, then it
relies on the action from the ML model only.

Algorithm 1 gives an overview of themain function that loads the
configured routes and scenarios using the𝑔𝑒𝑡𝑅𝑜𝑢𝑡𝑒𝑠𝐴𝑛𝑑𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ()
function (line 1). Frames Per Second (FPS) is locked into 20 frames
per gaming time second (line 2). Then, it loops through each route
ensuring that the simulation environment (loading the town map,
the position of actors, the weather condition, etc.) and the required
systems (loading up the weights in the ML model, connecting with
the BDI agent via the BDI bridge, etc.) are ready and properly con-
figured (lines 5–10). Note the use of game time as well as the system
time. The system time is not used in the evaluation, it is merely
there for informational purposes. The evaluation is designed to
not be affected by computation speed and response time of the
solution or the hardware specification being used to run it. This is
achieved by using 𝐺𝑎𝑚𝑒_𝑡𝑖𝑚𝑒 , a game second runs 20 simulation
frames (this is the default value which is used in the competitions)
where with each frame every actor in the simulation is allowed to
act (vehicles, pedestrians, traffic lights, etc.).

For every game time frame, the orchestrator will collect the data
from the sensors (coming from the simulation environment) and
call the function 𝑟𝑢𝑛𝑆𝑡𝑒𝑝 , which will interface with the ML model
and the BDI agent, returning a control message from one of them
that is then sent to the environment for execution (using the 𝑒𝑣𝑎𝑙 ()
function). The evaluation metrics are stored every time a route
concludes.

Algorithm 2 describes the 𝑟𝑢𝑛𝑆𝑡𝑒𝑝 function. Lines 5–7 check if
there are any repeat actions to perform. Repeat is a special property
that the BDI agent can specify when sending a message with an
action. It is used to inform the orchestrator to perform the same
action for a specified number of frames without asking the BDI
agent or the ML model until the repeat is over. This feature is
important because some plans are designed to stop the vehicle from
any speed that they may have, so a brake action has to be repeated
a number of times proportionally to the vehicle speed in order to
achieve the intended goal of the plan.

If there is no BDI action being repeated, then the orchestrator
sends the sensor data to the ML model and receives its control
message back. The sensor data is pre-processed in preparation to
be sent to the BDI agent. If the pre-processed data does not trigger



Algorithm 1:Main function to run a scenario.
1 Function main()
2 𝑅𝑜𝑢𝑡𝑒_𝑙𝑖𝑠𝑡 ← 𝑔𝑒𝑡𝑅𝑜𝑢𝑡𝑒𝑠𝐴𝑛𝑑𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ()
3 𝐹𝑃𝑆 ← 20
4 foreach 𝑅𝑜𝑢𝑡𝑒 ∈ R𝑜𝑢𝑡𝑒_𝑙𝑖𝑠𝑡 do
5 𝑆𝑒𝑛𝑠𝑜𝑟𝑠_𝑙𝑖𝑠𝑡 ← 𝑔𝑒𝑡𝑀𝐿𝑆𝑒𝑛𝑠𝑜𝑟𝑠 () · 𝑔𝑒𝑡𝐵𝐷𝐼𝑆𝑒𝑛𝑠𝑜𝑟𝑠 ()
6 𝑙𝑜𝑎𝑑𝑊𝑜𝑟𝑙𝑑𝑀𝑎𝑝 (𝑅𝑜𝑢𝑡𝑒, 𝑆𝑒𝑛𝑠𝑜𝑟𝑠_𝑙𝑖𝑠𝑡)
7 𝑀𝐿_𝑀𝑜𝑑𝑒𝑙 ← 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑀𝐿𝑊𝑒𝑖𝑔ℎ𝑡𝑠 ()
8 𝐵𝐷𝐼_𝐴𝑔𝑒𝑛𝑡 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝐵𝐷𝐼𝐵𝑟𝑖𝑑𝑔𝑒 ()
9 𝐺𝑎𝑚𝑒_𝑡𝑖𝑚𝑒 ← 0

10 𝑆𝑦𝑠𝑡𝑒𝑚_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 ← 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝐼𝑛𝑆𝑒𝑐 ()
11 while 𝑅𝑜𝑢𝑡𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 ≠ 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 do
12 𝐺𝑎𝑚𝑒_𝑡𝑖𝑚𝑒 ← 𝐺𝑎𝑚𝑒_𝑡𝑖𝑚𝑒 + 1
13 for 𝑘 ← 1 to 𝐹𝑃𝑆 do
14 𝑆𝑒𝑛𝑠𝑜𝑟𝑠_𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝐷𝑎𝑡𝑎(𝑆𝑒𝑛𝑠𝑜𝑟𝑠_𝑙𝑖𝑠𝑡)
15 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ← 𝑟𝑢𝑛𝑆𝑡𝑒𝑝 (𝑆𝑒𝑛𝑠𝑜𝑟𝑠_𝑑𝑎𝑡𝑎)
16 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ← 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 · 𝑒𝑣𝑎𝑙 (𝑅𝑜𝑢𝑡𝑒,𝐶𝑜𝑛𝑡𝑟𝑜𝑙)
17 𝑅𝑜𝑢𝑡𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑡𝑎𝑡𝑢𝑠 (𝑅𝑜𝑢𝑡𝑒,𝑀𝑒𝑡𝑟𝑖𝑐𝑠)
18 if 𝑅𝑜𝑢𝑡𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 then
19 𝑏𝑟𝑒𝑎𝑘

20 𝑆𝑦𝑠𝑡𝑒𝑚_𝑡𝑖𝑚𝑒 ←
𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝐼𝑛𝑆𝑒𝑐 () − 𝑆𝑦𝑠𝑡𝑒𝑚_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒

21 𝑠𝑡𝑜𝑟𝑒 (𝑀𝑒𝑡𝑟𝑖𝑐𝑠,𝐺𝑎𝑚𝑒_𝑡𝑖𝑚𝑒, 𝑆𝑦𝑠𝑡𝑒𝑚_𝑡𝑖𝑚𝑒)

Algorithm 2: Orchestrator function to run a step.
1 Function runStep (Sensors_data)
2 𝐿𝑎𝑠𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ← 𝑔𝑒𝑡𝐿𝑎𝑠𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ()
3 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑔𝑒𝑡𝑅𝑒𝑝𝑒𝑎𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ()
4 𝐹𝑟𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝐹𝑟𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 + 1
5 if 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 1 then
6 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 1
7 return 𝐿𝑎𝑠𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 // Previous BDI control

8 𝑀𝐿_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ← 𝑔𝑒𝑡𝑀𝐿𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑆𝑒𝑛𝑠𝑜𝑟𝑠_𝑑𝑎𝑡𝑎)
9 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎 ← 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑆𝑒𝑛𝑠𝑜𝑟𝑠_𝑑𝑎𝑡𝑎)

10 if 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎 ∉ 𝐵𝐷𝐼_𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 () then
11 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
12 return𝑀𝐿_𝑐𝑜𝑛𝑡𝑟𝑜𝑙
13 𝐿𝑎𝑠𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ←

𝑔𝑒𝑡𝐵𝐷𝐼𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎,𝑀𝐿_𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
14 if 𝐿𝑎𝑠𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑛𝑜𝑎𝑐𝑡𝑖𝑜𝑛 then
15 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
16 return𝑀𝐿_𝑐𝑜𝑛𝑡𝑟𝑜𝑙
17 𝑎𝑑𝑑𝐵𝐷𝐼𝑀𝑒𝑡𝑟𝑖𝑐𝑠 (𝐿𝑎𝑠𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑅𝑒𝑝𝑒𝑎𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 )
18 return 𝐿𝑎𝑠𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 // BDI control

any BDI plan, then the orchestrator uses the ML control. Otherwise,
if a BDI plan is triggered, then the pre-conditions of the triggered
plan are tested against the set of pre-processed data (and the ML
control as well in some cases). If the pre-conditions are not satisfied,

then the BDI agent returns a 𝑛𝑜𝑎𝑐𝑡𝑖𝑜𝑛. Otherwise, the orchestrator
receives a control message from the BDI agent, which will then
take priority over the ML model control.

3.3 Data Pre-Processing
The simulation environment in CARLA comes with a set of sensors
that researchers can use. There are two challenge tracks in the
CARLA Leaderboard. “Sensors Track” allows the use of 6 sensors:
GPS, IMU, LiDAR, RADAR, RGB camera, and a speedometer. “Map
Track” adds an additional pseudosensor with information about the
map. Our BDI agent currently only uses information from the Li-
DAR and the speedometer. We also require traffic light information,
which we obtain directly from the CARLA API.

The LiDAR is a rotating ray-casting sensor which provides a
cloud of 3D coordinates (x, y, z) of the points and their intensity
around the vehicle. This sensor’s rotation behaviour gets most of the
object’s points surrounding the vehicle, but it does not guarantee
getting all of them. For example, depending on the FPS and the
configured rotation rate, in some cases only the obstacle points in
the right side are collected but not some of the left-most points, and
vice-versa. Thus, the aforementioned Beliefs Handler is designed to
keep a history of these data to be able to get the knowledge about
the current right and left obstacles at the same time. In contrast, the
speedometer is a simple sensor that provides the vehicle’s current
speed and does not require any further pre-processing.

There is a vast amount of cloud points coming from the Li-
DAR data, containing more than 50,000 points at a time. Therefore,
analysing and pre-processing the data is necessary to generate
useful symbolic data to send to the agent. We apply three pre-
processing steps to the LiDAR cloud point: (i) filter the points by
limiting the distance (X between -5m to 8m, Y between -4m to 4m,
and Z between 0.7m to 2m); (ii) group the remaining points into
six directions front (F), back (B), straight front (SF), straight back
(SB), left (L) and right (R), as shown in Figure 3; and (iii) get the
two closest points (X,Y) in each of the six directions. These three
pre-processing steps compress the 50,000+ LiDAR points into only
12 valuable points.

Furthermore, by observing data from the execution of MLmodels
in CARLA, we have determined that many of the critical failure
cases occur in traffic light intersections. These situations require
“System 2” to take control in order to devise some rational solution.
The traffic light information is collected from the CARLA API, and
serve as an example of infrastructure-to-car communication.

The information about the traffic lights is much more simple,
but some pre-processing steps are still required to maintain useful
symbolic data while at the same not overloading the agent with too
much information. We perform the following three pre-processing
steps: (i) get the distance to any traffic light that is up to 15 meters in
front of the vehicle (including coordinates of other traffic lights in
the same intersection); (ii) calculate if the vehicle is inside the traffic
light intersection, as shown in Figure 4; and (iii) stop tracking the
traffic light information if the vehicle has exited the intersection.

Besides the pre-processed data from the LiDAR and the traffic
lights, as well as the data from the speedometer, basic information
about the current frame and step number are also sent to the agent
in order to help predict the motion of the obstacles. For example,



Figure 3: LiDAR cloud points grouped by direction.

Figure 4: Calculating the traffic light intersection flag. Note
the notation for the axes, CARLA considers the front of the
vehicle as 𝑋+ axis, on the right of it is the 𝑌+ axis, and the 𝑍
axis is the vertical axis.

whether it is moving towards the vehicle or opposite from it, by
comparing the distance difference between the information from
the previous frame and the current one. This is possible because of
the history provided by the Beliefs Handler.

3.4 BDI Agent
Based on the pre-processed data received by the BDI agent, the
Beliefs Handler can add the beliefs listed in Table 1, which are then
used to trigger the relevant plan. Each belief has the Frame number
value that is used to keep track of the history (up to four previous
frames) of the data and also to be able to predict the obstacles
motion by comparing the previous frame to the current frame.

We have identified seven critical situations where System 2 input
is required, based on infractions and collisions of the top-ranking
ML models in the Leaderboard training routes. For each situation,

Table 1: BDI agent beliefs.

Belief Description

info(Frame,Speed) Step number and vehicle speed
f(Frame,X,Y,MinX,MinY) Front obstacle detected
b(Frame,X,Y,MinX,MinY) Back obstacle detected
sf(Frame,X,Y,MinX,MinY) Straight front obstacle detected
sb(Frame,X,Y,MinX,MinY) Straight back obstacle detected
r(Frame,X,Y,MinX,MinY) Right obstacle detected
l(Frame,X,Y,MinX,MinY) Left obstacle detected
traffic_light(Frame,Type, Colour,
DifX,DifY, Distance,IsInInt)

Traffic light in front, or inside
a traffic light intersection

ml_control(Frame,Throttle,Steer,
Brake, Hand_brake,Reverse) Current ML model action

we implement a plan in the Jason BDI agent to detect and resolve it.
These plans mainly aim to avoid collisions and to navigate around
traffic jams. The seven plans are as follows.1

Close crossing collision avoidance. The plan triggers when there
are close obstacles on the front, right or left of the vehicle with
less than 2 meters distance in the 𝑌 axis. Once triggered the plan
contains an action to break the vehicle to try to avoid the collision.
The Jason plan for this behaviour is shown in Listing 2. The +!
sign represents the addition of a goal, in this case the triggering
event is the addition of the goal frame(F) with F the Leaderboard
step/frame. The commands between : and <− form the context of
the plan (i.e., the precondition of the plan). Finally, the commands
after <− are a sequence of actions to be executed when the plan is
triggered and the context is valid. Figure 5a shows an example of a
nearby cyclist about to cross the road.
1 +!frame(F): f(F,X,_,_,MinY) & MinY < 2.0 & X < 4.5 &
2 info(F,Sp) & Sp > 0.5
3 <- control(2,0.0,0.0,1.0,false,false,(Sp*3)).

// hard break

Listing 2: Jason plan for close crossing collision.

Far crossing collision avoidance. This plan is designed to detect
obstacles in the 𝑌 axis distance that are expected to come in front
of the vehicle. This is calculated based on obstacle motion by com-
paring the distance differences between the frames and the current
vehicle speed. Listing ?? shows parts of this plan. Figure 5b has an
example of a fast-moving vehicle in a traffic light intersection that
is successfully detected by this plan.
1 +!frame(F): f(F,X,Y,_,MinY) & f(F2,_,Y2,_,MinY2) &
2 (F-F2) <= 2 & Y > 0 & Y2 > 0 & MinY > 2.0 &
3 X < 6 & Y < 4 & (MinY2-MinY) > 0.15 &
4 ml_control(F,_,St,_,_,_) & St < 0.1 & info(F,Sp)
5 <- control(1,0.0,0.0,1.0,false,false,(Sp*3)).

// hard break

Listing 3: Jason plan for far crossing collision.

Front collision avoidance. This plan is used to predict the front
obstacles that are getting closer to the vehicle. It observes the front
for obstacles from a distance of 7.9 meters, which is enough that
if an obstacle is detected then it manages to brake at the proper
1Due to space constraints, we only show parts of the plans in Jason; the remaining
plans can be found in the supplementary material.



(a) Close crossing avoidance. (b) Far crossing avoidance. (c) Front avoidance.

(d) Back avoidance. (e) Traffic light green. (f) Exiting intersection.

Figure 5: Visual representations of the BDI agent plans.

Figure 6: Visual representation of the plan for traffic jams.

time to avoid the incoming vehicle. Figure 5c shows a truck moving
towards the vehicle, trying to pass to the other lane.

Back collision avoidance. This plan attempts to avoid such col-
lision by predicting when a fast-moving vehicle is coming from
the rear side or when there is another vehicle too close to the rear.
Figure 5d has an example of a vehicle coming from the back and
trying to pass to another lane. Thus, our plan moves the vehicle
forward if possible (considering any front obstacles), providing a
safe space for the other vehicle to manoeuvre.

Traffic light green. Sometimes the ML model would take too long
to move the vehicle when the traffic light was green and there were
no obstacles. This is a simple plan that acts as a wake-up for the

ML model to start moving the vehicle because the traffic light turns
to green, as shown in Figure 5e.

Exiting intersection. This plan is to ensure that the vehicle exits
the traffic light intersection at a reasonable slow speed to allow it
to avoid any sudden obstacles. An example is shown in Figure 5f.

Traffic jam navigation. The plan detects that the ML model is
stuck in a particular place without moving the vehicle for an ex-
tended period of time (60 frames or 3 gaming seconds). This detec-
tion mechanism also considers other information that distinguishes
it from stopping normally. Once the traffic jam detection is trig-
gered, there are various sub-plans that attempt to move the vehicle
out of it. Some options include: reverse, reverse and turn, go for-
ward, go forward and yaw. After some attempts, usually there is
a small waiting period to check if the ML model is able to retake
control or not. Figure 5f demonstrates a sample of a traffic jam that
was solved by using this plan in five steps.

4 EVALUATION
The CARLA Leaderboard evaluation consists of six towns (maps)
with a total of 100 secret routes and 76 public routes. The public
routes are used for training and testing, while the secret routes are
kept hidden and used for the official Leaderboard challenge. Sub-
mitting a solution to the Leaderboard is a lengthy process, and even
just running the 76 public routes locally can take a very long time.
As a shorter alternative, the “Longest6 Benchmark” [8] extends the
CARLA Leaderboard with a new set of 36 routes. These routes are
based on the six towns from the Leaderboard, therefore any training



done on the original 76 public routes will also be useful for this
new set of 36 routes. We use this benchmark for our experiments.

We select the LAV [7] as our pre-trained ML model for evaluat-
ing ML-MAS as an end-to-end framework. Integrating a new ML
model with ML-MAS is a seamless process which can be done via
a configuration file. The LAV model is a deep learning approach
that uses a range of different techniques (e.g., recurrent neural net-
works, convolutional neural networks) to build a representation
of the driving behaviour of not only the vehicle being driven, but
also of other vehicles, all while remaining invariant to the view-
point of the controlling vehicle. Note that the LAV model comes
pre-configured with experimentally trained weights. This is not di-
rectly comparable with the final weights that achieved a (winning)
score of 61% in the Leaderboard challenge of 2020; those weights
were not made public at the time of writing this paper. We first run
the LAV pre-trained model by itself in the Longest6 benchmark,
and then we run ML-MAS using LAV as the ML model.2

The Leaderboard evaluator is designed to be independent of
either the computer specification or the model processing speed.
This is done by using the CARLA game time instead of real system
time. Such that the Leaderboard evaluator is designed to run with
a fixed 20 frames/gaming time second. This is synchronised with
every actor in the environment (vehicles, pedestrians, etc.). Never-
theless, we report the configuration of the computer used in the
experiments for compatibility purposes: Ubuntu 18.04 operating
system, Intel Core i7-6820HK CPU @ 2.70 GHz processor, GeForce
GTX 1070 Mobile graphics card, Nvidia-driver-465, and Cuda 11.3.

4.1 Metrics
The CARLA Leaderboard provides metrics designed to measure
different aspects of driving. The final driving score metric is a mul-
tiplication between two aggregation metrics [20]: route completion
and infraction penalty. Route completion is a percentage of the com-
pleted distance in a route compared to the route’s length. There are
five sub-metrics that negatively impact route completion: off-road
driving, route deviation, agent blocked (the vehicle is stuck for a
period of time), simulation timeout and route timeout. The first is
a percentage reduction over the route completion score, and the
other four cause the route evaluation to stop once their conditions
are met (more details about each condition can be found in [20]).
Infraction penalty starts with a base value of 1.0 (higher values
are better, i.e., less infractions have been committed). This value
is reduced by multiplying it by the coefficient of each of the five
road infractions: collisions with pedestrians (0.5), collisions with
other vehicles (0.6), collisions with static elements / layout (0.65),
running a red light (0.7), and running a stop sign (0.8).

The final driving score is calculated as follows:

𝑑𝑖𝑟𝑖𝑣𝑖𝑛𝑔𝑆𝑐𝑜𝑟𝑒 = 𝑟𝑜𝑢𝑡𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑖𝑛𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦

We propose an additional seven ML-MAS specific metrics, with
each metric representing the contribution percentage of each of the
primary BDI agent plans reported in Section 3.4. The orchestrator
keeps a record of all of these metrics by counting the number of
frames each plan contributes when sending an action (this value

2Demo videos and the code for the experiments are available in the supplementary
material.

includes the repeat action too). At the end of each route evaluation,
the results are stored using the following formula to calculate the
contribution of each plan:

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑡𝑜𝑡𝑎𝑙𝑃𝑙𝑎𝑛𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐹𝑟𝑎𝑚𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝐹𝑟𝑎𝑚𝑒𝑠
∗ 100

4.2 Results
Figure 7a contains the main Leaderboard scores, driving score, route
completion and infraction penalty. The ML-MAS Framework im-
proved all of the scores, demonstrating that it successfully enhanced
decision-making of the LAV model. Substantial improvements were
obtained to the driving score (increase of 18.1%) and route com-
pletion (increase of 18.7%), as well as a smaller improvement in
the infraction penalty (increase of 8.2%), meaning that ML-MAS
committed less infractions than the LAV-only solution.

The remaining nine Leaderboard metrics results are displayed
in three groups. Group one, in Figure 7b, shows the three collision
penalty results, collision with a pedestrian, with a vehicle, and with
the layout. ML-MAS reduced the collisions per kilometre by more
than half. The most significant reduction gap was in the vehicle
collisions, which decreased from 0.247/km to only 0.044/km. The
total number of collisions per km for the LAV model was 0.394/km
compared to only 0.12/km for ML-MAS.

Group two of the metrics, in Figure 7c, shows a slight improve-
ment in two infractions, the red light and stop sign. There are no
main plans for red lights and/or stop signs in the BDI agent, but they
are considered in some of the subplans, which may have caused
this minor improvement in the metrics. ML-MAS performed more
off-road infractions than the LAVmodel, 0.01/kmmore to be precise.
This occurs because the BDI model considers more complex actions
such as reverse and turning opposite to a obstacle, while the ML
models are often using only throttle, steer and brake actions. By
performing the more complex actions, the BDI agent may choose
to commit a minor infraction to avoid a larger one.

In Figure 7d, we have the third group with the route deviation,
route timeout and agent blocked metrics. In the route deviation,
we have a minor increase (0.004/km) in ML-MAS. This follows the
same reasoning from the off-road infractions, the agent will decide
to commit them to avoid worse infractions. ML-MAS successfully
reduces the route timeout and the agent blocked metrics to zero.
The agent blocked score of LAV had a significant impact in their
driving score, which was completely solved by ML-MAS. These
improvements to route timeout and agent blocked metrics had a
very positive effect in the route completion metric for ML-MAS, and
were one of the main reasons for having such a large improvement
in the driving score over the LAV-only solution.

The results for the ML-MAS metrics are shown in Figure 8. The
plan that was most used to send actions was the Close Crossing
Collision Avoidance, with an average of 2.4% contribution to the
total number of actions. Despite causing the best improvement in
the score, the Traffic Jam Navigation plan is used the least, with
0.3%. The total interference from the rational agent in the evalu-
ated routes is 8.1%, with the remaining 91.9% of the actions being
sent by the ML model. This corroborates the expectation that Sys-
tem 1 (LAV) should be acting for most of the time, and System 2



(a) Main metrics, higher is better. (b) Group one metrics, normalised per
kilometre, lower is better.

(c) Group two metrics, normalised per
kilometre, lower is better.

(d) Group three metrics, normalised per
kilometre, lower is better.

Figure 7: Leaderboard results for LAV and ML-MAS (with LAV).

Figure 8: Results of the ML-MAS (with LAV) metrics.

(BDI agent) should interfere only a small percentage of the time to
provide rational decisions.

To test the generality of our framework, we have also conducted
experiments with a second ML model, the TransFuser model [8].
ML-MAS managed to improve the driving score by 3.6% from 44.8%
(TransFuser) to 48.4% (ML-MAS). The route completion was again
improved by a good margin, 85.9% for TransFuser and 98.2% for
ML-MAS. Unfortunately, ML-MAS committed more infractions, ob-
taining a worse infraction penalty score, 48.9% compared to 51.0% of
TransFuser.3 Our seven BDI agent plans are by no means an exhaus-
tive collection of driving situations that require rational thinking,
therefore even a minor improvement of the driving score when
ML-MAS is applied to a different model is still a good result, which
can be improved even further by adding new plans for scenarios
that we did not consider before (such as avoiding traffic infractions).

5 DISCUSSION
The four research questions posed at the beginning of the paper are
related to applying the concept from psychology of “Thinking Fast
and Slow in AI” [2]. The ML model represents “System 1: Thinking
Fast”, and the BDI agent represents “System 2: Thinking Slow”. In
what follows we discuss each of the research questions and how
we solved them in the context of self-driving vehicles.

3Complete results available in the supplementary material.

RQ1 How do we model the governance of System 1 and 2 in an AI?
Our orchestrator component provides the governance of System

1 and System 2. Its main function is to orchestrate the decisions
that are being sent from both systems. It also ensures that both
systems receive the required information from the environment
when needed. Governance of the actions being sent is done by
prioritising which action is passed to the environment for execution.
RQ2 Which factors trigger the switch between the two systems?

If one of the seven main plans is triggered and its context is valid,
then control is switched (prioritised) to the rational agent (System
2). Upon completion of the plan, control returns to System 1.
RQ3 How should System 2 act once the switch is triggered?

Whenever System 2 is triggered, the agent evaluates the latest be-
liefs received along with the memorised history of previous frames,
and then it either activates one of plans which will result in an
action being sent or it decides to not perform any action.
RQ4 When should problems be handed back from System 2 to 1?

Control should be handed back once no plans from System 2 are
being executed. This includes the repeat action available in the BDI
agent. For example, in a collision scenario where the vehicle is in
high speed, the agent can send a brake action to be repeated many
times proportional to the vehicle speed, and only after the action
has been repeated the control will be handed back to System 1.

6 CONCLUSION
ML-MAS is a framework that combines ML and rational symbolic
decision-making in self-driving vehicles. Our results successfully
demonstrate that this combination between a pre-trained MLmodel
and a BDI agent can have a significant impact in the driving score
of autonomous vehicles. Without altering the ML model in any way,
we added seven plans that our rational agent used to avoid infrac-
tions and improve the driving score of the original ML solution.

There are many options for further work. In terms of implemen-
tation, we would like to improve the interfaces of the framework
(BDI bridge and orchestrator) to allow other researchers to easily
plug their favourite BDI language and ML model. From a more the-
oretical perspective, we wish to explore communication between
the ML model and the BDI agent, so that the process of selecting an
action is a result of a direct deliberation between both components.
Finally, in terms of applications, we firmly believe that similar ideas
can be applied to other domains that can be represented as System
1 and System 2, such as in the case of robotics (more specifically,
search and rescue and other emergency use of robots).
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