
Updating Action Descriptions and Plans for Cognitive Agents
Anonymous Author(s)
Submission Id: 716

ABSTRACT
In this paper we present an extension of Belief-Desire-Intention
agents which can adapt their performance in response to changes in
their environment. Specifically we consider situations in which the
agent’s actions no longer perform as anticipated by the program-
mers who created the agent’s plans. Our agents maintain explicit
descriptions of the expected behaviour of their actions, are able
to track action performance, learn new action descriptions and
patch affected plans at runtime. Our main contributions are the
underlying theoretical mechanisms for data collection about action
performance, the synthesis of new action descriptions from this
data and the integration with plan reconfiguration. The mecha-
nisms are supported by a practical implementation to validate the
semantics.

KEYWORDS
Beliefs-Desires-Intentions, Action Descriptions, AI Planning

ACM Reference Format:
Anonymous Author(s). 2023. Updating Action Descriptions and Plans for
Cognitive Agents. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Long-term autonomy requires autonomous systems to adapt once
their capabilities no longer perform as expected. To achieve this, a
system must first be capable of detecting such changes and then
adapting its internal reasoning processes to accommodate these.
For example, deploying an autonomous robot into a dynamic en-
vironment can result in actions becoming unreliable over time, as
the environment changes, producing unexpected outcomes that
were unforeseeable before runtime. The autonomous agent must
be capable of observing these changes and adapting accordingly.

Cognitive agents [6, 30, 35] have explicit reasons for the choices
they make. These are often described in terms of the agent’s beliefs
and goals, which in turn determine the agent’s intentions. This
view of cognitive agents is encapsulated within the Belief-Desire-
Intention (BDI) model [28, 30]. Here, beliefs represent the agent’s
(possibly incomplete, possibly incorrect) information about itself,
other agents, and its environment, desires represent the agent’s
long-term goals, while intentions represent the goals that the agent
is actively pursuing (the representation of intentions often includes
partially instantiated and/or executed plans and so combines the
goal with its intended means).

Our work focuses on cognitive agents programmed in a Belief-
Desire-Intention (BDI) [29] programming language providing high-
level decision making in an autonomous system, as outlined in [15].

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Programswritten in these languages use plans created in advance by
a programmer to select actions to execute in the environment. These
plans make implicit assumptions about the behaviour of the actions
they execute. Therefore, in this context, the challenge becomes to
make these assumptions explicit, detect when they no longer hold,
and then modify the plans accordingly. Most agent programming
languages commonly used for high-level control of autonomous
robots, do not support the adaptation of agent programs at runtime
to deal with changes in their environment.

Some of these languages use action descriptions (sometimes re-
ferred to as capabilities in the literature), which consist of explicit
pre- and post-conditions for all known actions. An action’s pre-
conditions are the environment conditions which should hold if
an action is to execute correctly, whilst post-conditions are the
expected changes in the environment made as a direct result of the
completed action. We assume the existence of these action descrip-
tions. We also assume that the cognitive agent is able to determine:
when an action has finished executing; and whether it has met
its post-conditions when it does so. These assumptions allow the
system to maintain logs of action performance which can then be
mined to detect patterns of failure. Although not all BDI systems
can represent action descriptions, some do, and so mechanisms and
semantics used for such functionality are discussed in [12, 23, 33].

Once a failure pattern is detected, we use synthesis methods to
update its action description to more accurately describe its actual
behaviour. We can then repair or replace actions in any existing
plans by using an automated planner to construct patches.

Example. As a simple running example we consider an agent
navigating around a space to visit some set of waypoints (where,
for instance, it needs to perform some kind of inspection tasks). Ex-
amples of this kind are common (see [19, 27]). We assume the agent
has a predetermined route to traverse the waypoints — for instance
that the robot should visit waypoint 0, then 1, then 2, then 3 before
returning to 0. It also has actions that encode movement between
waypoints (e.g., move(0, 1) moves the robot from point 0 to point
1). As well as the specific actions needed for the predetermined
route, the agent is also aware that it can move between the other
waypoints (for instance that it can move from point 0, directly to
point 3, move(0, 3) and from point 3 to point 1, move(3, 1)). If,
over time, the route between points 0 and 1 becomes obstructed,
we would like the robot to reason that it can replace the instruction
to move from 0 to 1 directly, in its plan, with an instruction to move
from 0 to 3, and then from 3 to 1.

Our contribution, in this work, is a methodology to detect faulty
actions, modify their descriptions and reconfigure BDI plans based
on these new descriptions, enabling long term autonomy. Our work
applies in general to BDI programming languages which allow
action descriptions. We have implemented the methodology in the
Gwendolen programming language as a prototype to exemplify
the approach.



+!at(1): {B at(0)} <- move(0, 1), +!at(2);
+!at(2): {B at(1)} <- move(1, 2), +!at(3);
+!at(3): {B at(2)} <- move(2, 3), +!at(0);
+!at(0): {B at(3)} <- move(3, 0), +!at(1);

Figure 1: Four Gwendolen plans for a patrolling robot.

The remainder of the paper is organised as follows. Section 2
describes some of the background required to understand and moti-
vate our approach (the Gwendolen programming language, action
descriptions, and action logs), and reports the related work in BDI
and in automated planning research that contribute to plan failure
handling, synthesis of new action descriptions, and reconfigura-
bility. In Section 3, the theoretical details of the framework are
presented, giving an overview of the entire process, with a deeper
focus on how new action descriptions are synthesized. Section 4
discusses the implementation details of the framework, and in Sec-
tion 5 the framework and its implementation are evaluated using
our running scenario under a set of different configurations. In
Section 6, we discuss the significance of the results we obtained,
summarise our contributions, and elaborate on future work.

2 BACKGROUND AND RELATEDWORK
Gwendolen is a BDI programming language that contains a num-
ber of features for integratingwith autonomous and robotic systems.
One of its main distinctive features is that Gwendolen agents can
be verified using a program model-checker, Agent Java Pathfinder
(AJPF) [16]. A full operational semantics for Gwendolen is pre-
sented in [13]. Its key components are, for each agent, a set of
beliefs that are ground first-order formulae and a set of intentions
that are stacks of deeds associated with some event. Deeds can be
the addition or deletion of beliefs, the adoption of new goals, and
the execution of primitive actions. A Gwendolen agent may have
several concurrent intentions and will, by default, execute the first
deed on each intention stack in turn. Gwendolen is event-driven
and events include the acquisition of new beliefs (typically via per-
ception), messages and goals. A programmer supplies plans that
describe how an agent should react to events by extending the
deed stack of the relevant intention. These plans contain actions
for execution.

Plans are of the form event : guard <- deeds, where the
event is the addition or deletion of a belief or goal, the guard is a
term that is evaluated against the agent’s belief set and the deeds
are transformed into an intention stack if the event occurs and the
guard evaluates to true.

If implemented inGwendolen, our example of a robot travelling
between waypoints can be represented with the four plans shown
in Figure 1. We use standard BDI syntax in which ! represents
a goal and + denotes the addition of this goal. The first of these
plans states that if a new goal to be at waypoint 1 has been added
(+!at(1)) and the agent currently believes it is at waypoint 0 (B
at(0)) then the agent should move to waypoint 1 (move(0, 1))
and adopt the goal to be at waypoint 2 (+!at(2)) to continue its
patrol route. For example, if the robot starts at waypoint 0 and is
sent a goal to reach waypoint 1, then these four plans will keep the
robot patrolling around all four waypoints autonomously.

While all BDI languages have individual features, they have
many similarities. In particular the use of plans (sometimes called
rules) which have guards controlling when they apply and then
execute some sequence of actions, belief updates and goal updates
is common to many such languages (e.g., Jason [4] and GOAL [23]).

Some BDI languages also employ action descriptions (sometimes
referred to as capabilities) which have their roots in AI planning
and STRIPS operators [18].

Definition 2.1 (Action Description). We assume a language L of
first-order terms constructed in the usual way. Action descriptions
are a triple {𝑃𝑟𝑒}𝐴{𝑃𝑜𝑠𝑡} where 𝐴 is a term in L representing
an action, {𝑃𝑟𝑒} is a set of terms representing the action’s pre-
conditions and {𝑃𝑜𝑠𝑡} is a set of expressions of the form +𝑡 or −𝑡
(where 𝑡 is a term in L). Note: +𝑡 means that the term 𝑡 should be
added to the agent’s belief base following execution of the action
and −𝑡 means that the term 𝑡 should be removed from the agent’s
belief base.

Returning to our example, the action description
{𝑎𝑡 (0)}𝑚𝑜𝑣𝑒 (0, 1){−𝑎𝑡 (0), +𝑎𝑡 (1)} can be associated with
the agent action move(0, 1). This has the pre-condition, {𝑎𝑡 (0)}
(the agent is at waypoint 0), and post-conditions {−𝑎𝑡 (0), +𝑎𝑡 (1)}
(the belief that the agent is at waypoint 0 should be removed and
the belief that the agent is at waypoint 1 should be added).

In many languages, actions descriptions are used both to control
whether an action is executed if it appears in a plan (by checking the
action’s pre-conditions) and to directlymanipulate the agent’s belief
base using the post-conditions without using perception to check
whether the action has completed successfully and established
these post-conditions. In some cases it is implicitly assumed that
the low-level action execution process checks post-conditions and
so a success signal is not sent to the agent unless the post-conditions
have been achieved.

Action descriptions/capabilities exist in, among others, the GOAL
language [24] and 2APL [11]. A version of Gwendolen also exists
that contains an implementation of action descriptions [33].

Gwendolen does not use its action descriptions to control action
execution or to update its belief base. Instead it uses the descriptions
to make inferences about action success or failure by comparing the
state of the world after an action execution completes with the state
of the world described in the post-conditions. This allows the agent
to react to action failure as well as, more generally, to plan failure.
Gwendolen also tracks the performance of actions over time in
an action log. An example of an action log using the move(0, 1)
action is shown in Figure 2. This shows a log with two entries. Each
entry contains the action name, a list of the difference in beliefs
before and after the action executed, and finally the outcome for
that action once it terminated. The action in Figure 2 is a move
action from waypoint 0 to waypoint 1. In the first entry, the action
is believed to have succeeded and the change in beliefs is shown
as the addition of the belief 𝑎𝑡 (1) (at waypoint 1) and removal of
the belief 𝑎𝑡 (0) which matches the expected post-conditions for
that action. In the second entry, the change in beliefs results in the
agent believing that it is at waypoint 3, not at waypoint 1 as per
the action description, producing a failure as the action outcome.

The action log has a fixed, application specific size, and the oldest
entry is removed before adding a new one, once the log reaches its



Action Change in Beliefs Action Outcome

move(0, 1) +at(1), -at(0) Success

move(0, 1) +at(3),-at(0) Failure

Figure 2: Example of an action log with the move(0, 1) action
for a Gwendolen agent.

size limit. The presence of this action log opens up the possibility
of implementing an action lifecycle [34] inspired by the concept of
goal life-cycles for BDI languages [22]. An action lifecycle allows
actions which fail or are aborted to be moved into a suspect state
and finally become deprecated following repeated failures.

We’re not aware of any other BDI language that maintains an
action log in this way, but in principle it should not be difficult to
add this functionality to any language that already supports action
descriptions.

The automated planning research community has invested con-
siderable effort in the modelling of actions with stochastic out-
comes, both theoretically as variants on Markov Decision Proce-
dures [26, 36], and practically by capturing such concepts in plan-
ners (e.g. [9]) and domain description languages such as in the
Planning Domain Definition Language (PDDL) 2.1 [20]. This com-
munity deploys action descriptions to flexibly plan on-the-fly for
each new goal which avoids the problem faced in BDI languages
that an action whose behaviour has changed may result in failing,
and therefore useless, plans. The use of a BDI language, with its
programmer supplied plans, presumes that bespoke planning for
every new goal is undesirable (usually for reasons of efficiency, but
also for verifiability). Our approach exploits AI planning techniques
to patch the plans that fail as a result of action failure, but seeks to
minimize the amount of planning that actually takes place.

Plan failure has been extensively researched in BDI programming
languages (e.g., [3, 17, 31]), however, it has not been linked with
action descriptions perhaps because most languages do not use
action descriptions as a mechanism to detect action failure. The
closest work to our own is in [22] with a proposal for BDI goal
life-cycles.

A key component of our approach is synthesising or learning
a new action description when an action ceases to perform as ex-
pected.We presume this arises because of the dynamic environment
in which the agent is operating. Using algorithms to discover the
effects of actions has been explored in the AI Planning domain [2].
Most of the resulting techniques operate in environments where
it is assumed multiple action descriptions need to be learned at
the same time and that the action descriptions themselves have
not been changing during the learning period. We have based our
approach on ideas from [10] and [21] in which new action descrip-
tions are learned from traces of action behaviour with a weighting
mechanism used to guide choice of additions and deletions to the
constructed action post-condition.

After learning/synthesizing a new (or updated) action descrip-
tion, it is necessary to refactor the plans from the plan library. The
process of updating plans of execution based on a set of conditions
(failure or new information) is often referred to as reconfigurability,
and it has been frequently applied in the robotics andmanufacturing

Sensors and Sensor
Processing Systems

Cognitive Agent

Control Processes such
as Navigation and Path

Planning

Action Log

Figure 3: System architecture overview.

industry [1, 5, 8, 32]. A mechanism for plan library reconfigurabil-
ity combining BDI agents and automated planning was presented
in [7], but it has no account for how failure is detected, and simply
ignores the action that caused the failure in subsequent reconfigu-
rations. We leverage this work in ours, if an action is deprecated
by the action lifecycle, then any plans involving that action are
patched using the mechanism from [7].

To the best of our knowledge, there is no end-to-end framework
in cognitive agents for updating action descriptions and patching
the associated plans such as is presented here.

3 FRAMEWORK
Our starting point is the system architecture outlined in [15] in
which a cognitive agent performs high-level mission reasoning,
such as deciding in which order some set of waypoints are to be
visited. In order to do this, it takes input from sub-systems for
processing sensor data into high-level concepts such as the location
of obstacles, and outputs instructions (actions) to control systems
such as those for navigation and path planning. This is shown in
Figure 3 together with the action log component that tracks action
performance.

Cognitive agents generally employ a reasoning cycle which gov-
erns a sense-reason-act process. The action log integrates with the
act phase and compares the outcomes of executed actions to the
post-conditions described in the action’s description. If the post-
conditions are successful, then a success is logged, and if they are
not a failure is logged. In all situations the action log also records
the changes in beliefs from the moment when the action was exe-
cuted, to the moment when it succeeded or failed. These changes
are stored as a list of expressions of the form +𝑡 or −𝑡 where 𝑡 is
a term — that is, in the same format as post-conditions in action
descriptions.

Figure 4 shows five entries in an action log. When a new entry
is made by an agent following an action execution, the size of the
log is checked against the predefined size limit. If the size limit has
been reached, then the oldest entry is removed (from the top of the
list in this example) before the new entry is added to the bottom.
In this case a single action success has been experienced for the
move(0, 1) action, followed by four failures. These failures might
be caused by, for instance, some obstacle appearing in the path



between waypoints 0 and 1. Attempts by the agent to move around
the obstacle, using low-level obstacle avoidance techniques have
led consistently to the agent finding itself at waypoint 3.

Action Change in Beliefs Action Outcome

move(0, 1) +at(1),-at(0) Success

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

Figure 4: Example of detecting failures in an action log with
size limit equal to 5. The next new entry will be added to the
bottom row and the first row would be removed.

Our framework extends action descriptions to include a failure
threshold (Definition 3.1).

Definition 3.1 (Action Description (modified)). Action descriptions
are a tuple {𝑃𝑟𝑒}𝐴{𝑃𝑜𝑠𝑡}[𝑛] where 𝐴, {𝑃𝑟𝑒} and {𝑃𝑜𝑠𝑡} are as
described in Definition 2.1 and 𝑛 is a positive integer representing
a failure threshold.

If the number of failures for the action in the action log exceeds
the failure threshold, then the action becomes deprecated. Note that
the action log should be of fixed length, so that an action can not
become deprecated as the result of a slow build up of occasional fail-
ure over time. It only becomes deprecated if its recent failures have
exceeded the threshold. The definition of recent should be applica-
tion specific to account for speed with which change/degradation
is anticipated in the environment. The threshold should be specific
to the action itself, since some actions are naturally more failure
prone than others for reasons that may be external to the action
itself. Our tolerance of failure therefore varies depending upon the
action.

We extend the act phase of the reasoning so that after the exe-
cution of an action, the action log is consulted. If the most recent
action has not become deprecated the cycle continues as before. If
it has become deprecated, then a new action description is synthe-
sized from the information in the log and relevant plans are patched
before the agent continues to the sense phase. This reasoning cycle
is shown in Figure 5.

We synthesize a new action description by extracting, from the
action log, all the failed instances of the deprecated action. We
then have a list (probably containing duplicates, as can be observed
from Figure 4) of new candidate post-conditions for the action
in the form of the change in beliefs as the action executed. Each
item in this list is assigned a weight score based on how recent
the item is. The weights for identical items are then summed and
that with the highest score selected as the new post-condition for
the action. Pseudo-code for this process is shown in Algorithm 1.
Line 2 instantiates the initial weight score (𝑛) to 1, and in Line 3
it sets 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 to an empty map. Lines 4–7 will loop through
every entry in the action log to find entries that match with the
deprecated action (same action) and where the outcome of the entry

Sense Reason

Act

Log outcome
of action

Patch

Plans

Synthesize

New Action
Description

Has an action
become deprecated?

No

Yes

Figure 5: Extended Sense-Reason-Act cycle to account for
action deprecation, synthesis of new action descriptions, and
the patching of plans.

was reported as a failure. When this happens, the post-conditions of
the action are added to the 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 map along with the weight
score, which is then incremented by one for the future iterations
of the action log. In line 8 we initialise 𝑏𝑒𝑠𝑡 with 0. Lines 9–11
iterate over the keys in the 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 map to select the candidate
post-condition with the highest weight score.

Algorithm 1: Algorithm for synthesizing post-conditions
when an action is detected to be deprecated.
1 if action is deprecated then
2 𝑛 ← 1;
3 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 ← {} // map of post-conditions to

scores

4 for 𝑒𝑛𝑡𝑟𝑦 ∈ action log do
// NB. the action log consists of tuples

(action, change in beliefs, outcome)

5 if 𝑒𝑛𝑡𝑟𝑦 [0] = 𝑎𝑐𝑡𝑖𝑜𝑛 & 𝑒𝑛𝑡𝑟𝑦 [2] = Failure then
6 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑒𝑛𝑡𝑟𝑦 [1]] ←

𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑒𝑛𝑡𝑟𝑦 [1]] + 𝑛;
7 𝑛 ← 𝑛 + 1

8 𝑏𝑒𝑠𝑡 ← 0;
9 for 𝑝𝑜𝑠𝑡 ∈ 𝑘𝑒𝑦𝑠 (𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠) do
10 if 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑝𝑜𝑠𝑡] > 𝑏𝑒𝑠𝑡 then
11 𝑏𝑒𝑠𝑡 ← 𝑝𝑜𝑠𝑡

If we consider the action log in Figure 4 and suppose our failure
threshold is four, then the agent’s ‘act’ phase should now attempt
to synthesize a new action description from the log. It extracts the
list of failures which contains four items all of which have identical
new post-conditions — namely {+𝑎𝑡 (3),−𝑎𝑡 (0)}. This therefore
becomes the new post-condition for the action move(0, 1).

However, suppose the action log is more variable. Initially, at-
tempts to avoid the obstacle between 0 and 1 resulted in the agent



arriving at waypoint 3, but suppose the obstacle has become more
serious — perhaps sand and debris is piling up as the result of storms
— and now the low-level movement behaviour causes an abort that
returns the agent to waypoint 0. This results in the action log in
Figure 6.

Action Change in Beliefs Action Outcome

move(0, 1) +at(1),-at(0) Success

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

move(0, 1) Failure

move(0, 1) Failure

Figure 6: Example of an action log with variable
post-conditions for the same action (move(0, 1)).

Figure 7 shows this action log extracted into a list of candidate
post-conditions, weighted by how recent they are.

Candidate Post-Condition Weight
{+𝑎𝑡 (3),−𝑎𝑡 (0)} 1
{+𝑎𝑡 (3),−𝑎𝑡 (0)} 2
{} 3
{} 4

Figure 7: Post-conditions extracted from Figure 6, added with
their respective weights which are calculated based on how
recent they are.

Of the two candidate post-conditions {+𝑎𝑡 (3),−𝑎𝑡 (0)} has a total
weight of 3, while {} (no change) has a total weight of 7. Therefore
the empty post-condition is selected for the new action description.

Once a new action description is stored, we are able to use a
plan reconfiguration mechanism to patch any plans containing the
action. The work in [7] describes how an AI planning problem can
be extracted from a failed action by a process of

(1) using the failed action’s pre- and post-conditions as initial
and goal states respectively, for the planning problem, and

(2) using the set of all other action descriptions as an action
model for the planner.

This planning problem can then be solved to create a “patch” for
any BDI plan containing the failed action. Our framework uses
this mechanism with a slight modification. We only seek to re-
place an action once it has become deprecated (i.e., after some
pre-defined number of failures). The set of action descriptions sent
to the planner is then created from the agent’s current set of ac-
tion descriptions, including the newly learned description of the
deprecated action.

In our example, let us assume that our move(0,1) action has
become deprecated. Attempts to move from waypoint 0 to way-
point 1 now result in the agent arriving at waypoint 3 (based
on the action log from Figure 4. A STRIPS-type planner [18] is

called with the updated action descriptions and an initial plan-
ning state — at(0) (the agent is at waypoint 0) — and goal state —
at(1) & ¬ at(0) (the agent should end up at waypoint 1) — cre-
ated from the pre- and post-conditions of move(0, 1). Among
other action descriptions the planner has the new description
for move(0,1) available ({𝑎𝑡 (0)}move(0, 1){−𝑎𝑡 (0), +𝑎𝑡 (3)}[4]
with [4] representing the failure threshold of the action) as well
as an action describing a move from waypoint 3 to waypoint 1 (
{𝑎𝑡 (3)}move(3, 1){−𝑎𝑡 (3), +𝑎𝑡 (1)}[4]). It is straightforward for
the planner to create the plan move(0,1),move(3,1) to solve this
problem (note that move(0,1) now takes us to waypoint 3, not way-
point 1). If we were using plans similar to the Gwendolen plans1
shown in Figure 1, this means that the plan +!at(1):{at(0)} <-
move(0, 1), +!at(2) contains our deprecated action and will not
succeed in moving the agent to waypoint 1. This patch produced by
the planner, replaces the appearance of move(0, 1) in the original
plan producing the new plan: +!at(1):{at(0)} <- move(0, 1),
move(3, 1), +!at(2) which is stored for reuse.

4 IMPLEMENTATION
We implemented our framework in the version of the Gwendolen
programming language that creates an action log of action success
and failure using action descriptions [33].2

We extended the Gwendolen reasoning cycle with a synthe-
size stage (Stage 𝐷1) and a reconfigure stage (Stage 𝐷2) which are
executed after Gwendolen’s equivalent of the act phase which is
called Stage 𝐷 . This reconfigure stage uses the action log to syn-
thesize new action descriptions and then uses these to patch the
agent’s plans. Our extended Gwendolen reasoning cycle is shown
in Figure 8 with our additions shown using dashes.

After Stage D (when actions are executed), the last entry of the
action log is checked. If it is an entry for anything other than an ac-
tion failure nothing further happens, no action becomes deprecated,
and the cycle continues to Stage E. However, if it is an entry for an
action that has failed, the number of entries containing a failure for
this specific action is checked against its failure threshold. Note that
the threshold value of an action is domain specific. If the threshold
has been reached, the reasoning cycle moves to the new Stage 𝐷1
in which a new action description will be learned and then to Stage
𝐷2 where plans will be patched.

Once a new action description is stored we are able to use plan
reconfiguration mechanism from [7]. This extracts all the action
descriptions from the agent and translates them into STRIPS oper-
ators [18]. Let, {𝑃𝑟𝑒}𝑎{𝑃𝑜𝑠𝑡}[𝑛] be the old action description for
the failed action 𝑎. The reconfiguration mechanism computes ini-
tial and goal states for a planning problem from {𝑃𝑟𝑒} and {𝑃𝑜𝑠𝑡}.
This planning problem is then given to a STRIPS planner together
with the STRIPS operators of the agent’s plan descriptions. If the
planner computes a new plan this is translated into a sequence of
Gwendolen actions, 𝑎𝑙 , this sequence replaces 𝑎 everywhere it
appears in the agent’s plans.

1As noted, many BDI formalisms represent plans in a very similar fashion, so although
we use a Gwendolen plan as an example here, the technique is general.
2Code available in the supplementary material.



Stage A

Select a Current
Intention or

Sleep the Agent

Any unsuspended
non-empty
intentions?

Stage B

Find all Plans
Applicable to the
Current Intention

Stage C

Pick a Plan
and Apply it

Stage D

Execute the Top
Deed on the

Current Intention

Stage F

Process New
Messages

Stage E

Get new Perception
and Messages

Is the Current
Intention empty?

Has an action
become

deprecated?

Stage 𝐷1

Update Action
Description

Stage 𝐷2

Reconfigure Plans

Yes

No

Yes No

No

Yes

Figure 8: Gwendolen reasoning cycle. Our additions are shown with dashed lines and stages we have modified are shown with
dotted lines.

5 EVALUATION
We evaluated our approach on a variation of the “waypoint patrol”
example we have been using throughout the paper. Our environ-
ment consisted of five waypoints and our agent had a plan for a
patrol mission to visit each waypoint in turn. The Gwendolen
plan was:
+!at(4):{at(0)} <- move(0, 1),

move(1, 2),
move(2, 3),
move(3, 4);

Each move action had a description of the form:

{𝑎𝑡 (𝑋 )}move(X, Y){−𝑎𝑡 (𝑋 ), +𝑎𝑡 (𝑌 )}

(e.g., {𝑎𝑡 (1)}move(1, 2){−𝑎𝑡 (1), +𝑎𝑡 (2)}. We varied the number
of action descriptions for ‘move’ actions available to the agent. The
agent always had descriptions for the four actions in the plan (i.e.,
move(0, 1), move(1, 2), move(2, 3), move(3, 4) — we refer to
these as the fixed actions), but also had a random selection of other
‘move’ actions between the five waypoints — we refer to these as
the variable actions. Figure 9 illustrates this, with the fixed move
actions shown by solid lines and the variable move actions shown
by dashed lines.

We generated random instances of this scenario varying the
probability that each of the variable ‘move’ actions was available.
The table presented in Figure 10 shows how many times (out of

Waypoint 0 Waypoint 1 Waypoint 2

Waypoint 3Waypoint 4

Figure 9: Waypoint environment. Dashed arrows indicate
variable actions only available in some instantiations of the
problem.

ten runs) our framework successfully managed to patch the plan in



the event that the move(0, 1) action resulted in the agent finding
itself at waypoint 2 rather than waypoint 1.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
3 7 7 8 9 10 9 10 10 10

Figure 10: First row represents the probability for each extra
move route to be available in the execution. Second row con-
tains the results for how many times our implementation
managed to successfully patch a planwhen the action move(0,
1) action was deprecated resulting in a move to waypoint 2,
rather than waypoint 1

As is to be expected, we can see that as the number of potential
alternative actions increases, so does the chance of successfully
patching the failing plan. In particular, once more than 50% of the
edges in the graph are available as actions, there is a high chance
that the agent will be able to synthesize a patch for its plans.

When there was only a 10% probability of each variable action
being available, the reconfigured plan, when it could be generated,
tended to be quite long. For instance, in one instance, the only
variable action available at runtimewas the move(3, 1) action. This
resulted in a patch were move(0, 1) was replaced by the sequence
move(0, 1), move(2, 3), move(3, 1) (recall that move(0, 1)
is now resulting in a move to waypoint 2). This resulted in the
patched plan:
+!at(4):{at(0)} <- move(0, 1),

move(2, 3),
move(3, 1),
move(1, 2),
move(2, 3),
move(3, 4);

The shortest possible plan patch, can be achieved for when the
move(2, 1) action is available to the planner. When possible, the
planner always opts for the plan with the lowest “cost” that can
achieve the provided goal state. We modelled the plan cost simply
as the total number of actions in the plan. In our scenario this
provides a good estimation for the lowest cost (in terms of resources
consumed by the agent in order to execute the plan) since all of the
actions are similar, though this would not necessarily hold true for
other action models. This costing approach explains why we tended
to generate shorter patches when more actions were available.

6 DISCUSSION AND FUTUREWORK
We have presented an end-to-end methodology for the detection of
failing actions in BDI systems; the learning of new action behaviour
and the patching of plans to account for this new behaviour.

One major aspect of future work will be to adapt the framework
to enable it to be used with action descriptions containing variables.
A key feature of many BDI languages is the use of variables and
unification in plans, to enable one plan to apply in many different
situations depending upon the instantiation of its parameters. There
are two aspects to this challenge. Firstly when an action is executed
in a BDI language, it is almost always the case that its variable
parameters are instantiated — so although we might have an ac-
tion description of the form {𝑎𝑡 (𝑋 )}move(X, Y){−𝑎𝑡 (𝑋 ), +𝑎𝑡 (𝑌 )}

where 𝑋 and 𝑌 are variables, it is only ever called as, say move(0,
1) or move(1, 2). This means that the process of synthesizing
new descriptions from the action log will need to utilize generali-
sation techniques to abstract from concrete log entries to abstract
descriptions. It may also be necessary in such cases to split action
descriptions by synthesizing new pre-conditions indicating that, in
some situations the action still behaves as originally assumed, but
in others it does not. Secondly, STRIPS-type planners, while they
frequently use action descriptions that contain variable parameters,
do not generally plan using initial and goal states that contain vari-
ables. This includes the planner embedded in the implementation
we used from [7] — therefore this planner would need to be replaced
with one capable of handling variables in initial states and goals.
The work in [25] contains simple examples that might be adapted
for this use.

We would also like to introduce more sophistication into the
algorithm for learning new action descriptions. At present this
treats all changes in belief after an action execution as one group.
So, for instance, consider a situation where two robots are both
working in an area. Sometimes, after moving between waypoints
(e.g., from waypoint 0 to waypoint 1) the agent also perceives the
presence of the second robot. In this case the current action log
would sometimes record {+𝑎𝑡 (1),−𝑎𝑡 (0), +𝑠𝑒𝑐𝑜𝑛𝑑_𝑟𝑜𝑏𝑜𝑡} as the
belief change and sometimes record {+𝑎𝑡 (1),−𝑎𝑡 (0)}. Algorithm 1
treats these entirely separately and is unable to recognise that
+𝑎𝑡 (1) and −𝑎𝑡 (0) occur in both. We anticipate that weighting each
term appearing in the set of belief changes individually, rather than
as a group, would enable the construction of post-conditions that
better reflected the actual action behaviour.

At present the planning problem we send to the STRIPS planner
is formulated from the description of the failed action alone and
does not account for the context in which the action appears. Many
BDI plans are expressed in terms of some guard, which can be con-
sidered a pre-condition for the whole plan, and a goal which can
be considered a goal state for the plan. We would like to use tech-
niques such as regression planning to infer from the plan’s guard
and goal, and the pre-conditions and post-conditions of any other
actions in the plan, what the actual state of the agent is likely to be
at the point the failed action was executed and which of the failed
action’s post-conditions were actually necessary in order to achieve
the goal of the plan. This ought to introduce more flexibility into the
patching mechanism, allowing plans to be patched even if an exact
replacement for the failing action could not be found. It will also
reduce the risk that the computed patch might contain additional
post-conditions that will break the plan — for instance, suppose
our failed action is {𝑝𝑟1}𝑎1{+𝑝𝑜2} and the computed patch is 𝑎2, 𝑎3
where 𝑎3’s post-condition is {+𝑝𝑜1, +𝑝𝑜3}. Now consider a plan
e:guard <- 𝑎1,𝑎4 where the description of 𝑎4 is {¬𝑝𝑜3}𝑎4{+𝑝𝑜4}.
If we replace 𝑎1 in this plan with our patch then 𝑎4 will no longer
be applicable and the plan will break. More context-sensitive con-
struction of the planning problem should be able to account for this
and avoid creating a patch that will break the plan.

The use of the Gwendolen language which is linked to the AJPF
model-checking tool and the Model-Checking Agent Programming
Languages (MCAPL) framework [14], opens the possibility of veri-
fying the patched plans produced by our framework. While we are
interested in exploring this idea, the AJPF model-checker typically



Figure 11: AgileX scout mini UGV.

performs verification very slowly. If the agent existed in an envi-
ronment where there were periods of inactivity, then it would be
possible for re-verification to take place to ensure that the agent’s
plans continued to adhere to any specified properties, but in an
environment where patching needs to occur quickly then this may
not be feasible. If we were to adapt the reconfiguration mecha-
nism, as suggested above, to be sensitive to the context in which
an action was invoked then it should be possible to establish ide-
alised results about the safety of patches, at least in environments
where the only things changing the environment are the agent’s
own actions. It might also be possible to treat actions appearing in
plans as sequences of abstract actions of length up to 𝑙 , with the
abstract actions having no specified behaviour during verification.
This forces the verification to consider all possible action outcomes.
This would allow plans to be patched with any sequence of actions
of length less than 𝑙 , but the resulting state space for verification
is likely to be unwieldy and include consideration of many action
outcomes that are either unlikely or impossible, forcing, in turn,
the inclusion of fail-safe plans within the agent to handle behaviour
that can never occur resulting in “crufty” code.

A physical implementation of the waypoints example in this
paper is currently in progress. As stated previously, the framework
presented in this paper is designed to cope with unplanned changes
to action descriptions in dynamic environments. Whilst simple
inputs used in the example reflect the same inputs expected from
sensors mounted on a robot, it would be naive to assume that a
comprehensive evaluation has been performed without considering
the effect of noise in a real-world environment. It is important
for a system designed for failure recovery to remain robust in all
conditions. The implementation will see an AgileX Scout Mini
Rover (shown in Figure 11) navigating a predefined route between
five waypoints, using a top-mounted LiDAR sensor for localisation.

The extent towhich long-term autonomy can be achieved through
the generation of amended action descriptions and the patching
of plans is an open question. Scenarios such as we have presented
involving navigation around waypoints linked in a graph struc-
ture, are relatively common, and it is reasonable to suppose that

over time paths between waypoints might alter. Similarly it is easy
to imagine some actions that, over time, exhibit partial success —
not as much material is moved, things are not moved as far, or as
fast, as in original action descriptions and therefore that modified
action descriptions may be useful in patching plans by repeating
actions or combining with other compensatory actions. What is
unknown is how common it is that changes in the environment
or robot capabilities can be compensated for by combinations of
(adapted) actions and how common it is that action degradation
simply results in a robot that can not usefully perform its mission.
It is likely that a framework such as that presented here would need
to be combined with mechanisms for weakening mission specifi-
cations, for instance, by dropping some goals that were no longer
obtainable, while continuing to pursue others.

We have presented here the over-arching template of a frame-
work for adapting BDI agent plans in the face of changed action
behaviour. While there is a great deal of scope for extending the
framework we believe the basic architecture and concept provides
a sound foundation for this further work.

REFERENCES
[1] Nikolas Antzoulatos, Elkin Castro, Lavindra de Silva, André Dionisio Rocha,

Svetan Ratchev, and José Barata. 2017. A Multi-agent Framework for Capability-
based Reconfiguration of Industrial Assembly Systems. International Journal of
Production Research 55, 10 (2017), 2950–2960.

[2] Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Etivier, and Sylvie Pesty.
2018. A review of learning planning action models. Knowledge Engineering
Review 33 (2018).

[3] Rafael H Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason Variant
of AgentSpeak (Plan Failure and some Internal Actions).. In ECAI. IOS Press,
635–640. https://doi.org/10.3233/978-1-60750-606-5-635

[4] R. H. Bordini, J. F. H ubner, and M. Wooldridge. 2007. Programming Multi-agent
Systems in AgentSpeak Using Jason.

[5] Stefano Borgo, Amedeo Cesta, Andrea Orlandini, and Alessandro Umbrico. 2016.
A Planning-based Architecture for a Reconfigurable Manufacturing System. In
Proceedings of the Twenty-Sixth International Conference on International Confer-
ence on Automated Planning and Scheduling (ICAPS’16). AAAI Press, London, UK,
358–366.

[6] M. E. Bratman. 1987. Intentions, Plans, and Practical Reason. Harvard University
Press.

[7] Rafael C. Cardoso, Louise A. Dennis, and Michael Fisher. 2019. Plan Library
Reconfigurability in BDI Agents. In Proc. of the 7th International Workshop on
Engineering Multi-Agent Systems (EMAS). Springer, 195–212.

[8] I-Ming Chen, Guilin Yang, and Song Huat Yeo. 2006. Automatic Modeling for
Modular Reconfigurable Robotic Systems: Theory and Practice. In Industrial
Robotics, Sam Cubero (Ed.). IntechOpen, Rijeka, Chapter 2.

[9] M. Cirillo, L. Karlsson, and A. Saffiotti. 2010. Human-Aware Task-Planning: An
Application to Mobile Robots. ACM Trans. Intelligent Systems Technology 1, 2
(2010), 15.

[10] Paul R Cohen and Edward A Feigenbaum. 2014. The handbook of artificial
intelligence: Volume 3. Vol. 3. Butterworth-Heinemann.

[11] M. Dastani. 2008. 2APL: a practical agent programming language. Auton Agent
Multi-Agent Syst 16 (2008), 214—-248. https://doi.org/10.1007/s10458-008-9036-y

[12] Mehdi Dastani, M. van Birna Riemsdijk, and John-Jules Ch. Meyer. 2005. Pro-
gramming Multi-Agent Systems in 3APL. In Multi-Agent Programming: Lan-
guages, Platforms and Applications, Rafael H. Bordini, Mehdi Dastani, Jürgen
Dix, and Amal El Fallah Seghrouchni (Eds.). Springer US, Boston, MA, 39–67.
https://doi.org/10.1007/0-387-26350-0_2

[13] Louise A. Dennis. 2017. Gwendolen Semantics: 2017. Technical Report ULCS-17-
001. University of Liverpool, Department of Computer Science.

[14] Louise A Dennis. 2018. The MCAPL Framework including the Agent Infrastruc-
ture Layer and Agent Java Pathfinder. The Journal of Open Source Software 3, 24
(2018).

[15] Louise A Dennis, Michael Fisher, Nicholas K Lincoln, Alexei Lisitsa, and Sandor M
Veres. 2016. Practical verification of decision-making in agent-based autonomous
systems. Automated Software Engineering 23, 3 (2016), 305–359.

[16] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H. Bordini.
2012. Model checking agent programming languages. Autom. Softw. Eng. 19, 1
(2012), 5–63. https://doi.org/10.1007/s10515-011-0088-x

https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/0-387-26350-0_2
https://doi.org/10.1007/s10515-011-0088-x


[17] Angelo Ferrando and Rafael C. Cardoso. 2022. Safety Shields, an Automated
Failure Handling Mechanism for BDI Agents. In Proceedings of the 21st Interna-
tional Conference on Autonomous Agents and Multiagent Systems (Virtual Event,
New Zealand) (AAMAS ’22). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 1589–1591. https://www.ifaamas.org/
Proceedings/aamas2022/pdfs/p1589.pdf

[18] Richard E. Fikes and Nils J. Nilsson. 1971. Strips: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence 2, 3 (1971),
189–208. https://doi.org/10.1016/0004-3702(71)90010-5

[19] Michael Fisher, Rafael C. Cardoso, Emily C. Collins, Christopher Dadswell,
Louise A. Dennis, Clare Dixon, Marie Farrell, Angelo Ferrando, Xiaowei Huang,
Mike Jump, Georgios Kourtis, Alexei Lisitsa, Matt Luckcuck, Shan Luo, Vin-
cent Page, Fabio Papacchini, and Matt Webster. 2021. An Overview of Verifi-
cation and Validation Challenges for Inspection Robots. Robotics 10, 2 (2021).
https://doi.org/10.3390/robotics10020067

[20] M. Fox and D. Long. 2003. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. JAIR 20 (2003), 61–124.

[21] Alejandro Guerra-Hernández, Amal El Fallah-Seghrouchni, and Henry Soldano.
2004. Learning in BDI multi-agent systems. In International Workshop on Compu-
tational Logic in Multi-Agent Systems. Springer, 218–233.

[22] James Harland, David N Morley, John Thangarajah, and Neil Yorke-Smith. 2014.
An operational semantics for the goal life-cycle in BDI agents. Autonomous agents
and multi-agent systems 28, 4 (2014), 682–719. https://doi.org/10.1007/s10458-
013-9238-9

[23] Koen V. Hindriks. 2009. Programming Rational Agents in GOAL. In Multi-Agent
Programming: Languages, Tools and Applications, Amal El Fallah Seghrouchni,
Jürgen Dix, Mehdi Dastani, and Rafael H. Bordini (Eds.). Springer US, Boston,
MA, 119–157. https://doi.org/10.1007/978-0-387-89299-3_4

[24] Koen V Hindriks. 2021. Programming cognitive agents in GOAL.
[25] George F. Luger. 2008. Artificial Intelligence: Structures and Strategies for Complex

Problem Solving (6th ed.). Addison-Wesley Publishing Company, USA.
[26] Mausam and Daniel S. Weld. 2008. Planning with Durative Actions in Stochastic

Domains. JAIR 31 (2008), 33–82.

[27] Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and
Thorsten Berger. 2021. Specification Patterns for Robotic Missions. IEEE Transac-
tions on Software Engineering 47, 10 (2021), 2208–2224. https://doi.org/10.1109/
TSE.2019.2945329

[28] A. S. Rao and M. P. Georgeff. 1991. Modeling Agents within a BDI-Architecture.
In Proc. 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R) (mdfbook). Morgan Kaufmann, 473–484.

[29] Anand S Rao and Michael P Georgeff. 1992. An abstract architecture for rational
agents. KR 92 (1992), 439–449.

[30] A. S. Rao and M. P. Georgeff. 1992. An Abstract Architecture for Rational Agents.
In Proc. 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R). Morgan Kaufmann, 439–449.

[31] S. Sardina and L. Padgham. 2011. A BDI Agent Programming Language with
Failure Handling, Declarative Goals, and Planning. Autonomous Agents and
Multi-Agent Systems 23, 1 (2011), 18–70.

[32] Kasper Støy, David Brandt, and David J. Christensen. 2010. Self-Reconfigurable
Robots. MIT Press.

[33] Peter Stringer, Rafael C. Cardoso, Clare Dixon, and Louise A. Dennis. 2022. Imple-
menting Durative Actions with Failure Detection in Gwendolen. In Engineering
Multi-Agent Systems, Natasha Alechina, Matteo Baldoni, and Brian Logan (Eds.).
Springer International Publishing, Cham, 332–351.

[34] Peter Stringer, Rafael C. Cardoso, Xiaowei Huang, and Louise A. Dennis. 2020.
Adaptable and Verifiable BDI Reasoning. In Proceedings of the First Workshop on
Agents and Robots for reliable Engineered Autonomy, Virtual event, 4th September
2020 (Electronic Proceedings in Theoretical Computer Science, Vol. 319), Rafael C.
Cardoso, Angelo Ferrando, Daniela Briola, Claudio Menghi, and Tobias Ahlbrecht
(Eds.). Open Publishing Association, 117–125. https://doi.org/10.4204/EPTCS.
319.9

[35] M. Wooldridge and A. Rao (Eds.). 1999. Foundations of Rational Agency. Kluwer
Academic Publishers.

[36] H. L. A. Younes and R. G. Simmons. 2004. Solving Generalized Semi-Markov
Decision Processes using Continuous Phase-type Distributions. In Proc. AAAI.
AAAI Press, 742–747.

https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.3390/robotics10020067
https://doi.org/10.1007/s10458-013-9238-9
https://doi.org/10.1007/s10458-013-9238-9
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1109/TSE.2019.2945329
https://doi.org/10.1109/TSE.2019.2945329
https://doi.org/10.4204/EPTCS.319.9
https://doi.org/10.4204/EPTCS.319.9

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Framework
	4 Implementation
	5 Evaluation
	6 Discussion and Future Work
	References

