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EUROPEAN BASKETS IN DISCRETE-TIME CONTINUOUS-BINOMIAL

MARKET MODELS

JAREK KĘDRA, ASSAF LIBMAN, AND VICTORIA STEBLOVSKAYA

Abstract. We consider a discrete-time incomplete multi-asset market model with contin-
uous price jumps. For a wide class of contingent claims, including European basket call
options, we compute the bounds of the interval containing the no-arbitrage prices. We prove
that the lower bound coincides, in fact, with Jensen’s bound. The upper bound can be com-
puted by restricting to a binomial model for which an explicit expression for the bound is
known by an earlier work of the authors. We describe explicitly a maximal hedging strategy
which is the best possible in the sense that its value is equal to the upper bound of the price
interval of the claim. Our results show that for any c in the interval of the non-arbitrage
contingent claim price at time 0, one can change the boundaries of the price jumps to obtain
a model in which c is the upper bound at time 0 of this interval. The lower bound of this
interval remains unaffected.

1. The main results

Discrete time continuous-binomial market model. We consider a discrete-time mar-
ket model, see e.g [2, §4.5] or [8, §3], with m risky assets S1, . . . , Sm and a bond S0 whose
prices at time k = 0, . . . , n denoted Si(k), are random processes described as follows. We fix
the initial values Si(0) of the assets (i = 0, 1, . . . ,m) and parameters R > 0 (the interest rate)
and 0 < Di < R < Ui. For time k = 1, 2, . . . , n the random process is defined by

• S0(k) = RkS0(0), and
• Si(k) = Ψi(k)Si(k − 1), for i = 1, 2, . . . ,m, where Ψi(k) are random variables with

values in [Di, Ui].

We call Ψi(k) the price jumps at time k. We emphasize that the price jumps are not assumed
to be independent of each other nor identically distributed.

A European basket call option is a contingent claim with pay-off given by

(1) F =

(
m∑

i=0

ci · Si(n)−K

)+

,

where K > 0 and ci ≥ 0 for i = 1, 2, . . . ,m and x+ := max{x, 0}. Notice that there is
no assumption on c0. The rational values of F at time k are the possible market values of
the option at time k so that no arbitrage occurs. They are known to form an open interval
(Γmin(F, k),Γmax(F, k)), where Γmin(F, k) and Γmax(F, k) depend on the “state of the world”
at time k, namely the history of the market up to time k, and in particular they depend on
the (current) values of the assets Si at time k.

The main result of this paper is the computation of Γmin(F, k) and Γmax(F, k). It extends
the main results of the authors’ previous work [5] in which we consider discrete time binomial
models, i.e ones in which the price jumps Ψi(k) take values in (the discrete) set {Di, Ui}
rather than the entire interval [Di, Ui].
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1.A. Computation of Γmin(F, k) and Γmax(F, k). For every 1 ≤ i ≤ m set

(2) bi =
R−Di

Ui −Di

and reorder the assets S1, . . . , Sm, if necessary, so that

b1 ≥ · · · ≥ bm.

Define q1, . . . , qm by

(3) qi =





1− b1 if i = 1
bi − bi+1 if 1 < i < m

bm if i = m

For any 0 ≤ i ≤ m and any 0 ≤ j ≤ m define numbers χi(j) as follows.

χi(j) =

{
Ui if i ≤ j

Di if i > j
for 1 ≤ i ≤ m, and(4)

χ0(j) = R.

To streamline the notation, set for every k ≥ 0

(5) Pk(m) = {0, . . . ,m}k.

Thus, any J ∈ Pk(m) is a sequence J = (j1, . . . , jk) with 0 ≤ j1, . . . , jk ≤ m. For such J set

qJ =
∏

j∈J

qj(6)

χi(J) =
∏

j∈J

χi(j).

Theorem 1.1. With the setup of the market model and notation above, the extremal values
of the rational values of F at time 0 ≤ k ≤ n are given by

Γmin(F, k) = Rk−n ·

(
Rn−k

m∑

i=0

ci · Si(k)−K

)+

Γmax(F, k) = Rk−n ·
∑

J∈Pn−k(m)

qJ ·

(
m∑

i=0

ci · χi(J) · Si(k)−K

)+

.

1.B. Hedging strategies. Consider a sequence of (time changing) portfolios

Vα(k) =
∑

i

αi(k)Si(k), (0 ≤ k ≤ n− 1)

for some choices of values for αi(k) at time 0 ≤ k ≤ n− 1. A maximum hedging strategy is a
choice for αi(k) at time 0 ≤ k ≤ n− 1 (which depends on the state of the world at that time)
which minimizes the value Vα(k) subject to the requirement that

m∑

i=0

αi(k) · Si(k + 1) ≥ Γmax(F, k + 1)

for any subsequent state of the world at time k + 1. That is, a maximum hedging strategy
is a time dependant portfolio of minimum possible cost whose value is guaranteed to exceed
the future rational value of the contingent claim F .

Our next result, Theorem 1.2, shows that the value of any hedging portfolio Vβ(k) must
always exceed Γmax(F, k) and that there exists a hedging strategy αi(k) that attains this
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bound. It is a minimum cost maximum hedging strategy. To make this result precise, given
the state of the world at time 0 ≤ k ≤ n − 1, let Yi(k) where 0 ≤ i ≤ m be the value of
Γmax(F, k + 1) at the state of the world at time k + 1 which is obtained from the present
one (at time k) by having the assets S1, . . . , Si make their maximum price jumps U1, . . . , Ui

and having Si+1, . . . , Sm make their minimum price jumps Di+1, . . . ,Dm. Explicitly, for any
0 ≤ t ≤ m:

Yt(k) = Rk+1−n ·
∑

J∈Pn−k−1(m)

qJ

(
m∑

i=0

ci · χi(J)χi(t) · Si(k) −K

)+

.

Theorem 1.2. Consider the continuous binomial market model above and a European option
F . Any hedging strategy βi(k) satisfies

Vβ(k) ≥ Γmax(F, k).

There exists a maximum hedging strategy αi(0), . . . , αi(n − 1) such that Vα(k) = Γmax(F, k)
for all 0 ≤ k ≤ n− 1. In fact, the values of αi(k) at time k are computed as follows.




α0(k)
α1(k)

...
αm(k)


 =W (k) ·N ·Q ·




Y0(k)
Y1(k)

...
Ym(k)




Where W (k), N, T are the following (m+ 1)× (m+ 1) matrices. Set ∆i = Ui −Di.

W (k) =




1
R·S0(k)

1
S1(k)

. . .
1

Sm(k)




Q =




1 0 0 · · · · · · 0 0
−1 1 0 · · · · · · 0 0
0 −1 1 · · · · · · 0 0
...

...
... · · · · · ·

...
0 0 0 · · · · · · 1 0
0 0 0 · · · · · · −1 1




N =




1 −D1
∆1

−D2
∆2

· · · · · · −Dm

∆m

0 1
∆1

0 · · · · · · 0

0 0 1
∆2

· · · · · · 0
...

...
...

...
0 0 0 · · · · · · 1

∆m




(Notice that W (k) depends on the state of the world, but N and Q do not. Also, R · S0(k) =
S0(0) ·R

k+1).

This result extends our previous result in [6] which computes a similar hedging strategy in
discrete time binomial models, i.e models in which Ψi(k) ∈ {Di, Ui} ⊂ [Di, Ui].

Changing the parameters of the model. Keeping R fixed, we may change the values of
Ui and Di to obtain different models for the same market. This has the effect of changing
the limits of the price jumps of the assets Si, and consequently the random processes Si are
changed. Clearly the values of Γmin(F, k) and Γmax(F, k) depend on these parameters, and
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we therefore write Γmin(F, k;Ui,Di) and Γmax(F, k;Ui,Di) to emphasise this dependence.
We will be interested in the rational prices of F at time 0, namely Γmin(F, 0;Ui,Di) and
Γmax(F, 0;Ui,Di).

Theorem 1.3. Consider a market model with some 0 < Di < R < Ui and the European
basket F in (1). Then

(1) Γmin(F, 0;Ui,Di) = (Rn
∑m

i=0 ciSi(0)−K)+ and in particular it is independent of the
values of Ui,Di.

(2) For every c in the open interval ( Γmin(F, 0;Ui,Di) , Γmax(F, 0;Ui,Di) ) there exist
Di ≤ di < R < ui ≤ Ui such that Γmax(F, 0;ui, di) = c.

More precisely, consider the functions ui, di : [0, 1) → R defined by

di(s) = Di + (R−Di)s

ui(s) =
R− (1− bi)di(s)

bi

Then ϕ(s) = Γmax(F, 0;ui(s), di(s)) is a continuous function of s ∈ [0, 1) such that
ϕ(0) = Γmax(F, 0;Ui,Di) and limsր1 ϕ(s) = Γmin(F, 0;Ui,Di).

2. Preliminaries: Random processes and conditional expectation

2.A. Non-degenerate density functions. This section is concerned with some general
results about probability measure spaces. Our standard reference for Measure theory and
Lebesgue integration are Halmos [4] and Royden [9], and for Probability Theory it is Feller
[1].

Throughout this paper, once m ≥ 1 is fixed we will denote

(7) Ω = [0, 1]m ⊆ R
m

equipped with the usual Borel σ-algebra and probability measure µ.

A probability density function (pdf) is a measurable p : Ω → [0,∞) such that
∫
Ω pdµ = 1.

It gives rise in a standard way to a probability measure on Ω which by abuse of notation we
also denote by p.

A probability measure on Ω is called absolutely continuous with respect to µ, written ν ≪ µ,
if for any Borel subset E we have µ(E) = 0 =⇒ ν(E) = 0. A probability measure ν on Ω is
non-degenerate if ν ≪ µ and µ≪ ν. We write ν ≈ µ.

By the Radon-Nykodim theorem [9, §11.5] if ν ≪ µ then there exists a pdf p : Ω → [0,∞)
called the Radon-Nykodim derivative, such that ν(E) =

∫
E
p(x) dµ(x). It is easy to check

that ν ≈ µ if and only if p > 0 almost everywhere1. We say that p is non-degenerate.

2.B. Conditional probability. Consider Ω(i) = [0, 1]mi where i = 1, . . . , n. Set

Ω =
n∏

i=1

Ω(i) = [0, 1]m,

where m =
∑

imi, equipped with the standard Borel σ-algebra. Let X(i) denote the random
vector

X(i) : Ω
proji−−−−→ Ω(i) ⊆ R

mi .

1If p > 0 a.e then
∫
E
p du > 0 for any E with µ(E) > 0 is a standard fact. If p = 0 on E with µ(E) = 0

then ν(E) =
∫
E
p(x) dµ(x) = 0 so µ is not absolutely continuous with respect to ν.
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For a non-empty I ⊆ {1, . . . , n} set mI =
∑

i∈I mi. Then set

Ω(I) =
∏

i∈I

Ω(i)

X(I) : Ω
proj(I)

−−−−−→ Ω(I) ⊆ R
mI .

Thus, Ω(I) = [0, 1]mI and X(I) is a random vector into R
mI . We will denote elements of Ω(I)

by ω(I). We will write n− I for the complement of I.

For the remainder of this subsection we fix a non-degenerate (with respect to the Lebesgue
measure on Ω) pdf p : Ω → [0,∞) and equip Ω with the probability measure it induces which
we abusively denote by p. Note that p is the joint density function of the random vectors
X(1), . . . ,X(n) (because X{1,...,n} is the inclusion Ω ⊆ R

m).

Given a non-empty I ⊆ {1, . . . , n}, the (joint) density function of X(I) is the function
pX(I)

: Ω(I) → [0,∞) given by (See e.g. [3, Chap. 2, Scet. 3])

(8) pX(I)
(ω(I)) =

∫

τ∈Ω(n−I)

p(ω(I), τ)dτ.

Fubini’s theorem readily implies that pX(I)
is non-degenerate (with respect to the Lebesgue

measure on Ω(I)).

Consider some disjoint I, J ⊆ {1, . . . , n}. The density function of X(I) given X(J) denoted
pX(I)|X(J)

: Ω(I∪J) → [0,∞) is

(9) pX(I)|X(J)
(ω(I), ω(J)) =

pX(I∪J)
(ω(I), ω(J))

pX(J)(ω(J))

whenever this is defined. Since pX(J)
is non-degenerate, pX(I)|X(J)

is defined a.e. For any ω(J)

we obtain a function, the (conditional) density of X(I) given the event {X(J) = ω(J)},

pX(I)|X(J)=ω(J)
: Ω(I) → [0,∞)

defined by pX(I)|X(J)=ω(J)
(−) = pX(I)|X(J)

(−, ω(J)). By Fubini’s theorem it is a (measurable)

probability density function on Ω(I).

Consider a random vector
f : Ω → R

k.

To avoid issues of convergence we assume that f ≥ 0, namely all the components of f are
non-negative. The expectation of f given X(I) is the function

Ep(f |X(I)) : Ω(I) → R

where Ep(f |X(I))(ω(I)) is the conditional expectation Ep(f |X(I) = ω(I)), namely

Ep(f |X(I))(ω(I)) =

∫

τ∈Ω(n−I)

f(τ, ω(I))pX(n−I)|X(I)
(τ, ω(I))dτ.

By Fubini’s theorem Ep(f |X(I)) is a measurable function.

Lemma 2.1. Keeping the notation above, let I, J ⊆ {1, . . . , n} be disjoint and consider some
ω(I) ∈ Ω(I). Set p′ = pX(J)|X(I)=ω(I)

, a pdf on Ω(J). Let f ≥ 0 be a random vector on Ω. Then

Ep(f |X(I) = ω(I)) = Ep′(τ 7→ Ep(f |X(I∪J))(ω(I), τ)).

In particular,
Ep(X(J)|X(I) = ω(I)) = Ep′(X(J))

where X(J) is viewed as a random vector from Ω(J).



6 JAREK KĘDRA, ASSAF LIBMAN, AND VICTORIA STEBLOVSKAYA

Proof. We compute the right hand side using Fubini’s theorem as follows

Ep′(τ 7→Ep(f |X(I∪J))(ω(I), τ)) =

=

∫

τ∈Ω(J)

pX(J)|X(I)=ω(I)
(τ) · Ep(f |X(I∪J))(ω(I), τ) dτ

=

∫

τ∈Ω(J)

(
pX(I∪J)

(ω(I),τ)

pX(I)
(ω(I))

·

∫

θ∈Ω(n−I∪J)

f(ω(I), τ, θ) ·
p(ω(I),τ,θ)

pX(I∪J)
(ω(I),τ)

dθ

)
dτ

=

∫

τ∈Ω(J)

∫

θ∈Ω(n−I∪J)

f(ω(I), τ, θ) ·
p(ω(I),τ,θ)

pX(I)
(ω(I))

dθ dτ

=

∫

ω∈Ω(n−I)

f(ω(I), ω) ·
p(ω(I),ω)

pX(I)
(ω(I))

dω

=

∫

ω∈Ω(n−I)

f(ω(I), ω) · pX(n−I)|X(I)=ω(I)
(ω) dω

= Ep(f |X(I) = ω(I))

This establishes the first claim. We apply it to the random vector f = X(J) to obtain the
second claim as follows

Ep(X(J)|X(I) = ω(I)) = Ep′(τ 7→ Ep(X(J)|X(I∪J))(ω(I), τ)) = Ep′(τ 7→ X(J)(τ)) = Ep′(X(J)).

Here we observe that Ep(X(J)|X(I∪J))(ω(I), τ) = X(J)(τ) because with the abuse of notation
for the domain of X(J) we have X(J)(ω(I), τ, θ) = X(J)(τ) for any τ ∈ Ω(J) and any θ ∈
Ω(n−I∪J). �

Lemma 2.2. Let f : Ω → R
d be a function and I, J ⊆ {1, . . . , n} be disjoint, and assume

that f ≥ 0. Suppose that f factors through the projection Ω
πI∪J−−−→ Ω(I∪J), namely there exists

g : Ω(I∪J) → R
m such that f = g ◦ πI∪J . Set p′ = pX(J)|X(I)=ω(I)

, pdf on Ω(J). Then

Ep(f |X(I) = ω(I)) = Ep′(ω(J) 7→ g(ω(I) ω(J)))

Proof. Lemma 2.1 gives

Ep(f |X(I) = ω(I)) = Ep′(ω(J) 7→ Ep(f |X(I∪J))(ω(I), ω(J))) = Ep′(ω
J 7→ g(ωI , ωJ))

because f(ω(I), ω(J), τ) = g(ω(I), ω(J)) for any τ ∈ Ω(n−I∪J), so Ep(f |X(I∪J))(ω(I), ω(J)) =
g(ω(I), ω(J)). �

2.C. Tensoring. Given p : Ω → R and q : Ω′ → R we obtain a function p⊗ q : Ω×Ω′ → R by

(10) (p⊗ q)(ω, ω′) = p(ω) · q(ω′).

It is clear that if p, q are pdf’s then so is p ⊗ q and that it is non-degenerate if p and q are
non-degenerate.

Keeping the notation above for Ω(i) and the random vectors X(i), let p(i) : Ω(i) → [0,∞) be
non-degenerate pdf’s. Then p = p(1) ⊗ · · · ⊗ p(n) is a non-degenerate pdf on Ω =

∏
iΩ(i). For

any I ⊆ {1, . . . , n} we denote

p(I) = ⊗
i∈I
p(i).

This is a non-degenerate pdf on Ω(I).

Lemma 2.3. Let p(i) : Ω(i) → [0,∞) be non-degenerate pdf’s, i = 1, . . . , n. Set p = p(1) ⊗
· · · ⊗ p(n), non-degenerate pdf on Ω. Then
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(1) pX(I)
= p(I) for any I ⊆ {1, . . . , n}.

(2) pX(J)|X(I)=ω(I)
= p(J) for any disjoint I, J ⊆ {1, . . . , n}, and furthermore

(3) Ep(X(J)|X(I) = ω(I)) = Ep(J)
(X(J)) where X(J) is viewed as a random vector on Ω(J).

Proof. (1) Given ω(I) we compute

pX(I)
(ω(I)) =

∫

τ∈Ω(n−I)

p(ω(I), τ) dτ =

∫

τ∈Ω(n−I)

p(I)(ω(I)) · p(n−I)(τ) dτ = p(I)(ω(I))

because p(J) is a pdf on Ω(J) for any J .

(2) Given ω(J) and ω(I) we use this to compute

pX(J)|X(I)=ωI (ω(J)) =
pX(I∪J)

(ω(I), ω(J))

pX(I)
(ω(I))

=
p(I∪J)(ω(I), ω(J))

p(I)(ω(I))

=
p(I)(ω(I)) · p(J)(ω(J))

p(I)(ω(I))
= p(J)(ω(J)).

(3) By Lemma 2.1 and item (2)

Ep(X(J)|X(I) = ω(I)) = EpX(J)|X(I)=ω(I)
(ω(J) 7→ Ep(X(J)|X(I∪J)(ω(I), ω(J)))

= Ep(J)
(ω(J) 7→ X(J)(ω(J))).

�

2.D. Processes.

Definition 2.4. Let Ω be a set and n ≥ 1. An R
d-valued process (over Ω) is a sequence of

functions

Y (0), . . . , Y (n) : Ωn → R
d

such that for each 0 ≤ k ≤ n the function X(k) factors through the projection Ωn → Ωk to
the first k factors.

If Ωn is equipped with a probability measure, Y (0), . . . , Y (k) is called an R
d-valued random

process.

We frequently regard Y (k) as a function with domain Ωk. We will sometimes “trim” the
process to Y (1), . . . , Y (n) or to X(0), . . . ,X(n−1).

If Ω = [0, 1]m ⊆ R
m the projections L(k) : Ωn → Ω ⊆ R

m to the k-th factor give a

universal process in the sense that if Y (0), . . . , Y (n) is a process then each Y (k) is a function
of L(1), . . . , L(k).

2.E. Supports. Let ν be a probability measure on a set Ω.

Definition 2.5. We say that ν is supported on a measurable set A if µ(A) = 1.

Any probability measure ν on A ⊆ Ω extends to a probability measure ν̃ on Ω supported

on A by ν̃(E) = ν(A ∩ E). Conversely, if ν on Ω is supported by A then ν = ν̃|A. If A is
finite then for any f : Ω → R we have Eν(f) =

∑
a∈A ν({a})f(a).
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3. Maximum and minimum expectation of random variables on Ω = [0, 1]m

Fix some m ≥ 1 and Ω = [0, 1]m equipped with the usual Lebesgue measure µ. Let

L : Ω → R
m

denote the inclusion. We think of it as a random vector with components L = (ℓ1, . . . , ℓm).
Thus, ℓi : Ω → R is the projection to the ith factor

ℓi(x1, . . . , xm) = xi.

For convenience we also set

ℓ0 = 1,

the constant function (random variable).

Definition 3.1. Let M(Ω) denote the set of all probability measures on Ω on the Borel
σ-algebra. Let M+(Ω) denote the set of all the non-degenerate probability measures (with
respect to the Lebesgue measure).

We will often refer to the elements of M+(Ω) as pdf’s which are non-vanishing a.e.

Consider a non decreasing b ∈ int(Ω) = (0, 1)m, namely

1 > b1 ≥ · · · ≥ bm > 0.

We will also denote for convenience

b0 = 1 and bm+1 = 0.

Definition 3.2. The set of mean-b probability measures on Ω is

M(Ω, b) = {P ∈ M(Ω) : EP (L) = b}.

That is, EP (ℓi) = bi for all 1 ≤ i ≤ m. The set of non-degenerate mean-b probability measures
is

M+(Ω, b) = {P ∈ M+(Ω) : EP (L) = b}.

Definition 3.3. Let L denote the set of vertices of the cube Ω = [0, 1]m. That is,

L = {0, 1}m.

There is a standard identification of L with ℘({1, . . . ,m}) where λ ∈ L corresponds to
supp(λ). This turns L into a lattice where the partial order � is induced by inclusion of sets
and joins and meets are ∪ and ∩. The next concept is originally due to Lovász [7].

Definition 3.4. A function f : L → R is called supermodular if for any a, b ∈ L

f(a ∨ b) + f(a ∧ b) ≥ f(a) + f(b).

It is called modular if equality holds.

Definition 3.5. A function f : Ω → R is called convex-supermodular if f is convex and its
restriction to L is supermodular.

Example 3.6. Let f : Ω → R and suppose that f = h ◦ g for some g : [0, 1]m → R and
h : R → R such that either

(1) h is convex and g is affine with non-negative coefficients except the constant term,
namely g =

∑m
i=0 aiℓi where a1, . . . , am ≥ 0.

(2) g is convex, g|L is modular, and h is convex and increasing.
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Then f is convex-supermodular.

Proof: Indeed, f is convex as composition of convex functions and f |L is supermodular by
[Simchi-Levi, Theorem 2.2.6] for item (1) and [Simchi-Levi Proposition 2.2.5(c)] for item (2).
♦

For every 0 ≤ k ≤ m let ρk ∈ L denote the element corresponding to {1, . . . , k}, namely

(11) ρk = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0) ∈ {0, 1}m.

Definition 3.7 (Compare [5]). The upper supermodular vertex is the probability density
function q∗ : L → R supported on {ρ0, . . . , ρm} with

q∗(ρk) = bk − bk+1, (0 ≤ k ≤ m).

One easily checks that
∑m

i=0 q
∗(ρk) = 1 and that Eq∗(ℓi) = bi, thus

Proposition 3.8. q∗ ∈ M(Ω, b) and it is supported on L ⊆ Ω.

The main result of this section is the following theorem.

Theorem 3.9. Let f : Ω → R be a continuous convex-supermodular function and assume that
f ≥ 0. Let q∗ be the upper supermodular vertex of L (Definition (3.7)). Then

sup
p∈M+(Ω,b)

Ep(f) = Eq∗(f |L) = max
p∈M(Ω,b)

Ep(f).

Note that Eq∗(f |L) =
∑m

i=0 q
∗(ρi) · f(ρi).

In the remainder of this section we prove this theorem. It relies on the following key
observation. Equip R

m with the norm ‖ ‖∞ and restrict this norm to Ω = [0, 1]m.

Lemma 3.10 (Approximation lemma). Consider some q ∈ M(Ω, b) supported on a finite
subset {x1, . . . , xk} of Ω and set qi = q({xi}). Suppose that b ∈ int(Ω) = (0, 1)m. Then for
any ǫ > 0 and δ > 0 there exists p ∈ M+(Ω, b) and β < ǫ such that for any continuous
f : Ω → R

Ep(f) = β

∫

Ω
f dµ+

k∑

i=0

(qi −
β
k
) · f(ξi)

where ξ1, . . . , ξk ∈ Ω are such that ‖ξi − xi‖∞ < δ.

Proof. Closed balls of radius r > 0 in R
m have the form B(y, r) = y + [−r, r]m so their

volume, hence their Lebesgue measure, is (2r)m. If y = (y1, . . . , ym) then by inspection, for
any 1 ≤ j ≤ m ∫

B(y,r)
xj dµ(x

1, . . . , xm) = (2r)myj.

Claim: There exist distinct y1, . . . , yk in int(Ω) = (0, 1)m such that ‖yi − xi‖∞ < δ
3 and such

that
∑k

i=1 qiy
i = b.

Proof: We show how to perturb the vectors x1, . . . , xk in order to obtain y1, . . . , yk. First,∑k
i=1 qix

i = Eq(L) = b since q ∈ M(Ω, b). Suppose that for some 1 ≤ j ≤ m not all of

x1j , . . . , x
k
j are in the open interval (0, 1). If xi

′

j = 0 for some i′ then there must exist i′′ such

that xi
′′

j > 0 because
∑k

i=1 qix
i
j = bj > 0. Since qi > 0 for all i we can increase xi

′

j and

decrease xi
′′

j by a small positive number < δ
3 so that the sum remains bj and that the new
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values of xi
′

j and xi
′′

j are in (0, 1). Similarly, if xi
′

j = 1 for some i′ then there must exist some

i′′ such that xi
′′

j < 1 because
∑k

i=1 qix
i
j = bj < 1. We can then decrease xi

′

j and increase xi
′′

j

by at most δ
3 so that the sum remains bj and the new values of xi

′

j and xi
′′

j are in (0, 1). By

repeating this process we can perturb x1, . . . , xk into y1, . . . , yk in int(Ω) such that
∑

i qiy
i = b

and ‖xi − yi‖∞ < δ
3 . Since the xi’s admit pairwise disjoint neighbourhoods, we can perturb

the xi’s inside these neighbourhoods to make sure that the yi’s are distinct. q.e.d

Since y1, . . . , yk are in the interior of Ω there exists r < δ
3 such that B(yi, 2r) ⊆ (0, 1)m for

all 1 ≤ i ≤ k. Thus, if γ ∈ R
m is such that ‖γ‖∞ < r then B(yi + γ, r) ⊆ (0, 1)m. Set

Q = min{q1, . . . , qm}.

For any β > 0 set

γ1j :=
β · ( 1

k

∑k
i=1 y

i
j −

1
2)

q1 −
β
k

.

Choose 0 < β < min{ǫ, kQ} sufficiently small such that for every 1 ≤ j ≤ m

|γ1j | < r.

Let γ1 ∈ R
m be the vector with the components γ1j defined above and let γ2, . . . , γk ∈ R

m be

the zero vectors. By construction ‖γi‖∞ < r for all 1 ≤ i ≤ k, hence B(yi + γi, r) ⊆ (0, 1)m.
Define p : Ω → R by

p = β +
k∑

i=1

qi−
β
k

(2r)m · 1B(yi+γi,r)

where 1B(yi+γi,r) is the characteristic function. Observe that p > 0 because β > 0 and

qi −
β
k
> qi −Q ≥ 0. Next, p is a pdf since

∫

Ω
p dµ = β +

k∑

i=1

qi −
β
k

(2r)m

∫

Ω
1B(yi+γi,r)dµ =

k∑

i=1

qi = 1.

We check that p ∈ M+(Ω, b). Indeed, since γi = 0 for all i ≥ 2

Ep(ℓj) =

∫

x∈Ω
ℓj(x) · p(x) dµ(x)

= β

∫

Ω
xj dµ+ 1

(2r)m

k∑

i=1

(qi −
β
k
)

∫

B(yi+γi,r)
xj dµ

= 1
2β +

k∑

i=1

(qi −
β
k
)(yij + γij)

= 1
2β +

k∑

i=1

qiy
i
j + (q1 −

β
k
)γ1j −

β
k

k∑

i=1

yij

= 1
2β + bj + β( 1

k

k∑

i=1

yij −
1
2 )−

β
k

k∑

i=1

yij

= bj .
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Suppose that f : Ω → R is continuous. By the mean value theorem there exist ξi ∈ B(yi+γi, r)
such that

Ep(f) =

∫

x∈Ω
f(x) · p(x) dµ(x) = β

∫

Ω
f dµ +

k∑

i=1

1
(2r)m (qi −

β
k
)

∫

B(yi+γi,r)
f dµ =

β

∫

Ω
f dµ +

k∑

i=1

(qi −
β
k
) · f(ξi).

By our choice β < ǫ and ‖ξi−xi‖∞ ≤ ‖ξi− (yi+γi)‖∞+‖yi−xi‖∞+‖γi‖∞ < r+ δ
3 + r < δ.

This completes the proof. �

Proof of Theorem 3.9. For i = 0, . . . ,m set

α0 = f(ρ0)

αi = f(ρi)− f(ρi−1).

Observe that since by definition b0 = 1 and bm+1 = 0,

Eq∗(f |L) =

m∑

i=0

q∗(ρi) · f(ρi)

=
m∑

i=0

(bi − bi+1)f(ρi)

= f(ρ0) +

m∑

i=1

bi(f(ρi)− f(ρi−1))

= α0 +

m∑

i=1

biαi.

Let f̌ : Rm → R be the affine function f̌ =
∑m

i=0 αiℓi, namely

f̌(x1, . . . , xm) = α0 +
m∑

i=1

αixi.

Claim 1: f̌ dominates f on L, namely f̌(λ) ≥ f(λ) for all λ ∈ L.

Proof: By construction of f̌ and by the definition of ρj in (11), for any 0 ≤ j ≤ m

f̌(ρj) =

j∑

i=0

αi = f(ρj).

So f and f̌ coincide on {ρ0, . . . , ρm} ⊆ L. Assume the statement of the claim is false, namely
there exists λ ∈ L such that f̌(λ) < f(λ). Among all these λ’s choose one which contains the
longest leading run of 1, . . . , 1, namely λ with the largest possible k with ρk � λ. Notice that
k < m because f̌(ρm) = f(ρm) and ρm is maximal in L. In the lattice L set λ′ = λ ∨ ρk+1.
Notice that since k is the largest such that ρk � λ it follows that λ ∧ ρk+1 = ρk. Since f |L is
supermodular

f(λ ∨ ρk+1) + f(ρk) ≥ f(λ) + f(ρk+1).

Since f̌ is affine, it is modular, hence

f̌(λ ∨ ρk+1) + f̌(ρk) = f̌(λ) + f̌(ρk+1).
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Subtract the first equation from the second, taking into account that f̌(ρi) = f(ρi), to get

f̌(λ ∨ ρk+1)− f(λ ∨ ρk+1) ≤ f̌(λ)− f(λ) < 0.

Thus f̌(λ′) < f(λ′) and ρk+1 � λ′, contradiction to the maximality of k. q.e.d

Claim 2: f̌ dominates f on Ω = [0, 1]m, namely f̌(x) ≥ f(x) for all x ∈ Ω.

Proof: Since Ω = [0, 1]m is the convex hull of L = {0, 1}m, every x ∈ Ω is a convex combination

x =
∑

λ∈L

tλ · λ.

Since f̌ is affine and f is convex, Claim 1 implies that

f̌(x) = f̌(
∑

λ∈L

tλ · λ) =
∑

λ∈L

tλf̌(λ) ≥
∑

λ∈L

tλf(λ) ≥ f(
∑

λ∈L

tλλ) = f(x).

q.e.d

Claim 2 implies that for any p ∈ M(Ω,b)

Ep(f) ≤ Ep(f̌) = Ep(
m∑

i=0

αiℓi) =
m∑

i=0

αiEp(ℓi) = α0 +
m∑

i=1

αibi = Eq∗(f |L).

However, q∗ extends to q̃∗ ∈ M(Ω, b) and clearly Eq̃∗(f) = Eq∗(f |L) so we get

max
p∈M(Ω,b)

Ep(f) = Eq∗(f |L).

Notice that Eq∗(f |L) =
∑m

i=0 q
∗(ρi) · f(ρi). Lemma 3.10 applied to q∗ ∈ M(Ω, b) and the

continuity of f easily imply that there exist λ ∈ M+(Ω, b) such that Eλ(f) is arbitrarily close
to Eq∗(f). If follows that supM+(Ω,b)Ep(f) = Eq∗(f |L). �

4. (L, b)-stable probability measures

Main results. We consider n iterations of the random vector L = (ℓ1, . . . , ℓm) over Ω =
[0, 1]m from Section 3. We obtain a sequence L1, . . . , Ln of random vectors in R

m with sample
space Ωn. In fact

Lk : Ωn → Ω ⊆ R
m

is the projection to the kth factor. This is the universal process on Ωn, see Section 2.D. Denote
by M+(Ω, n) the set of all non-degenerate probability measures on Ωn. We will identify these
with the set of pdf’s p : Ωn → R which are non-vanishing a.e.

With the notation and terminology of Section 2.B we make the following definition.

Definition 4.1. Consider some b ∈ int(Ω) = (0, 1)m. A pdf p ∈ M+(Ω, n) is called (L, b)-
stable if for any 0 ≤ k ≤ n− 1

Ep(L
k+1|L1, . . . , Lk) = b.

That is, the function Ep(L
k+1|L1, . . . , Lk) : Ωk → R

m is constant with value b a.e. The set of
all (L, b)-stable p ∈ M+(Ω, n) is denoted

M+(Ω, n, b).

Definition 4.2. A function f : Ωn → R is called fibrewise convex-supermodular if it is convex-
supermodular at each fibre. Namely, for any τ ∈ Ωk−1 and any θ ∈ Ωn−k the function
g : Ω → R defined by g : ω 7→ f(τ, ω, θ) is convex-supermodular (Definition 3.5).
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Example 4.3. For any J = (j1, . . . , jn) ∈ Pn(m), see (5), let ℓJ : Ω
n → R denote the function

ℓJ = ℓj1 ⊗ · · · ⊗ ℓjn , namely

ℓJ : (ω
1, . . . , ωn) 7→ ℓj1(ω

1) · · · ℓjn(ω
n).

Consider f : Ωn → R of the form f = h ◦ g where h : R → R is convex and g : Ωn → R is of
the form

g =
∑

J∈Pn(m)

aJ · ℓJ

where aJ ≥ 0 for all J 6= (0, . . . , 0). Then f is fibrewise convex-supermodular.

Proof: It is clear that if τ ∈ Ωk−1 and θ ∈ Ωn−k then the restriction of ℓJ to the fibre
{τ} × Ω × {θ} ⊆ Ωn is equal to

∑n
i=0 biℓi where bi ≥ 0 for all i ≥ 1; In fact bi is the sum of

all aJ in which the kth entry is equal to i. The result follows from Example 3.6(1).

The main results of this section are the following two theorems.

Theorem 4.4. Let f : Ωn → R be a continuous function of the form f = h ◦ g in Example
4.3. Assume that f ≥ 0. Suppose that b ∈ int(Ω) = (0, 1)m. Then

inf
p∈M+(Ω,n,b)

Ep(f |L
1, . . . , Lk)(ω1, . . . , ωk) = f(ω1, . . . , ωk, b, · · · , b).

Recall the upper supermodular vertex q∗ : L → R from Definition 3.7. It extends to an
atomic probability measure on Ω supported on L which we abusively denote q∗. Let

q∗⊗k

be the obvious product probability measure on Lk as well as its extension to Ωk.

Set qj = q∗(ρj) for all 0 ≤ j ≤ m. For any J ∈ Pk(m) denote

qJ =
∏

j∈J

qj

ρJ = (ρj1 , · · · , ρjk) ∈ Ωk.

If f : Ωn → R is measurable and (ω1, . . . , ωk) ∈ Ωk, we obtain a measurable function
g : Ωn−k → R by g(−) = f(ω1, . . . , ωk,−). If Q is a probability measure on Ωn−k we will
write EQ(f(ω

1, . . . , ωk,−)) for EQ(g).

Theorem 4.5. Let f : Ωn → R be a continuous fibrewise convex-supermodular, f ≥ 0. Then

sup
p∈M+(Ω,n,b)

Ep(f |L
1, . . . , Lk)(ω1, . . . , ωk) = Eq∗⊗n−k(f(ω1, . . . , ωk,−))

=
∑

J∈Pn−k(m)

qJ · f(ω1, . . . , ωk, ρJ).

In the remainder of this section we prove Theorems 4.4 and 4.5. Throughout we fix b ∈ (0, 1)m

and assume that it is non-increasing, namely b1 ≥ · · · ≥ bm.

Lemma 4.6. Consider some p ∈ M+(Ω, n, b). Suppose that 0 ≤ k ≤ n − 1 and consider
ω1, . . . , ωk ∈ Ω. Set p′ = pLk+1|(L1,...,Lk)=(ω1,...,ωk); See Section 2.B. Then p′ ∈ M+(Ω, b).

Proof. First, p′ is a pdf and p′ > 0 a.e., see (9) in Section 2.B. Set I = {1, . . . , k} and
J = {k + 1}, subsets of {1, . . . , n}. Write LI for the random vector (L1, . . . , Lk) and ωI =
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(ω1, . . . , ωk) ∈ Ωk. We use Lemma 2.1 and the fact that p ∈ M+(Ω, n, b) to compute

Ep′(L) = Ep′(ω 7→ Lk+1(ω)) = Ep′(ω 7→ Ep(L
k+1|LI∪J)(ωI , ω))

= Ep(L
k+1|LI = ωI) = Ep(L

k+1|L1, . . . , Lk)(ω1, . . . , ωk) = b.

By definition, then, p′ ∈ M+(Ω, b). �

Lemma 4.7. Let p1, . . . , pn ∈ M+(Ω, b). Then p1 ⊗ · · · ⊗ pn ∈ M+(Ω, n, b).

Proof. It is clear that p1 ⊗ · · · ⊗ pn is a non degenerate pdf on Ωn. By Lemma 2.3(3) and
since by definition Epk+1(L) = b,

Ep1⊗···⊗pn(L
k+1|L1, . . . , Lk)(ω1, . . . , ωk) = Epk+1(Lk+1) = Epk+1(L) = b.

Since this holds for all 0 ≤ k ≤ n− 1, by definition p1 ⊗ · · · ⊗ pn ∈ M+(Ω, n, b). �

Lemma 4.8 (n-fold Approximation Lemma). Let b ∈ (0, 1)n and consider q ∈ M(Ω, b) with
finite support {x1, . . . , xr} and set qi = q({xi}). Let q⊗k denote the induced product measure
on Ωk. Let f : Ωn → R be continuous with f ≥ 0. Then for any ǫ > 0 and any 0 ≤ k ≤ n

there exists P ∈ M+(Ω, n, b) such that
∣∣∣EP (f |L

1, . . . , Lk)(ω1, . . . , ωk)−Eq⊗(n−k)(f(ω1, . . . , ωk,−))
∣∣∣ < ǫ

for all ω1, . . . , ωk ∈ Ω.

Proof. Since Ωn is compact, f is bounded, i.e ‖f‖∞ < ∞. Since f is uniformly continuous,
we choose δ > 0 suitable for ǫ

3n . Apply Lemma 3.10 with δ and with ǫ
3n‖f‖∞

to obtain

p ∈ M+(Ω, b) and β < ǫ
3n‖f‖∞

such that for any continuous g : Ω → R where g ≥ 0,

(12) Ep(g) = β

∫

Ω
g dµ+

r∑

i=1

(qi −
β
r
)g(ξi)

for some ξ1, . . . , ξr ∈ Ω such that ‖xi − ξi‖∞ < δ.

Set [r] = {1, . . . , r}. For any I = (i1, . . . , in−k) ∈ [r]n−k set

qI = qi1 · · · qin−k
and xI = (xi1 , . . . , xin−k) ∈ Ωn−k

and let fI : Ω
k → R be the function

fI : (ω
1, . . . , ωk) 7→ f(ω1, . . . , ωk, xI).

Observe that

(13) Eq⊗(n−k)(f(ω1, . . . , ωk,−)) =
∑

I∈[r]n−k

qI · fI(ω
1, . . . , ωk).

It is clear that ‖fI‖∞ ≤ ‖f‖∞ and that fI is uniformly continuous with the same δ suitable
for ǫ

3n as that for f . Recall p ∈ M+(Ω, b) that we chose at the start of the proof.

Claim: Consider some 0 ≤ k < n and some I ∈ [r]n−k−1. Then for any ω1, . . . , ωk ∈ Ω
∣∣∣∣∣Ep

(
ω 7→ fI(ω

1, . . . , ωk, ω)
)
−

r∑

i=1

qi · fI(ω
1, . . . , ωk, xi)

∣∣∣∣∣ <
ǫ
n
.
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Proof: Set g(w) = fI(ω
1, . . . , ωk, ω). Clearly g : Ω → R is continuous and ‖g‖∞ ≤ ‖f‖∞.

Moreover, it is uniformly continuous and clearly the same δ we chose for f suitable for ǫ
3n

works for g. Since Eq(g) =
∑r

i=1 qig(x
i) and since (12) holds

|Ep(g) − Eq(g)| ≤ β

∫

Ω
g dµ+ β

r

r∑

i=1

|g(ξi)|+

r∑

i=1

qi|g(ξ
i)− g(xi)|.

Since ‖g‖∞ ≤ ‖f‖∞ and β < ǫ
3n‖f‖∞

the first and second terms in this sum are less than ǫ
3n .

Since ‖ξi − xi‖∞ < δ, the uniform continuity of g implies that the same is true for the last
term since

∑
i qi = 1. This completes the proof of the claim. q.e.d

Set P = p⊗n. Then P ∈ M+(Ω, n, b) by Lemma 4.7. In light of (13), we complete the
proof of the lemma by showing by downward induction on 0 ≤ k ≤ n that

(14)

∣∣∣∣∣∣
Ep⊗n(f |L1, . . . , Lk)(ω1, . . . , ωk)−

∑

I∈[r]n−k

qI · fI(ω
1, . . . , ωk)

∣∣∣∣∣∣
≤ (n− k) ǫ

n
.

The base of induction k = n is a triviality since

Ep⊗n(f |L1, . . . , Ln)(ω1, . . . , ωn) = f(ω1, . . . , ωn)

and since fI = f and qI = 1 for the the only I ∈ [r]0.

Assume inductively that (14) holds for some 1 ≤ k ≤ n. Fix some ω1, . . . , ωk−1 ∈ Ω.
Lemmas 2.1 and 2.3(2) imply that for any

Ep(τ 7→ Ep⊗n(f |L1, . . . , Lk)(ω1, . . . , ωk−1, τ)) = Ep⊗n(f |L1, . . . , Lk−1)(ω1, . . . , ωk−1).

Viewing the left hand side of (14) with ω1, . . . , ωk−1 fixed as a function of τ ∈ Ω, the linearity
of expectation Ep(−) implies

∣∣∣∣∣∣
Ep⊗n(f |L1, . . . , Lk−1)(ω1, . . . ωk−1)−

∑

I∈[r]n−k

qIEp(fI(ω
1, . . . , ωk−1,−))

∣∣∣∣∣∣
< (n− k) ǫ

n
.

Thanks to (13), in order to complete the induction step (to k− 1) it remains to show by that
∣∣∣∣∣∣
∑

I∈[r]n−k

qI ·Ep(fI(ω
1, . . . , ωk−1,−))−

∑

J∈[r]n−k+1

qJ · fJ(ω
1, . . . , ωk−1)

∣∣∣∣∣∣
< ǫ

n
.

Given J = (i1, . . . , in−k+1) ∈ [r]n−k+1 set I = (i2, . . . , in−k+1) ∈ [r]n−k and observe that
qJ = qIqi1 and that fJ(ω

1, . . . , ωk−1) = fI(ω
1, . . . , ωk−1, xi1). By the Claim above

∣∣∣
∑

I∈[r]n−k

qIEp(fI(ω
1, . . . , ωk−1,−))−

∑

J∈[r]n−k+1

qJfJ(ω
1, . . . , ωk−1)

∣∣∣ =

=
∣∣∣
∑

I∈[r]n−k

qIEp(fI(ω
1, . . . , ωk−1,−))−

∑

I∈[r]n−k

r∑

i=1

qIqifI(ω
1, . . . , ωk−1, xi)

∣∣∣

≤
∑

I∈[r]n−k

qI ·
∣∣∣Ep(fI(ω

1, . . . , ωk−1,−))−

r∑

i=1

qifI(ω
1, . . . , ωk−1, xi)

∣∣∣

<
∑

I∈[r]n−k−1

qI ·
ǫ
n
= ǫ

n
.

This completes the induction step. �
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Proof of Theorem 4.4. For any J = (j1, . . . , jn) ∈ Pn(m) and any ω1, . . . , ω̂k, . . . , ωn ∈ Ω
(meaning ωk is omitted) we have

ℓJ(ω
1, . . . , ωk−1,−, ωk+1, . . . , ωn) =

∏

i 6=k

ℓji(ω
i) · ℓjk(−).

Therefore, if λ ∈ M+(Ω, b) we get

Eλ(ℓJ(ω
1, . . . , ωk−1,−, ωk+1, . . . , ωn)) = Eλ(ℓjk) ·

∏

i 6=k

ℓji(ω
i) = bjk ·

∏

i 6=k

ℓji(ω
i) =

ℓjk(b) ·
∏

i 6=k

ℓji(ω
i) = ℓJ(ω

1, . . . , ωk−1, b, ωk+1, . . . , ωn).

We use downward induction on 0 ≤ k ≤ n to show that for any p ∈ M+(Ω, n, b)

Ep(f |L
1, . . . , Lk)(ω1, . . . , ωk) ≥ f(ω1, . . . , ωk, b, . . . , b)

almost everywhere. The base of induction k = n is a triviality (and in fact, equality holds a.e).
Assume the inequality holds for k+1 ≤ n. Set p′ = pLk+1|L1=ω1,...,Lk=ωk . Then p′ ∈ M+(Ω, b)
by Lemma 4.6. Lemma 2.1 and the induction hypothesis imply

Ep(f |L
1, . . . , Lk)(ω1, . . . , ωk) = Ep′(ω 7→ Ep(f |L

1, . . . , Lk+1)(ω1, . . . , ωk, ω))

≥ Ep′(ω 7→ f(ω1, . . . , ωk, ω, b, . . . , b).

Since f = h ◦ g with h convex and g as in Example 4.3, Jensen’s inequality allows us to
continue the inequality

≥ h(
∑

J

aJEp′(ℓJ(ω
1, . . . , ωk,−, b, . . . , b))

= h(
∑

J

aJℓJ(ω
1, . . . , ωk, b, . . . , b))

= h(g(ω1, . . . , ωk, b, . . . , b))

= f(ω1, . . . , ωk, b, . . . , b).

This completes the induction step.

We deduce that in the statement of the theorem the right hand side is a lower bound
for the left hand side and it remains to show equality. Let ν be the probability mea-
sure on Ω supported on {b}, i.e ν({b}) = 1. It is clear that for any measurable function
g : Ωk → R we have Eν⊗k(g) = g(b, . . . , b). By Lemma 4.8, for any ǫ > 0 there exists P ∈
M+(Ω, n, b) such that EP (f |L

1, . . . , Lk)(ω1, . . . , ωk) is ǫ-close to Eν⊗(n−k)(f(ω1, . . . , ωk,−)) =
f(ω1, . . . , ωk, b, . . . , b). This completes the proof. �

Proof of Theorem 4.5. First, observe that

(15) Eq∗⊗(n−k)(f(ω1, . . . , ωk,−)) =
∑

I∈Pn−k(m)

qI · f(ω
1, . . . , ωk, ρI).

Next, we prove that for any p ∈ M+(Ω, n, b) and any 0 ≤ k ≤ n

(16) Ep(f |L
1, . . . , Lk)(ω1, . . . , ωk) ≤ E(q∗)⊗n−k(f(ω1, . . . , ωk,−)).

Fix some p and use downward induction on k. The base of induction k = n is a triviality
since Ep(f |L

1, . . . , Ln) = f a.e. Assume inductively that (16) holds for k + 1 ≤ n. Set
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p′ = pLk+1|(L1,...,Lk)=(ω1,...,ωk). Lemma 2.1 and the induction hypothesis together with (15)
imply that

Ep(f |L
1, . . . , Lk)(ω1, . . . , ωk) = Ep′(ω 7→ Ep(f |L

1, . . . , Lk+1)(ω1, . . . , ωk, ω))

≤ Ep′(ω 7→
∑

I∈Pn−k−1

qIf(ω
1, . . . , ωk, ω, ρI))

=
∑

I∈Pn−k−1(m)

qI · Ep′(ω 7→ f(ω1, . . . , ωk, ω, ρI)).

By the assumption on f , each function f(ω1, . . . , ωk,−, ρI) is convex-supermodular and con-
tinuous and. Lemma 4.6 and Theorem 3.9 allow us to continue the estimate

≤
∑

I∈Pn−k−1(m)

qI ·

m∑

j=0

qj · f(ω
1, . . . , ωk, ρj , ρI)) =

∑

I∈Pn−k(m)

qI · f(ω
1, . . . , ωk, ρI).

Together with (15), this completes the induction step.

We deduce that for any 0 ≤ k ≤ n the right hand side in the statement of the theorem
is an upper bound for the left hand side. By Lemma 4.8 there exist P ∈ M+(Ω, n, b) such
that EP (f |L

1, . . . , Lk)(ω1, . . . , ωk) are arbitrarily close to Eq∗⊗(n−k)(f(ω1, . . . , ωk,−). This
completes the proof. �

5. Proofs of the main results

In this section we prove the results in Section 1. We start by setting up a formal framework
for the discrete-time continuous-binomial market model presented there.

We begin with the “one-step” process, namely description of the price jumps Ψi where
0 ≤ i ≤ m. By definition Ψ0 = R and Ψi are chosen at random from the interval [Di, Ui]. By
choosing a linear homeomorphisms [Di, Ui] ∼= [0, 1], a natural sample space for the probability
space underlying a single step is Ω = [0, 1]m and

Ψi(x1, . . . , xm) = Di + (Ui −Di)xi,

Ψ0(x1, . . . , xm) = R

With the notation of Section 3, for any 1 ≤ i ≤ m

Ψi = Diℓ0 + (Ui −Di)ℓi.

We will write Ψ: Ω → R
m+1 for the random vector

Ψ = (Ψ0, . . . ,Ψm).

The natural sample space for the n-step model is Ωn. We obtain a process Ψ1, . . . ,Ψn of
the price changes at time k:

Ψk : Ωn Lk

−→ Ω
Ψ
−→ R

m+1

where Lk is the projection to the k-th factor and L1, . . . , Lk form the universal process on
Ωn, see Section 2.D. Thus,

Ψk
i = Di + (Ui −Di)L

k
i

where Lk
i is the ith component of Lk : Ωn → Ω ⊆ R

m+1 and we observe that (since ℓ0 =
1 : Ω → R)

Lk
i = ℓ

⊗(k−1)
0 ⊗ ℓi ⊗ ℓ

⊗(n−k−1)
0 .

Recall that we assume that 0 < Di < R < Ui so in particular Ψk
i > 0 for all i and all k.
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The prices of the assets form an R
m+1-valued process

S0, . . . , Sn : Ωn → R
m+1

where Sk = (Sk
0 , . . . , S

k
m) is the vector of prices of the assets at time k. It is assumed by the

model that

Sk
i > 0 for all 0 ≤ i ≤ m and 0 ≤ k ≤ n.

By construction of the model, the processes S0, . . . , Sn and Ψ1, . . . ,Ψn satisfy the relation

Sk
i = Sk−1

i ·Ψk
i (0 ≤ i ≤ m and 1 ≤ k ≤ n).

It is therefore clear that for any 0 ≤ k ≤ n

Sk
i = S0

i ·Ψ
1
i · · ·Ψ

k
i .

Recall the definition of Pk(m) from (5) in Section 1. For J = (j1, . . . , jk) ∈ Pk(m) set
ℓJ = ℓj1 ⊗ · · · ⊗ ℓjk . It follows that

Sk
i =

∑

J∈Pk(m)

aJ · L1
j1
· · ·Lk

jk
=

∑

J∈Pk(m)

aJ · ℓJ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n− k times

for some aJ ≥ 0.

Comment: In Section 1 the processes Ψk and Sk were denoted Ψ(k) and S(k).

The European basket in Section 1 is the function (random variable) F : Ωn → R

F =
( m∑

i=0

ci · S
n
i −K

︸ ︷︷ ︸
G

)+

where ci ≥ 0 for 1 ≤ i ≤ m and K > 0 is some number. Notice that

G =
∑

J∈Pn(m)

aJℓJ

where aJ ≥ 0 for all J 6= (0, . . . , 0). It follows from Example 4.3 and since h(x) = x+ is
continuous, convex and non-negative that

Proposition 5.1. F is continuous and fibrewise convex-supermodular and F ≥ 0.

Recall that a non-degenerate probability measure p on Ωn is called risk neutral if for any
k ≥ 0 and any j ≥ 1 such that k + j ≤ n

Ep(S
k+j |L1, . . . , Lk)(ω1, . . . , ωk) = Rj · Sk(ω1, . . . , ωk).

We denote the set of these probability measures by RN.

Proposition 5.2. RN = M+(Ω, n, b) where b = (b1, . . . , bm) is defined in (2) in Section 1.

Proof. Since Sk+j
i = Sk

i ·Ψk+1
i · · ·Ψk+j

i and since Sk
i > 0, it is clear that the condition for p

being a risk neutral measure is equivalent to the condition

Ep(Ψ
k+1
i · · ·Ψk+j

i |L1, . . . , Lk) = Rj

(almost everywhere constant function Ωn−k → R). It is easily verified using induction and
Lemmas 2.2 and 2.1 that this condition (for any k, j such that k+ j ≤ n) is equivalent to the
single step condition, namely

Ep(Ψ
k+1
i |L1, . . . , Lk) = R
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for all 1 ≤ k ≤ n− 1. But Ψk+1
i = Di +(Ui −Di) ·L

k+1
i . So the condition above is equivalent

to

Di + (Ui −Di) ·Ep(L
k+1
i |L1, . . . , Lk) = R.

Using the definition of b1, . . . , bm in (2), this is equivalent to Ep(L
k+1
i |L1, . . . , Lk) = bi, and

collecting these for all 1 ≤ i ≤ m we get

Ep(L
k+1|L1, . . . , Lk) = b

which by definition is the condition for p ∈ M+(Ω, n, b). �

Proof of Theorem 1.1. By Proposition 5.1 F is continuous convex-supermodular and F ≥ 0.
The interval (Γmin(F, k) , Γmax(F, k)) of the rational values of F at some state of the world
(ω1, . . . , ωk) ∈ Ωk is known to be the collection of numbers

{ Rk−n ·Ep(F |L
1, . . . , Lk)(ω1, . . . , ωk) }p∈RN.

Proposition 5.2 and Theorem 4.4 imply that

Rn−k · Γmin(F, k)(ω
1, . . . , ωk) = inf

p∈RN
Ep(F |L

1, . . . , Lk)(ω1, . . . , ωk) =

inf
p∈M+(Ω,n,b)

Ep(F |L
1, . . . , Lk)(ω1, . . . , ωk) = F (ω1, . . . , ωk, b, . . . , b).

By definition of b, see (2), and since Ψi = Diℓ0 + (Ui −Di)ℓi,

Ψi(b) = R for all 1 ≤ i ≤ m.

By definition, for any 1 ≤ i ≤ m

Sn
i (ω

1, . . . , ωk, b, . . . , b) = S0
i ·Ψi(ω

1) · · ·ψi(ω
k) ·Ψi(b) · · ·Ψi(b)︸ ︷︷ ︸

n− k times

= Rn−kSk
i (ω

1, . . . , ωk).

Also, for i = 0 we clearly get Sn
0 = S0

0 ·R
n = Rn−kSk

0 . It follows that

F (ω1, . . . , ωk, b, . . . , b) =

(
Rn−k

m∑

i=0

ciS
k
i −K

)+

(ω1, . . . , ωk).

This establishes the formula for Γmin(F, k).

We note that the numbers qi defined in (3) and used in the statement of the theorem are
equal to q∗(ρi) of the upper supermodular vertex (Definition 3.7). Since by Proposition 5.1
the conditions of Theorem 4.5 hold, it follows that

Rn−k · Γmax(F, k)(ω
1, . . . , ωk) = sup

p∈RN
Ep(F |L

1, . . . , Lk)(ω1, . . . , ωk)

= sup
p∈M+(Ω,n,b)

Ep(F |L
1, . . . , Lk)(ω1, . . . , ωk)

=
∑

J∈Pn−k(m)

qJ · F (ω1, . . . , ωk, ρj1 , . . . , ρjn−k
).

Since ℓi(ρj) = 1 if i ≤ j and ℓi(ρj) = 0 if i > j it follows that Ψi(ρj) = Di+(Ui−Di)ℓi(ρj) =
χi(j). Therefore, for any J ∈ Pn−k(m),

Sn
i (ω

1, . . . , ωk, ρj1 , . . . , ρjn−k
) = S0

i ·Ψi(ω
1) · · ·Ψi(ω

k) ·Ψi(ρj1) · · ·Ψi(ρjn−k
) =

χi(J) · S
k
i (ω

1, . . . , ωk).
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For i = 0 we get, of course, Sn
0 = S0

0 · Rn = Sk
0 · χ0(J). Substitution into the definition of F

we get

F (ω1, . . . , ωk, ρj1 , . . . , ρjn−k
) =

(
m∑

i=0

ci · χi(J) · S
k
i −K

)+

(ω1, . . . , ωk).

This establishes the formula for Γmax(F, k). �

Proof of Theorem 1.3. Recall that Ψi(b) = Diℓ0 − (Ui −Di)ℓi(b) = Di + (Ui −Di)bi = R for
1 ≤ i ≤ m and that Ψ0 = R by definition. By Theorem 1.1

Γmin(F, 0) = R−n · F (b, . . . , b) = R−n(

m∑

i=0

ciS
0
i ·Ψi(b)

n −K)+ = R−n ·

(
Rn

m∑

i=0

ciS
0
i −K

)+

.

This is independent of Ui,Di.

Set bi as in (2) and denote by bi(s) the values of bi in our market model with parameters
ui(s) and di(s). Notice that di(s) < R and that ui(s) > R for all 0 ≤ s < 1. Moreover,
di(0) = Di and ui(0) = Ui and limsր1 di(s) = R and limsր1 ui(s) = R. One checks that

bi(s) =
R− di(s)

ui(s)− di(s)
= bi.

Therefore the values of qi = bi − bi+1 are independent of s. The values of χi(j) do depend on
s where χi(j)(s) = ui(s) if i ≤ j and χi(j)(s) = di(s) if i > j. Thus, χi(j)(s) is a polynomial
(of degree 1) in s. Moreover, limsր χi(j)(s) = R. By Theorem 1.1

ϕ(s) = Γmax(F, 0;ui(s), di(s)) = R−n
∑

J∈Pn(m)

qJ ·




m∑

i=0

ci · S
0
i ·
∏

j∈J

χi(j)(s)




+

.

So ϕ is a continuous function of s ∈ [0, 1). Now, ϕ(0) = Γmax(F, 0;Ui,Di) since di(0) = Di

and ui(0) = Ui. Since h : x 7→ x+ is continuous and
∑m

j=0 qj = 1 we get

lim
sր1

ϕ(s) = R−n
∑

J∈Pn(m)

qJ




m∑

i=0

ciS
0
i · lim

sր1

∏

j∈J

χi(j)(s) −K




+

= R−n
∑

J∈Pn(m)

qJ

(
m∑

i=0

ciS
0
i · R

n −K

)+

= R−n

(
m∑

i=0

ciS
0
i · R

n −K

)+

= Γmin(F, 0;Ui,Di).

The “intermediate value” result in the theorem follows from the continuity of ϕ(s). �

In the next lemma we will consider processes on Ω, see Section 2.D. Recall that the universal
process is L1, . . . , Ln where Lk is the projection Ωn → Ω to the k-th factor followed by the
inclusion to R

m.

Lemma 5.3. Fix some n. Let q be a probability measure on Ω supported on {ρ0, . . . , ρm}, see
(11). Consider R-valued processes

r0, . . . , rn−1 > 0 and X0, . . . ,Xn
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and R
m-valued processes

d0, . . . , dn−1 and ∆0, . . . ,∆n−1 > 0.

Further, consider an R
m+1-valued processes

S0, . . . , Sn and Ψ1, . . . ,Ψn.

with components Sk = (Sk
0 , . . . , S

k
m) and Ψk = (Ψk

0 , . . . ,Ψ
k
m). Assume that

(1) Sk
i = Sk−1

i ·Ψk
i for all 1 ≤ k ≤ n and all 0 ≤ i ≤ m.

(2) Ψk+1
0 = rk and Ψk+1

i = dki + ∆k
i · Lk+1

i for any 0 ≤ k ≤ n − 1, and for any ωK =

(ω1, . . . , ωk) ∈ Ωk,

Eq(ω 7→ Ψk+1
i (ωK , ω)) = rk(ωK).

(3) Xk are fibrewise convex-supermodular, and for any 0 ≤ k ≤ n− 1 and any ωK ∈ Ωk

Eq(ω 7→ Xk+1(ωK , ω)) = rk(ωK) ·Xk(ωK).

Then among all Rm+1-valued processes β0, . . . , βn−1 there exists a process α0, . . . , αn−1 which
minimises the R-valued random process

(17) V k
β =

m∑

i=0

βki · Sk
i

subject to the condition

(18)
m∑

i=0

βki · Sk+1
i ≥ Xk+1.

Moreover, V k
α = Xk and the value of αk(ωK) at ωK ∈ Ωk can be computed by




αk
0(ω

K)
αk
1(ω

K)
...

αk
m(ωK)


 = T (ωK)−1 ·M ′(ωK)−1 ·Q ·




Xk+1(ωKρ0)
Xk+1(ωKρ1)

...
Xk+1(ωKρm)




where Q is the matrix in the statement of Theorem 1.2 and T,M ′ : Ωk → Mat(m+1)×(m+1)(R)
are the (m+ 1)× (m+ 1) matrices

T =




rk · Sk
0

Sk
1

. . .

Sk
m




M ′ =




1 dk1 dk2 · · · dkm
0 ∆k

1
...

. . .

0 ∆k
m




Proof. We prove the lemma in a sequence of claims.

Claim 1: If a process β0, . . . , βn−1 satisfies (18) then V k
β ≥ Xk for all 0 ≤ k ≤ n− 1.
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Proof: Choose some k and some ωK ∈ Ωk. Then (18) becomes the following system of
(infinitely many) inequalities in the unknowns βki (ω

K)

(19)

m∑

i=0

βki (ω
K) · Sk+1

i (ωK , ω) ≥ Xk+1(ωK , ω), (ω ∈ Ω).

Let Φ(ω) denote the left hand side of (19) and Y (ω) denote its right hand side. These are
random variables with domain Ω so Eq(Φ) ≥ Eq(Y ). By the hypotheses on Xk

Eq(Y ) = Eq(ω 7→ Xk+1(ωKω) = rk(ωK) ·Xk(ωK).

By the hypotheses on Sk and Ψk

Eq(Φ) =
m∑

i=0

βki (ω
K) · Sk

i (ω
K) ·Eq(ω 7→ Ψk+1

i (ωK , ω)) =

rk(ωK) ·

m∑

i=0

βki (ω
K) · Sk

i (ω
K) = rk(ωK) · V k

β (ω
K).

Since rk > 0 it follows that V k
β (ω

K) ≥ Xk(ωK). q.e.d

Consider some 0 ≤ k ≤ n− 1 and some ωK = (ω, . . . , ωk) ∈ Ωk. We will show in Claim 5
below that the system of m+ 1 linear equations with m+ 1 unknowns αk

0(ω
K), . . . , αk

m(ωK)

(20)

m∑

i=0

Sk
i (ω

K)Ψk+1
i (ωK , ρj) · α

k
i (ω

K) = Xk+1(ωK , ρj), 0 ≤ j ≤ m

has a unique solution given by the matrices Q,M ′, T as in the statement of the lemma. Since
Sk > 0 and dk and ∆k > 0 are measurable, we obtain measurable functions αk : Ωk → R

m+1

which form a process over Ω
α0, . . . , αn−1.

We remark that (20) are the inequalities in (19) corresponding to ω = ρ0, . . . , ρm with in-
equalities turned into equalities.

Claim 2: Consider some ωK ∈ Ωk where 0 ≤ k ≤ n− 1. Then αk(ωK) solves the inequalities
(19) for all λ ∈ L ⊆ Ω.

Proof: As in Claim 1, write Φ(ω) for the left hand side of (19) and Y (ω) for the right. The
claim is that Φ(λ) ≥ Y (λ) for all λ ∈ L. Assume this is false, namely Φ(λ) < Y (λ) for some
λ ∈ L. Among all these λ’s choose one for which j is maximal with ρj � λ; see Definition

3.3 and the discussion below it. Clearly j < m because by definition of αk(ωK) we have
Φ(ρi) = Y (ρi) for all 0 ≤ i ≤ m and because ρm ∈ L is maximal. Set λ′ = λ ∨ ρj+1. By

the choice of λ we get λ ∧ ρj+1 = ρj. Since Sk+1
i (ωK , ω) = Sk

i (ω
K) · Ψk+1

i (ω) and since the

assignment ω 7→ Ψk+1
i (ωK , ω) is an affine function on Ω, it follows that Φ: Ω → R is affine.

Therefore
Φ(λ′) + Φ(ρj) = Φ(λ) + Φ(ρj+1).

The assumption on Xk+1 implies that Y |L is supermodular, hence

Y (λ′) + Y (ρj) ≥ Y (λ) + Y (ρj+1).

Subtracting these inequalities, keeping in mind that by construction Φ(ρi) = Y (ρi), we get

Φ(λ′)− Y (λ′) ≤ Φ(λ)− Y (λ) < 0.

Therefore Φ(λ′) < Y (λ′) and ρj+1 � λ′. This contradicts the maximality of j. q.e.d

Claim 3: αk(ωK) solves the inequalities (19) for all ω ∈ Ω.
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Proof: Since Ω is the convex hull of L, any ω ∈ Ω is a convex combination ω =
∑

λ∈L tλ · λ.

The assumption on Xk+1 implies that Y : Ω → R is convex. Together with Claim 2 and since
Φ is affine

Φ(ω) = Φ(
∑

λ∈L

tλλ) =
∑

λ∈L

tλΦ(λ) ≥
∑

λ∈L

tλY (λ) ≥ Y (
∑

λ∈L

tλλ) = Y (ω).

q.e.d

Claim 4: V k
α = Xk.

Proof: Denote qj = q(ρj). Consider some ωK ∈ Ωk. Equation (20) defining αk(ωK) yields

rk(ωK) ·Xk(ωK) = Eq(ω 7→ Xk+1(ωK , ω))

=
m∑

j=0

qjX
k+1(ωK , ρj)

=

m∑

j=0

m∑

i=0

αk
i (ω

K)Sk
i (ω

K) · qjΨ
k+1
i (ωK , ρj)

=

m∑

i=0

αk
i (ω

K)Sk
i (ω

K) ·Eq(ω 7→ Ψk+1
i (ωK , ω))

= rk(ωK) · V k
α (ω

K).

Since rk > 0 it follows that V k
α (ω

K) = Xk(ωK). q.e.d

Claim 3 implies that α0, . . . , αn−1 solve all the inequalities (19) and hence it solves the
constraints (18). Claims 1 and 4 imply that V k

α ≤ V k
β for all k and all β0, . . . , βn−1 that

satisfy (18). To complete the proof of the lemma it only remains to prove:

Claim 5: The system of equations (20) has a unique solution given by the matrices Q,T,M ′

as in the statement of the lemma.

Proof: Consider 0 ≤ k ≤ n−1 and ωK ∈ Ωk. For 0 ≤ i, j ≤ m set χk+1
i (j) = Ψk+1

i (ωK , ρj).
Notice that by the hypotheses

χk+1
0 (j) = rk(ωK).

For 1 ≤ i ≤ m observe that Lk+1
i (ρj) = 1 if i ≤ j and Lk+1

i (ρj) = 0 if i > j. Since

Ψk+1 = dki +∆k
i (ω

K)Lk+1
i we get

χk
i (j) =

{
dki (ω

K) + ∆k
i (ω

K) i ≤ j

dki (ω
K) i > j

Since Sk+1
i (ωK , ρj) = Sk

i (ω
K) ·Ψk+1

i (ωK , ρj), the matrix representing the system (20) is

M =




Sk
0χ

k+1
0 (0) Sk

1χ
k+1
1 (0) · · · Sk

mχ
k+1
m (0)

Sk
0χ

k+1
0 (1) Sk

1χ
k+1
1 (1) · · · Sk

mχ
k+1
m (1)

...
...

Sk
0χ

k+1
0 (m) Sk

1χ
k+1
1 (m) · · · Sk

mχ
k+1
m (m)


 =




1 χk+1
1 (0) · · · χk+1

m (0)

1 χk+1
1 (1) · · · χk+1

m (1)
...

...

1 χk+1
1 (m) · · · χk+1

m (m)




︸ ︷︷ ︸
M ′′

·




rkSk
0

Sk
1

. . .

Sk
m




︸ ︷︷ ︸
T
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with all entries evaluated at ωK . Thus, M,M ′′, T are functions Ωk → Mat(m+1)×(m+1)(R).
Oserve that for all 1 ≤ i ≤ m and 1 ≤ j ≤ m

χk+1
i (j) − χk+1

i (j − 1) =

{
∆k+1

i (ωK) if i = j

0 if i 6= j

It follows that

Q ·M ′′ =




1 dk1 dk2 · · · dkm
0 ∆k

1

0 ∆k
2

...
. . .

0 ∆k
m




with these matrices evaluated at ωK . We denote the latter matrix by M ′ and notice that
it is invertible since ∆k

i > 0. In particular M(ωK) is invertible for any ωK ∈ Ωk so (20)
has a unique solution. Note that M−1 = T−1 · M ′−1 · Q is a measurable function Ωn →
Mat(m+1)×(m+1)(R) and the solution of (20) is therefore the one given in the statement of the
lemma. �

Proof of Theorem 1.2. We apply Lemma 5.3 with the following data. The probability measure
q is the upper supervertex q∗ : L → R (Definition 3.7) extended to a probability measure on
Ω. The processes S0, . . . , Sn and Ψ1, . . . ,Ψn are the prices Sk = (Sk

0 , . . . , S
k
m) of the assets

and their price jumps Ψk = (Ψk
0, . . . ,Ψ

k
m). The process r0, . . . , rn−1 consists of the constant

functions with value R. The processes d0, . . . , dn−1 and ∆0, . . . ,∆n−1 have components dki
and ∆k

i (1 ≤ i ≤ m) where dki is constant with value Di and ∆k
i is constant with value

Ui − Di. The process X0, . . . ,Xn are the upper bound of the option’s F price at time k,
namely Xk = Γmax(F, k).

We need to show that the conditions of the lemma are fulfilled. First, Sk
i > 0 for all

k. By construction of the model, Sk+1
i = Sk

i · Ψk+1
i and Ψk+1

0 = R = rk and Ψk+1
i =

Di + (Ui −Di)L
k
i = dki +∆k

iL
k+1
i for all 0 ≤ k ≤ n− 1. Also,

Eq(ω 7→ Ψk+1
i (ωK , ω)) = Eq(Di + (Ui −Di)ℓi(ω)) = Di + (Ui −Di)bi = R = rk(ωK)

by construction of q∗ (Definition 3.7). By Theorem 1.1

Xk(ωK) = Rk−n
∑

J∈Pn−k(m)

qJ · F (ωK , ρJ).

Since F is fibrewise convex-supermodular by Proposition 5.1, Xk is a linear combination with
non-negative coefficients of fibrewise convex-supermodular functions, hence it is one as well.
Finally, we check that

Eq∗(ω 7→ Xk+1(ωK , ω)) = Eq∗


ω 7→ Rk+1−n

∑

J∈Pn−k−1(m)

qJ · F (ωK , ω, ρJ)




= Rk+1−n
m∑

j=0

qj
∑

J∈Pn−k−1(m)

qJF (ω
K , ρj , ρJ)

= Rk+1−n
∑

J∈Pn−k(m)

qJF (ω
K , ρJ)

= R ·Xk(ωK)

= rk(ωK) ·Xk(ωK).
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All the conditions of Lemma 5.3 are fulfilled and we obtain a process α0, . . . , αn−1 which
minimises

V k
α =

m∑

i=0

αk
i S

k
i

subject to the requirement that for all 0 ≤ k ≤ n− 1
m∑

i=0

αk
i S

k+1
i ≥ Xk+1 = Γmax(F, k + 1).

Thus, α(k) = αk is a minimum-cost maximal hedging strategy as required with the formulas
for its value given in the statement of the theorem. It only remains to note that Yt(k) at the
state of the world ωK ∈ Ωk used in the statement of the theorem is precisely Xk+1(ωK , ρt)
because

Yt(k)(ω
K) = Rk+1−n

∑

J∈Pn−k−1(m)

qJ · (
m∑

i=0

ciχi(J)χi(t)S
k
i (ω

K)−K)+

= Rk+1−n
∑

J∈Pn−k−1(m)

qJ · (

m∑

i=0

ciχi(J)Ψi(ρt)S
k
i (ω

K)−K)+

= Rk+1−n
∑

J∈Pn−k−1(m)

qJ · (

m∑

i=0

ciχi(J)S
k
i (ω

K , ρt)−K)+

= Γmax(F, k + 1)(ωK , ρt)

= Xk+1(ωK , ρt).

�
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