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HEDGING OF EUROPEAN TYPE CONTINGENT CLAIMS IN

DISCRETE TIME BINOMIAL MARKET MODELS

JAREK KĘDRA, ASSAF LIBMAN, AND VICTORIA STEBLOVSKAYA

Abstract. We consider a discrete-time binomial model of a market consisting of m ≥ 1

risky securities and one bond. For a European type contingent claim we give an explicit
formula for the minimum-cost maximal hedging strategy.

1. The main result

In this note we consider a discrete-time binomail model for a market with m risky securities
S1, . . . , Sm and one bond S0 with return R > 0. Time has values k = 0, . . . , n, and we write
Si(k) for the price of the i-th security at time k. The model comes with a choice of numbers
0 < Di < R < Ui for each 1 ≤ i ≤ m. To describe the random process of the values of Si,
suppose that the prices of S0, . . . , Sm are known at time k < n. Their values at time k + 1
is determined as follows.

(a) For the bond process,

S0(k + 1) = S0(k) ·R.

(b) For the remaining securities, flip m coins and according to the results set

Si(k + 1) = Si(k) · Ui or Si(k + 1) = Si(k) ·Di

The coins are not assumed to be independent, nor do the flips at time k and time k′ 6= k.

We consider a European contingent claim X with pay-off at time n (of maturity) given by

(1.1) F =

(
m∑

i=0

γiSi(n)−K

)+

,

where γ1, . . . , γn ≥ 0, K ≥ 0 and x+
def
= max{x, 0} for any real number x.

It is known that the set of rational values of X at time k, (i.e its no-arbitrage price range at
time k, forms an open interval whose upper bound we denote by Cmax(X, k). In [1, Section
6A eqns. (6.1) and (6.2)] we have shown that Cmax(X, k) can be expressed solely by means
of the prices of S0, . . . , Sm at time k and the parameters of the model (see Proposition 2.6
below).

A minimum cost maximal hedging strategy for X consist of a choice, at each time
k = 0, . . . , n − 1, of numbers α0(k), . . . , αm(k) which minimize (the cost of the hedging
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portfolio)

(1.2) Vα(k) =

m∑

i=0

αi(k)Si(k)

subject to the (maximal-hedging) condition that at time k + 1 the value of this portfolio
satisfies

(1.3)

m∑

i=0

αi(k) · Si(k + 1) ≥ Cmax(X, k + 1).

In particular the value of the portfolio Vα(k) acquired at time k is guaranteed to exceed the
value of the option X at time k + 1. Notice that the values chosen for αi(k) depend on the
“state of the world” at time k, and in particular on the prices of S0, . . . , Sm at time k. In [1,
Proposition 4.2] we showed that a minimum cost maximal hedging strategy exists and that
its set up cost at each time k is exactly Cmax(X, k), namely the maximal rational value of X
at time k.

The purpose of this note is to give an explicit formula for the values of α0(k), . . . , αm(k). In
the remainder of this section we describe this formula.

For every 1 ≤ i ≤ m set

(1.4) bi =
R−Di

Ui −Di
.

If necessary, reorder the securities S1, . . . , Sm so that b1, . . . , bm is non-increasing, namely

(1.5) b1 ≥ b2 ≥ · · · ≥ bm.

Notice that 0 < bi < 1 for all i. Define for any 0 ≤ j ≤ m

(1.6) qj =







1− b1 j = 0
bj − bj+1 1 ≤ j ≤ m− 1

bm j = m.

Define for 0 ≤ i ≤ m and for 0 ≤ j ≤ m numbers χi(j) as follows

(1.7) χ0(j) = R and χi(j) =

{
Ui i ≤ j

Di i > j.

We denote

Pk(m) = {0, . . . , m}k = {(j1, . . . , jk) : 0 ≤ ji ≤ m}.

For any J ∈ Pk(m) set

qJ =
∏

j∈J

qj and χi(J) =
∏

j∈J

χi(j).

Assume that at time 0 ≤ k ≤ n − 1, the prices S0(k), . . . , Si(m) are known. Define for any
0 ≤ j ≤ m

(1.8) Yj(k) = Rk+1−n
∑

J∈Pn−k−1(m)

qJ

(
m∑

i=0

γiχi(J)χi(j)Si(k)−K

)+

.
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Finally, define the following (m+ 1)× (m+ 1) matrices

Q =











1 0 0 · · · · · · 0 0
−1 1 0 · · · · · · 0 0
0 −1 1 · · · · · · 0 0
...

...
... · · · · · ·

...
0 0 0 · · · · · · 1 0
0 0 0 · · · · · · −1 1











N =









1 D1 D2 · · · Dm

0 U1 −D1 0 . . . 0
0 0 U2 −D2
...

...
. . .

...
0 0 . . . Um −Dm









T =







RS0(k)
S1(k)

. . .
Sm(k)







Observe that the matrix N only depend on the parameters of the model, and is easily seen
to be invertible. Only the matrix T depends on the state of the world at time k, and since
Si(k) > 0 it is clearly invertible. Also, Q is invertible.

Theorem 1.1. With the set up and notation above, at time 0 ≤ k ≤ n − 1 the portfolio
Vα(k) =

∑m
i=0 αi(k) · Si(k) of a minimum cost maximal hedge (1.2), (1.3) for a European

contingent claim X in (1.1) is given by






α0(k)
α1(k)

...
αm(k)






= T−1 ·N−1 ·Q ·







Y0(k)
Y1(k)

...
Ym(k)







Moreover, Vα(k) = Cmax(F, k).

REMARK: The formula given for Yj(k) has computational complexity O((m + 1)n−k) (the
number of terms in the sum). This is exponential in n. As discussed in [1], the action of the
symmetric group Sn−k−1 on Pn−k−1(m) gives a formula for Yj(k) whose complexity is only
O((n− k)m+1), polynomial in n.

REMARK: As is the case in [1], the function h(x) = x+ can be replaced with any convex
function. Thus, our results apply to several contingent claims other than European basket
call options. The reader is referred to [1] for details.

2. Formalisation of the model and proof of the main result

2.1. Single time-step. Each step of the model consists of flipping m coins. A natural
sample space for this experiment is the set

L = {0, 1}m
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of all the sequences of length m consisting of 0’s and 1’s. We denote its elements by λ =
(λ(1), . . . , λ(m)) and view L as a subset of Rm. Let ℓi denote the (random variable of the)
result of the i-th coin, namely ℓi : L → R is the projection to the i-th factor:

ℓi : λ 7→ λ(i).

Observe that ℓi is the restriction to L of the linear projection function πi : R
m → R.

Let ψi be the “price jump” of the i-th security. One checks that ψ0 = R and that ψi(λ) =
Di + (Ui −Di)λ(i) for 1 ≤ i ≤ m, namely

(2.1) ψ0 = R and ψi = Di + (Ui −Di)ℓi.

Thus, for every 1 ≤ i ≤ m, ψi is the restriction to L of an affine function fi : R
m → R where

fi(x1, . . . , xm) = Di + (Ui −Di)xi.

Let us consider probability measures on L on the σ-algebra ℘(L) of all the subsets of L.
These are equivalent to probability density functions p : L → R and we will abuse notation
and write p for both the density function and the probability measure it induces. The
requirement that p is risk-neural in a single-step model is the condition

Ep(ψi) = R, (1 ≤ i ≤ m).

By the linearity of the expectation and the definition (1.4), this is equivalent to

Ep(ℓi) = bi.

Throughout we assume that b1, . . . , bm is non-increasing (1.5).

Definition 2.1. Let P (L, b) denote the set of all probability density functions p : L → R

such that Ep(ℓi) = bi for all 1 ≤ i ≤ m.

Define ρ0, . . . ρm ∈ L as follows

(2.2) ρj = (1, . . . , 1
︸ ︷︷ ︸
j times

, 0, . . . , 0).

Thus, ρj describes the event of a run of j heads followed by a run of n − j tails. Use (1.6)
to define a probability density function q : L → R by

(2.3) q(λ) =

{
qj if λ = ρj for some 0 ≤ j ≤ m

0 otherwise

We call q the upper supermodular vertex of P (L, b). Compare with [1, Appendix A
equation (A.6)] where we denoted ρj by µj. One checks, see [1, Appendix A], that indeed
q ∈ P (L, b). In particular

(2.4) Eq(ψi) = Di + (Ui −Di)Eq(ℓi) = Di + (Ui −Di)bi = R.

There is a canonical bijection of L with the set ℘({1, . . . , m}). This gives rise to a partial
order � on L induced by the partial order ⊆ on ℘({1, . . . , m}). Thus,

(2.5) λ � λ′ ⇐⇒ supp(λ) ⊆ supp(λ′).
4



Union and intersection of sets render L a lattice with join ∨ and meet ∧,

λ ∨ λ′ = (max{λ(1), λ′(1)}, . . . ,max{λ(m), λ′(m)})(2.6)

λ ∧ λ′ = (min{λ(1), λ′(1)}, . . . ,min{λ(m), λ′(m)})

The concept of submodular functions is originally due to Lovász in [2]. In this note, its
variant, supermodular functions [3], is used.

Definition 2.2. A function f : L → R is called supermodular if for any λ, λ′ ∈ L

f(λ ∨ λ′) + f(λ ∧ λ′) ≥ f(λ) + f(λ′).

It is called modular if equality holds.

Proposition 2.3. (i) A linear combination with non-negative coefficients of supermodular
functions is supermodular.

(ii) Let g : Rm → R be an affine function. Then g|L is modular.

(iii) Let g : Rm → R be an affine function of the form g(x1, . . . , xm) =
∑m

i=1 aixi + b where
a1, . . . , am ≥ 0. If h : R → R is convex then the restriction of h◦g to L is supermodular.

Proof. Part (i) is [3, Proposition 2.2.5(a)]. Part (ii) follows from [3, Theorem 2.2.3] (and is
straightforward). Part (iii) follows from [3, Theorem 2.2.6(a)]. �

The crucial property of the upper supermodlar vertex q (2.3) is given by the following result.

Proposition 2.4 ([1, Theorem A.5(i)]). Let f : L → R be supermodular. Let q be the upper
supermodular vertex in P (L, b). Then

sup
p∈P (L,b)

Ep(f) = max
p∈P (L,b)

Ep(f) = Eq(f).

2.2. Multi time-step model. For the n-step model one performs n iterations (not neces-
sarily independent) of the experiment of flipping m coins. Thus, the natural sample space
for an n-step discrete time binomial market model is Ln. We equip it with the σ-algebra
F = ℘(Ln) of all subsets of Ln.

The “state of the world” at time 0 ≤ k ≤ n is described by a k-tuple (λ1, . . . , λk) ∈ Lk.
Thus, the set of the states of the world at time k is naturally identified with Lk. We obtain
a partition {ω × Ln−k : ω ∈ Lk} of Ln which generates a sub-σ-algebra Fk.

The price jump of the i-th security at time 1 ≤ k ≤ n, where 1 ≤ i ≤ m, is the random
variable Ψi(k) : L

n → R

Ψi(k) : (λ
1, . . . , λn) 7→ ψi(λ

k).

Of course, Ψ0(k) : L
n → R is the constant function (random variable) with value R.

The random process Si(0), . . . , Si(n) of the prices of the i-th security at time 0 ≤ k ≤ n are
random variables Si(k) : L

n → R. Clearly, they are given by

(2.7) Si(k) = Si(0) ·Ψi(1) · · ·Ψi(k)
5



Where Si(0) > 0 are constant (the initial prices of the securities at time 0). Clearly, the value
of Si(k) at ω ∈ Ln depend only on the first k entries of ω. Hence, Si(k) are Fk-measurable
random variables, namely their values only depend on the state of the world at time k. We
will therefore abuse notation and regard Si(k) as functions with domain Lk.

We now fix γ0, . . . , γm where γi ≥ 0 for all 1 ≤ i ≤ m and fix some K and set

(2.8) F =

(
m∑

i=0

γiSi(n)−K

)+

.

This random variable is the pay-off of the European contingent claim which is the subject
of study of this note.

Recall the elements ρj ∈ L from (2.2). Observe that by definition of ψi (2.1) and of χi (1.7)
we have

(2.9) ψi(ρj) = χi(j), (0 ≤ i, j ≤ m).

Proposition 2.5. Consider some ω = (λ1, . . . , λk) ∈ Lk, a state of the world at time
0 ≤ k ≤ n, and some J = (j1, . . . , jn−k) ∈ Pn−k(m). Set τ = (ρj1, . . . , ρjn−k

) ∈ Ln−k. Then

F (ωτ) =

(
m∑

i=0

γiSi(k)(ω)χi(J)−K

)+

.

Proof. By the definition of Si(n) (2.7)

F (ωτ) =

(
m∑

i=0

γiSi(0) ·
n∏

p=1

Ψi(p)(ωτ)−K

)+

=

(
m∑

i=0

γiSi(0) ·

k∏

p=1

ψi(λ
p) ·

n∏

p=k+1

ψi(ρjp)−K

)+

=

(
m∑

i=0

γiSi(k)(ω) · χi(J)−K

)+

.

�

For every 0 ≤ k ≤ n we will denote by

Cmax(F, k) and Cmin(F, k)

the upper and lower bounds of the rational values of F at time k. Of course, these numbers
depend only on the state of the world at time k, and so Cmax /min(F, k) are Fk-measurable
random variables (on Ln).

Proposition 2.6. With the pay-off F (2.8) of European basket call, at time 0 ≤ k ≤ n

Cmax(F, k) = Rk−n
∑

J∈Pn−k(m)

qJ

(
m∑

i=0

γiSi(k)χi(J)−K

)+

.
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Proof. This is an immediate consequence of [1, Example 7.3 and Section 6A eqns. (6.1) and
(6.2)] and Proposition 2.5. We note that in [1] the elements ρj ∈ L are denoted µj and
Pn−k(m) is denoted In−k. �

Notice that Cmax(F, k) is an Fk measurable random variable on Ln. Hence, it will be conve-
nient to think of it as a function with domain Lk.

Proposition 2.7. Consider some 0 ≤ k ≤ n− 1 and some ω ∈ Lk representing the state of
the world at time k. Then the function f : L → R defined by

f(λ) = Cmax(F, k + 1)(ωλ)

is supermodular. Moreover, with respect to the upper supermodular vertex (2.3)

Eq(f) = R · Cmax(F, k)(ω).

Proof. It follows from Proposition 2.6 and since Si(k + 1) = Si(k) ·Ψi(k + 1) that

f(λ) = Rk+1−n
∑

J∈Pn−k−1(m)

qJ

(
m∑

i=0

γiSi(k)(ω) · ψi(λ) · χi(J)−K

)+

.

Proposition 2.3(i),(iii) implies that f is supermodular since h(x) = x+ is convex and since
ψi = Di + (Ui − Di)ℓi is an affine function with non-negative coefficients and since R > 0
and γi, Si(k), χi(J) ≥ 0 for all 1 ≤ i ≤ m. Moreover, by (2.9)

Eq(f) =
∑

λ∈L

q(λ)f(λ)

=
m∑

j=0

q(ρj)f(ρj)

=
m∑

j=0

qj
∑

J∈Pn−k−1(m)

qJR
k+1−n

(
m∑

i=0

γiSi(k)(ω) · ψi(ρj) · χi(J)−K

)+

=
m∑

j=0

qj
∑

J∈Pn−k−1(m)

qJR
k+1−n

(
m∑

i=0

γiSi(k)(ω) · χi(J)χi(j)−K

)+

= R · Rk−n
∑

J∈Pn−k(m)

qJ

(
m∑

i=0

γiSi(k)(ω) · χi(J)−K

)+

= R · Cmax(F, k)(ω).

�

Consider some 0 ≤ k ≤ n − 1 and recall Yj(k) from (1.8) where 0 ≤ j ≤ m. Observe that
Yj(k) is a function of the random variables Si(k), so Yj(k) is a random variable (on Ln) whose
values depend only on the state of the world at time k, namely Yj(k) is Fk-measurable.
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Proposition 2.8. For any 0 ≤ j ≤ m and any ω = (λ1, . . . , λk) ∈ Lk

Cmax(F, k + 1)(ωρj) = Yj(ω).

Proof. This follows immediately from Propositions 2.6 and equation (2.9). �

Proof of Theorem 1.1. Fix some 0 ≤ k ≤ n−1 and some state of the world ω = (λ1, . . . , λk) ∈
Lk at time k. Any subsequent state of the world at time k+1 has the form ωλ for λ ∈ L. Our
goal is to find numbers α0(k)(ω), . . . , αm(k)(ω), which for simplicity we denote by α0, . . . , αm,
which fulfil the inequality (1.3), namely for every λ ∈ L

m∑

i=0

αiSi(k + 1)(ωλ) ≥ Cmax(F, k + 1)(ωλ)

and which minimize

(2.10) Vα(k)(ω) =
m∑

i=0

αiSi(k)(ω).

We rewrite the first inequality as a set of inequalities (indexed by λ ∈ L)

(2.11)
m∑

i=0

αiSi(k)(ω) · ψi(λ)

︸ ︷︷ ︸

Φα(λ)

≥ Cmax(F, k + 1)(ωλ)
︸ ︷︷ ︸

Ξ(λ)

(λ ∈ L).

We obtain two functions Φα : L → R and Ξ: L → R, and (2.11) is the inequality

Φα ≥ Ξ.

The first step of the proof is to show that the following system of m + 1 linear equations
with the m+ 1 unknowns α0, . . . , αm has a unique solution

m∑

i=0

αiSi(k)(ω) · ψi(ρj) = Cmax(F, k + 1)(ωρj), (0 ≤ j ≤ m).

Notice that these equations are obtained by imposing equalities in the inequalities (2.11) for
λ = ρ0, . . . , ρm. By (2.9) and by Proposition 2.8, this is the system of equations

(2.12)
m∑

i=0

αiSi(k)(ω) · χi(j) = Yj(ω), (0 ≤ j ≤ m).

Write α• for the column vector (α0, . . . , αm) and Y• for the column vector (Y0(ω), . . . , Ym(ω)).
Then this system of m+ 1 linear equations is Mα• = Y• where M is the (m+ 1)× (m+ 1)
matrix

(Mj,i) = (Si(k)(ω) · χi(j)) =






1 χ1(0) · · · χm(0)
1 χ1(1) · · · χm(1)
...

...
...

1 χ1(m) · · · χm(m)







︸ ︷︷ ︸

M ′

·







RS0(k)(ω)
S1(k)(ω)

. . .
Sm(k)(ω)







︸ ︷︷ ︸
T

.
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Clearly, T is invertible since R, Si(k)(ω) > 0. Observe that for any 1 ≤ j ≤ m and any
0 ≤ i ≤ m− 1

χj(i)− χj(i+ 1) =

{
0 i 6= j

Ui −Di i = j

By inspection we get

Q ·M ′ =









1 D1 D2 · · · Dm

0 U1 −D1 0 · · · 0
0 0 U2 −D2 · · · 0
...

. . .
0 0 0 · · · Um −Dm









︸ ︷︷ ︸

N

.

Clearly, Q and N are invertible, hence so is M ′. It follows that M = M ′T is invertible, so
the system (2.12) has a unique solution given by

α• = T−1N−1Q · Y•.

This gives the values of αi(k)(ω) stated in the theorem. It remains to show that these αi

solve all the inequalities in (2.11) (one for each λ ∈ L) and minimize (2.10) and Vα(k)(ω) =
Cmax(F, k)(ω).

Claim 1: α0, . . . , αm solve the inequalities (2.11).

Proof: Suppose that not all these inequalities are solved, namely Φα(λ) > Ξ(λ) for some
λ ∈ L. Since α0, . . . , αm solve the equations (2.12), we certainly get Φα(ρi) = Ξ(ρi) for all
0 ≤ i ≤ m.

Among all λ ∈ L for which Φ(λ) > Ξ(λ) choose one with maximal possible j such that
ρj � λ (2.5). Observe that j < m because if j = m then ρm � λ implies that λ = ρm which
we have seen is impossible. Set λ′ = λ ∨ ρj+1 (2.6). By the maximality of j we get that
λ ∧ ρj+1 = ρj . Observe that Φα is an affine function, hence it is modular by Proposition
2.3(ii), so

Φ(λ′) + Φ(ρj) = Φ(λ) + Φ(ρj+1).

By Proposition 2.7 Ξ is supermodular, so

Ξ(λ′) + Ξ(ρj) ≥ Ξ(λ) + Ξ(ρj+1).

Subtracting the first equality from the second inequality, and recalling that Φ(ρi) = Ξ(ρi)
for all i, we get

Ξ(λ′)− Φ(λ′) ≥ Ξ(λ)−Ψ(λ) > 0.

So Φ(λ′) > Ξ(λ′) and ρj+1 � λ′ which contradicts the maximality of j. q.e.d

Recall that any β0, . . . , βm define Vβ(k)(ω) in (2.10).

Claim 2: For any β0, . . . , βm for which the inequalities (2.11) hold,

Vβ(k)(ω) ≥ Cmax(F, k)(ω).

In addition, α0, . . . , αm attain this lower bound, namely

Vα(k)(ω) = Cmax(F, k)(ω).
9



Proof: Suppose βi solve the inequalities (2.11). It follows from (2.4) that

(2.13) Eq(Φβ) =

m∑

i=0

βiSi(k)(ω) · Eq(ψi) = R ·

m∑

i=0

βiSi(k)(ω) = RVβ(k)(ω).

Proposition 2.7 implies that Eq(Ξ) = RCmax(F, k)(ω). Since βi solve the inequalities (2.11),
this means Φβ ≥ Ξ. By the monotonicity of the expectation, Eq(Φβ) ≥ Eq(Ξ), and since
R > 0, it follows that Vβ(k)(ω) ≥ Cmax(F, k)(ω) as needed.

By construction Φα(ρj) = Ξ(ρj) for all j = 0, . . . , m. Since q is supported on ρ0, . . . , ρm, we
deduce from (2.13) that

RVα(k)(ω) = Eq(Φα) = Eq(Ξ) = R · Cmax(F, k)(ω).

Hence Vα(k)(ω) = Cmax(F, k)(ω). q.e.d

The theorem follows from Claims 1 and 2. �
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