HEDGING OF EUROPEAN TYPE CONTINGENT CLAIMS IN DISCRETE TIME BINOMIAL MARKET MODELS

JAREK KĘDRA, ASSAF LIBMAN, AND VICTORIA STEBLOVSKAYA

Abstract

We consider a discrete-time binomial model of a market consisting of $m \geq 1$ risky securities and one bond. For a European type contingent claim we give an explicit formula for the minimum-cost maximal hedging strategy.

1. The main Result

In this note we consider a discrete-time binomail model for a market with m risky securities S_{1}, \ldots, S_{m} and one bond S_{0} with return $R>0$. Time has values $k=0, \ldots, n$, and we write $S_{i}(k)$ for the price of the i-th security at time k. The model comes with a choice of numbers $0<D_{i}<R<U_{i}$ for each $1 \leq i \leq m$. To describe the random process of the values of S_{i}, suppose that the prices of S_{0}, \ldots, S_{m} are known at time $k<n$. Their values at time $k+1$ is determined as follows.
(a) For the bond process,

$$
S_{0}(k+1)=S_{0}(k) \cdot R .
$$

(b) For the remaining securities, flip m coins and according to the results set

$$
S_{i}(k+1)=S_{i}(k) \cdot U_{i} \quad \text { or } \quad S_{i}(k+1)=S_{i}(k) \cdot D_{i}
$$

The coins are not assumed to be independent, nor do the flips at time k and time $k^{\prime} \neq k$. We consider a European contingent claim X with pay-off at time n (of maturity) given by

$$
\begin{equation*}
F=\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(n)-K\right)^{+} \tag{1.1}
\end{equation*}
$$

where $\gamma_{1}, \ldots, \gamma_{n} \geq 0, K \geq 0$ and $x^{+} \stackrel{\text { def }}{=} \max \{x, 0\}$ for any real number x.
It is known that the set of rational values of X at time k, (i.e its no-arbitrage price range at time k, forms an open interval whose upper bound we denote by $C_{\max }(X, k)$. In [1, Section 6 A eqns. (6.1) and (6.2)] we have shown that $C_{\max }(X, k)$ can be expressed solely by means of the prices of S_{0}, \ldots, S_{m} at time k and the parameters of the model (see Proposition 2.6 below).

A minimum cost maximal hedging strategy for X consist of a choice, at each time $k=0, \ldots, n-1$, of numbers $\alpha_{0}(k), \ldots, \alpha_{m}(k)$ which minimize (the cost of the hedging
portfolio)

$$
\begin{equation*}
V_{\alpha}(k)=\sum_{i=0}^{m} \alpha_{i}(k) S_{i}(k) \tag{1.2}
\end{equation*}
$$

subject to the (maximal-hedging) condition that at time $k+1$ the value of this portfolio satisfies

$$
\begin{equation*}
\sum_{i=0}^{m} \alpha_{i}(k) \cdot S_{i}(k+1) \geq C_{\max }(X, k+1) \tag{1.3}
\end{equation*}
$$

In particular the value of the portfolio $V_{\alpha}(k)$ acquired at time k is guaranteed to exceed the value of the option X at time $k+1$. Notice that the values chosen for $\alpha_{i}(k)$ depend on the "state of the world" at time k, and in particular on the prices of S_{0}, \ldots, S_{m} at time k. In [1, Proposition 4.2] we showed that a minimum cost maximal hedging strategy exists and that its set up cost at each time k is exactly $C_{\max }(X, k)$, namely the maximal rational value of X at time k.

The purpose of this note is to give an explicit formula for the values of $\alpha_{0}(k), \ldots, \alpha_{m}(k)$. In the remainder of this section we describe this formula.

For every $1 \leq i \leq m$ set

$$
\begin{equation*}
b_{i}=\frac{R-D_{i}}{U_{i}-D_{i}} \tag{1.4}
\end{equation*}
$$

If necessary, reorder the securities S_{1}, \ldots, S_{m} so that b_{1}, \ldots, b_{m} is non-increasing, namely

$$
\begin{equation*}
b_{1} \geq b_{2} \geq \cdots \geq b_{m} \tag{1.5}
\end{equation*}
$$

Notice that $0<b_{i}<1$ for all i. Define for any $0 \leq j \leq m$

$$
q_{j}=\left\{\begin{array}{cl}
1-b_{1} & j=0 \tag{1.6}\\
b_{j}-b_{j+1} & 1 \leq j \leq m-1 \\
b_{m} & j=m
\end{array}\right.
$$

Define for $0 \leq i \leq m$ and for $0 \leq j \leq m$ numbers $\chi_{i}(j)$ as follows

$$
\chi_{0}(j)=R \quad \text { and } \quad \chi_{i}(j)=\left\{\begin{array}{cc}
U_{i} & i \leq j \tag{1.7}\\
D_{i} & i>j
\end{array}\right.
$$

We denote

$$
\mathcal{P}_{k}(m)=\{0, \ldots, m\}^{k}=\left\{\left(j_{1}, \ldots, j_{k}\right): 0 \leq j_{i} \leq m\right\} .
$$

For any $J \in \mathcal{P}_{k}(m)$ set

$$
q_{J}=\prod_{j \in J} q_{j} \quad \text { and } \quad \chi_{i}(J)=\prod_{j \in J} \chi_{i}(j)
$$

Assume that at time $0 \leq k \leq n-1$, the prices $S_{0}(k), \ldots, S_{i}(m)$ are known. Define for any $0 \leq j \leq m$

$$
\begin{equation*}
Y_{j}(k)=R^{k+1-n} \sum_{J \in \mathcal{P}_{n-k-1}(m)} q_{J}\left(\sum_{i=0}^{m} \gamma_{i} \chi_{i}(J) \chi_{i}(j) S_{i}(k)-K\right)^{+} \tag{1.8}
\end{equation*}
$$

Finally, define the following $(m+1) \times(m+1)$ matrices

$$
\begin{aligned}
& Q=\left[\begin{array}{ccclcc}
1 & 0 & 0 & \cdots \cdots & 0 & 0 \\
-1 & 1 & 0 & \cdots \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots \cdots & & \vdots \\
0 & 0 & 0 & \cdots \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots \cdots & -1 & 1
\end{array}\right] \\
& N=\left[\begin{array}{c|cccc}
1 & D_{1} & D_{2} & \cdots & D_{m} \\
\hline 0 & U_{1}-D_{1} & 0 & \cdots & 0 \\
0 & 0 & U_{2}-D_{2} & & \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & & U_{m}-D_{m}
\end{array}\right] \\
& T=\left[\begin{array}{llll}
R S_{0}(k) & & & \\
& S_{1}(k) & & \\
& & \ddots & \\
& & & S_{m}(k)
\end{array}\right]
\end{aligned}
$$

Observe that the matrix N only depend on the parameters of the model, and is easily seen to be invertible. Only the matrix T depends on the state of the world at time k, and since $S_{i}(k)>0$ it is clearly invertible. Also, Q is invertible.

Theorem 1.1. With the set up and notation above, at time $0 \leq k \leq n-1$ the portfolio $V_{\alpha}(k)=\sum_{i=0}^{m} \alpha_{i}(k) \cdot S_{i}(k)$ of a minimum cost maximal hedge (1.2), (1.3) for a European contingent claim X in (1.1) is given by

$$
\left[\begin{array}{c}
\alpha_{0}(k) \\
\alpha_{1}(k) \\
\vdots \\
\alpha_{m}(k)
\end{array}\right]=T^{-1} \cdot N^{-1} \cdot Q \cdot\left[\begin{array}{c}
Y_{0}(k) \\
Y_{1}(k) \\
\vdots \\
Y_{m}(k)
\end{array}\right]
$$

Moreover, $V_{\alpha}(k)=C_{\max }(F, k)$.
REMARK: The formula given for $Y_{j}(k)$ has computational complexity $O\left((m+1)^{n-k}\right)$ (the number of terms in the sum). This is exponential in n. As discussed in [1], the action of the symmetric group S_{n-k-1} on $\mathcal{P}_{n-k-1}(m)$ gives a formula for $Y_{j}(k)$ whose complexity is only $O\left((n-k)^{m+1}\right)$, polynomial in n.
REMARK: As is the case in [1], the function $h(x)=x^{+}$can be replaced with any convex function. Thus, our results apply to several contingent claims other than European basket call options. The reader is referred to [1] for details.

2. Formalisation of the model and proof of the main result

2.1. Single time-step. Each step of the model consists of flipping m coins. A natural sample space for this experiment is the set

$$
\underset{3}{\mathcal{L}}=\underset{3}{\{0,1\}^{m}}
$$

of all the sequences of length m consisting of 0's and 1's. We denote its elements by $\lambda=$ $(\lambda(1), \ldots, \lambda(m))$ and view \mathcal{L} as a subset of \mathbb{R}^{m}. Let ℓ_{i} denote the (random variable of the) result of the i-th coin, namely $\ell_{i}: \mathcal{L} \rightarrow \mathbb{R}$ is the projection to the i-th factor:

$$
\ell_{i}: \lambda \mapsto \lambda(i)
$$

Observe that ℓ_{i} is the restriction to \mathcal{L} of the linear projection function $\pi_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$.
Let ψ_{i} be the "price jump" of the i-th security. One checks that $\psi_{0}=R$ and that $\psi_{i}(\lambda)=$ $D_{i}+\left(U_{i}-D_{i}\right) \lambda(i)$ for $1 \leq i \leq m$, namely

$$
\begin{equation*}
\psi_{0}=R \quad \text { and } \quad \psi_{i}=D_{i}+\left(U_{i}-D_{i}\right) \ell_{i} \tag{2.1}
\end{equation*}
$$

Thus, for every $1 \leq i \leq m, \psi_{i}$ is the restriction to \mathcal{L} of an affine function $f_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ where $f_{i}\left(x_{1}, \ldots, x_{m}\right)=D_{i}+\left(U_{i}-D_{i}\right) x_{i}$.

Let us consider probability measures on \mathcal{L} on the σ-algebra $\wp(\mathcal{L})$ of all the subsets of \mathcal{L}. These are equivalent to probability density functions $p: \mathcal{L} \rightarrow \mathbb{R}$ and we will abuse notation and write p for both the density function and the probability measure it induces. The requirement that p is risk-neural in a single-step model is the condition

$$
E_{p}\left(\psi_{i}\right)=R, \quad(1 \leq i \leq m)
$$

By the linearity of the expectation and the definition (1.4), this is equivalent to

$$
E_{p}\left(\ell_{i}\right)=b_{i}
$$

Throughout we assume that b_{1}, \ldots, b_{m} is non-increasing (1.5).
Definition 2.1. Let $P(\mathcal{L}, b)$ denote the set of all probability density functions $p: \mathcal{L} \rightarrow \mathbb{R}$ such that $E_{p}\left(\ell_{i}\right)=b_{i}$ for all $1 \leq i \leq m$.

Define $\rho_{0}, \ldots \rho_{m} \in \mathcal{L}$ as follows

$$
\begin{equation*}
\rho_{j}=(\underbrace{1, \ldots, 1}_{j \text { times }}, 0, \ldots, 0) . \tag{2.2}
\end{equation*}
$$

Thus, ρ_{j} describes the event of a run of j heads followed by a run of $n-j$ tails. Use (1.6) to define a probability density function $q: \mathcal{L} \rightarrow \mathbb{R}$ by

$$
q(\lambda)= \begin{cases}q_{j} & \text { if } \lambda=\rho_{j} \text { for some } 0 \leq j \leq m \tag{2.3}\\ 0 & \text { otherwise }\end{cases}
$$

We call q the upper supermodular vertex of $P(\mathcal{L}, b)$. Compare with $[1$, Appendix A equation (A.6)] where we denoted ρ_{j} by μ_{j}. One checks, see [1, Appendix A], that indeed $q \in P(\mathcal{L}, b)$. In particular

$$
\begin{equation*}
E_{q}\left(\psi_{i}\right)=D_{i}+\left(U_{i}-D_{i}\right) E_{q}\left(\ell_{i}\right)=D_{i}+\left(U_{i}-D_{i}\right) b_{i}=R . \tag{2.4}
\end{equation*}
$$

There is a canonical bijection of \mathcal{L} with the set $\wp(\{1, \ldots, m\})$. This gives rise to a partial order \preceq on \mathcal{L} induced by the partial order \subseteq on $\wp(\{1, \ldots, m\})$. Thus,

$$
\begin{equation*}
\lambda \preceq \lambda^{\prime} \Longleftrightarrow \operatorname{supp}_{4}(\lambda) \subseteq \operatorname{supp}\left(\lambda^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Union and intersection of sets render \mathcal{L} a lattice with join \vee and meet \wedge,

$$
\begin{align*}
& \lambda \vee \lambda^{\prime}=\left(\max \left\{\lambda(1), \lambda^{\prime}(1)\right\}, \ldots, \max \left\{\lambda(m), \lambda^{\prime}(m)\right\}\right) \tag{2.6}\\
& \lambda \wedge \lambda^{\prime}=\left(\min \left\{\lambda(1), \lambda^{\prime}(1)\right\}, \ldots, \min \left\{\lambda(m), \lambda^{\prime}(m)\right\}\right)
\end{align*}
$$

The concept of submodular functions is originally due to Lovász in [2]. In this note, its variant, supermodular functions [3], is used.

Definition 2.2. A function $f: \mathcal{L} \rightarrow \mathbb{R}$ is called supermodular if for any $\lambda, \lambda^{\prime} \in \mathcal{L}$

$$
f\left(\lambda \vee \lambda^{\prime}\right)+f\left(\lambda \wedge \lambda^{\prime}\right) \geq f(\lambda)+f\left(\lambda^{\prime}\right)
$$

It is called modular if equality holds.
Proposition 2.3. (i) A linear combination with non-negative coefficients of supermodular functions is supermodular.
(ii) Let $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be an affine function. Then $\left.g\right|_{\mathcal{L}}$ is modular.
(iii) Let $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be an affine function of the form $g\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} a_{i} x_{i}+b$ where $a_{1}, \ldots, a_{m} \geq 0$. If $h: \mathbb{R} \rightarrow \mathbb{R}$ is convex then the restriction of $h \circ g$ to \mathcal{L} is supermodular.

Proof. Part (i) is [3, Proposition 2.2.5(a)]. Part (ii) follows from [3, Theorem 2.2.3] (and is straightforward). Part (iii) follows from [3, Theorem 2.2.6(a)].

The crucial property of the upper supermodlar vertex $q(2.3)$ is given by the following result.
Proposition 2.4 ([1, Theorem A.5(i)]). Let $f: \mathcal{L} \rightarrow \mathbb{R}$ be supermodular. Let q be the upper supermodular vertex in $P(\mathcal{L}, b)$. Then

$$
\sup _{p \in P(\mathcal{L}, b)} E_{p}(f)=\max _{p \in P(\mathcal{L}, b)} E_{p}(f)=E_{q}(f)
$$

2.2. Multi time-step model. For the n-step model one performs n iterations (not necessarily independent) of the experiment of flipping m coins. Thus, the natural sample space for an n-step discrete time binomial market model is \mathcal{L}^{n}. We equip it with the σ-algebra $\mathcal{F}=\wp\left(\mathcal{L}^{n}\right)$ of all subsets of \mathcal{L}^{n}.
The "state of the world" at time $0 \leq k \leq n$ is described by a k-tuple $\left(\lambda^{1}, \ldots, \lambda^{k}\right) \in \mathcal{L}^{k}$. Thus, the set of the states of the world at time k is naturally identified with \mathcal{L}^{k}. We obtain a partition $\left\{\omega \times \mathcal{L}^{n-k}: \omega \in \mathcal{L}^{k}\right\}$ of \mathcal{L}^{n} which generates a sub- σ-algebra \mathcal{F}_{k}.

The price jump of the i-th security at time $1 \leq k \leq n$, where $1 \leq i \leq m$, is the random variable $\Psi_{i}(k): \mathcal{L}^{n} \rightarrow \mathbb{R}$

$$
\Psi_{i}(k):\left(\lambda^{1}, \ldots, \lambda^{n}\right) \mapsto \psi_{i}\left(\lambda^{k}\right) .
$$

Of course, $\Psi_{0}(k): \mathcal{L}^{n} \rightarrow \mathbb{R}$ is the constant function (random variable) with value R.
The random process $S_{i}(0), \ldots, S_{i}(n)$ of the prices of the i-th security at time $0 \leq k \leq n$ are random variables $S_{i}(k): \mathcal{L}^{n} \rightarrow \mathbb{R}$. Clearly, they are given by

$$
\begin{equation*}
S_{i}(k)=S_{i}(0) \cdot \Psi_{i}(1) \cdots \Psi_{i}(k) \tag{2.7}
\end{equation*}
$$

Where $S_{i}(0)>0$ are constant (the initial prices of the securities at time 0). Clearly, the value of $S_{i}(k)$ at $\omega \in \mathcal{L}^{n}$ depend only on the first k entries of ω. Hence, $S_{i}(k)$ are \mathcal{F}_{k}-measurable random variables, namely their values only depend on the state of the world at time k. We will therefore abuse notation and regard $S_{i}(k)$ as functions with domain \mathcal{L}^{k}.

We now fix $\gamma_{0}, \ldots, \gamma_{m}$ where $\gamma_{i} \geq 0$ for all $1 \leq i \leq m$ and fix some K and set

$$
\begin{equation*}
F=\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(n)-K\right)^{+} . \tag{2.8}
\end{equation*}
$$

This random variable is the pay-off of the European contingent claim which is the subject of study of this note.

Recall the elements $\rho_{j} \in \mathcal{L}$ from (2.2). Observe that by definition of ψ_{i} (2.1) and of χ_{i} (1.7) we have

$$
\begin{equation*}
\psi_{i}\left(\rho_{j}\right)=\chi_{i}(j), \quad(0 \leq i, j \leq m) \tag{2.9}
\end{equation*}
$$

Proposition 2.5. Consider some $\omega=\left(\lambda^{1}, \ldots, \lambda^{k}\right) \in \mathcal{L}^{k}$, a state of the world at time $0 \leq k \leq n$, and some $J=\left(j_{1}, \ldots, j_{n-k}\right) \in \mathcal{P}_{n-k}(m)$. Set $\tau=\left(\rho_{j_{1}}, \ldots, \rho_{j_{n-k}}\right) \in \mathcal{L}^{n-k}$. Then

$$
F(\omega \tau)=\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(k)(\omega) \chi_{i}(J)-K\right)^{+}
$$

Proof. By the definition of $S_{i}(n)(2.7)$

$$
\begin{aligned}
F(\omega \tau) & =\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(0) \cdot \prod_{p=1}^{n} \Psi_{i}(p)(\omega \tau)-K\right)^{+}= \\
& \left(\sum_{i=0}^{m} \gamma_{i} S_{i}(0) \cdot \prod_{p=1}^{k} \psi_{i}\left(\lambda^{p}\right) \cdot \prod_{p=k+1}^{n} \psi_{i}\left(\rho_{j_{p}}\right)-K\right)^{+}=\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(k)(\omega) \cdot \chi_{i}(J)-K\right)^{+} .
\end{aligned}
$$

For every $0 \leq k \leq n$ we will denote by

$$
C_{\max }(F, k) \quad \text { and } \quad C_{\min }(F, k)
$$

the upper and lower bounds of the rational values of F at time k. Of course, these numbers depend only on the state of the world at time k, and so $C_{\max / \min }(F, k)$ are \mathcal{F}_{k}-measurable random variables (on \mathcal{L}^{n}).

Proposition 2.6. With the pay-off F (2.8) of European basket call, at time $0 \leq k \leq n$

$$
C_{\max }(F, k)=R^{k-n} \sum_{J \in \mathcal{P}_{n-k}(m)} q_{J}\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(k) \chi_{i}(J)-K\right)^{+}
$$

Proof. This is an immediate consequence of [1, Example 7.3 and Section 6A eqns. (6.1) and (6.2)] and Proposition 2.5. We note that in [1] the elements $\rho_{j} \in \mathcal{L}$ are denoted μ_{j} and $\mathcal{P}_{n-k}(m)$ is denoted I^{n-k}.

Notice that $C_{\max }(F, k)$ is an \mathcal{F}_{k} measurable random variable on \mathcal{L}^{n}. Hence, it will be convenient to think of it as a function with domain \mathcal{L}^{k}.

Proposition 2.7. Consider some $0 \leq k \leq n-1$ and some $\omega \in \mathcal{L}^{k}$ representing the state of the world at time k. Then the function $f: \mathcal{L} \rightarrow \mathbb{R}$ defined by

$$
f(\lambda)=C_{\max }(F, k+1)(\omega \lambda)
$$

is supermodular. Moreover, with respect to the upper supermodular vertex (2.3)

$$
E_{q}(f)=R \cdot C_{\max }(F, k)(\omega) .
$$

Proof. It follows from Proposition 2.6 and since $S_{i}(k+1)=S_{i}(k) \cdot \Psi_{i}(k+1)$ that

$$
f(\lambda)=R^{k+1-n} \sum_{J \in \mathcal{P}_{n-k-1}(m)} q_{J}\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(k)(\omega) \cdot \psi_{i}(\lambda) \cdot \chi_{i}(J)-K\right)^{+} .
$$

Proposition 2.3(i),(iii) implies that f is supermodular since $h(x)=x^{+}$is convex and since $\psi_{i}=D_{i}+\left(U_{i}-D_{i}\right) \ell_{i}$ is an affine function with non-negative coefficients and since $R>0$ and $\gamma_{i}, S_{i}(k), \chi_{i}(J) \geq 0$ for all $1 \leq i \leq m$. Moreover, by (2.9)

$$
\begin{aligned}
E_{q}(f) & =\sum_{\lambda \in \mathcal{L}} q(\lambda) f(\lambda) \\
& =\sum_{j=0}^{m} q\left(\rho_{j}\right) f\left(\rho_{j}\right) \\
& =\sum_{j=0}^{m} q_{j} \sum_{J \in \mathcal{P}_{n-k-1}(m)} q_{J} R^{k+1-n}\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(k)(\omega) \cdot \psi_{i}\left(\rho_{j}\right) \cdot \chi_{i}(J)-K\right)^{+} \\
& =\sum_{j=0}^{m} q_{j} \sum_{J \in \mathcal{P}_{n-k-1}(m)} q_{J} R^{k+1-n}\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(k)(\omega) \cdot \chi_{i}(J) \chi_{i}(j)-K\right)^{+} \\
& =R \cdot R^{k-n} \sum_{J \in \mathcal{P}_{n-k}(m)} q_{J}\left(\sum_{i=0}^{m} \gamma_{i} S_{i}(k)(\omega) \cdot \chi_{i}(J)-K\right)^{+} \\
& =R \cdot C_{\max }(F, k)(\omega) .
\end{aligned}
$$

Consider some $0 \leq k \leq n-1$ and recall $Y_{j}(k)$ from (1.8) where $0 \leq j \leq m$. Observe that $Y_{j}(k)$ is a function of the random variables $S_{i}(k)$, so $Y_{j}(k)$ is a random variable (on \mathcal{L}^{n}) whose values depend only on the state of the world at time k, namely $Y_{j}(k)$ is \mathcal{F}_{k}-measurable.

Proposition 2.8. For any $0 \leq j \leq m$ and any $\omega=\left(\lambda^{1}, \ldots, \lambda^{k}\right) \in \mathcal{L}^{k}$

$$
C_{\max }(F, k+1)\left(\omega \rho_{j}\right)=Y_{j}(\omega) .
$$

Proof. This follows immediately from Propositions 2.6 and equation (2.9).
Proof of Theorem 1.1. Fix some $0 \leq k \leq n-1$ and some state of the world $\omega=\left(\lambda^{1}, \ldots, \lambda^{k}\right) \in$ \mathcal{L}^{k} at time k. Any subsequent state of the world at time $k+1$ has the form $\omega \lambda$ for $\lambda \in \mathcal{L}$. Our goal is to find numbers $\alpha_{0}(k)(\omega), \ldots, \alpha_{m}(k)(\omega)$, which for simplicity we denote by $\alpha_{0}, \ldots, \alpha_{m}$, which fulfil the inequality (1.3), namely for every $\lambda \in \mathcal{L}$

$$
\sum_{i=0}^{m} \alpha_{i} S_{i}(k+1)(\omega \lambda) \geq C_{\max }(F, k+1)(\omega \lambda)
$$

and which minimize

$$
\begin{equation*}
V_{\alpha}(k)(\omega)=\sum_{i=0}^{m} \alpha_{i} S_{i}(k)(\omega) . \tag{2.10}
\end{equation*}
$$

We rewrite the first inequality as a set of inequalities (indexed by $\lambda \in \mathcal{L}$)

$$
\begin{equation*}
\underbrace{\sum_{i=0}^{m} \alpha_{i} S_{i}(k)(\omega) \cdot \psi_{i}(\lambda)}_{\Phi_{\alpha}(\lambda)} \geq \underbrace{C_{\max }(F, k+1)(\omega \lambda)}_{\Xi(\lambda)} \quad(\lambda \in \mathcal{L}) . \tag{2.11}
\end{equation*}
$$

We obtain two functions $\Phi_{\alpha}: \mathcal{L} \rightarrow \mathbb{R}$ and $\Xi: \mathcal{L} \rightarrow \mathbb{R}$, and (2.11) is the inequality

$$
\Phi_{\alpha} \geq \Xi
$$

The first step of the proof is to show that the following system of $m+1$ linear equations with the $m+1$ unknowns $\alpha_{0}, \ldots, \alpha_{m}$ has a unique solution

$$
\sum_{i=0}^{m} \alpha_{i} S_{i}(k)(\omega) \cdot \psi_{i}\left(\rho_{j}\right)=C_{\max }(F, k+1)\left(\omega \rho_{j}\right), \quad(0 \leq j \leq m)
$$

Notice that these equations are obtained by imposing equalities in the inequalities (2.11) for $\lambda=\rho_{0}, \ldots, \rho_{m}$. By (2.9) and by Proposition 2.8, this is the system of equations

$$
\begin{equation*}
\sum_{i=0}^{m} \alpha_{i} S_{i}(k)(\omega) \cdot \chi_{i}(j)=Y_{j}(\omega), \quad(0 \leq j \leq m) \tag{2.12}
\end{equation*}
$$

Write α_{\bullet} for the column vector $\left(\alpha_{0}, \ldots, \alpha_{m}\right)$ and Y_{\bullet} for the column vector $\left(Y_{0}(\omega), \ldots, Y_{m}(\omega)\right)$. Then this system of $m+1$ linear equations is $M \alpha_{\bullet}=Y_{\bullet}$ where M is the $(m+1) \times(m+1)$ matrix

$$
\begin{aligned}
&\left(M_{j, i}\right)=\left(S_{i}(k)(\omega) \cdot \chi_{i}(j)\right)= \\
& \underbrace{\left[\begin{array}{cccc}
1 & \chi_{1}(0) & \cdots & \chi_{m}(0) \\
1 & \chi_{1}(1) & \cdots & \chi_{m}(1) \\
\vdots & \vdots & & \vdots \\
1 & \chi_{1}(m) & \cdots & \chi_{m}(m)
\end{array}\right]}_{M^{\prime}} \cdot \underbrace{\left[\begin{array}{llll}
R S_{0}(k)(\omega) & & & \\
& S_{1}(k)(\omega) & & \\
& & \ddots & \\
& & & S_{m}(k)(\omega)
\end{array}\right]}_{T} .
\end{aligned}
$$

Clearly, T is invertible since $R, S_{i}(k)(\omega)>0$. Observe that for any $1 \leq j \leq m$ and any $0 \leq i \leq m-1$

$$
\chi_{j}(i)-\chi_{j}(i+1)= \begin{cases}0 & i \neq j \\ U_{i}-D_{i} & i=j\end{cases}
$$

By inspection we get

$$
Q \cdot M^{\prime}=\underbrace{\left[\begin{array}{c|cccc}
1 & D_{1} & D_{2} & \cdots & D_{m} \\
\hline 0 & U_{1}-D_{1} & 0 & \cdots & 0 \\
0 & 0 & U_{2}-D_{2} & \cdots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \cdots & U_{m}-D_{m}
\end{array}\right]}_{N} .
$$

Clearly, Q and N are invertible, hence so is M^{\prime}. It follows that $M=M^{\prime} T$ is invertible, so the system (2.12) has a unique solution given by

$$
\alpha_{\bullet}=T^{-1} N^{-1} Q \cdot Y_{\bullet} .
$$

This gives the values of $\alpha_{i}(k)(\omega)$ stated in the theorem. It remains to show that these α_{i} solve all the inequalities in (2.11) (one for each $\lambda \in \mathcal{L}$) and minimize (2.10) and $V_{\alpha}(k)(\omega)=$ $C_{\text {max }}(F, k)(\omega)$.

Claim 1: $\alpha_{0}, \ldots, \alpha_{m}$ solve the inequalities (2.11).
Proof: Suppose that not all these inequalities are solved, namely $\Phi_{\alpha}(\lambda)>\Xi(\lambda)$ for some $\lambda \in \mathcal{L}$. Since $\alpha_{0}, \ldots, \alpha_{m}$ solve the equations (2.12), we certainly get $\Phi_{\alpha}\left(\rho_{i}\right)=\Xi\left(\rho_{i}\right)$ for all $0 \leq i \leq m$.

Among all $\lambda \in \mathcal{L}$ for which $\Phi(\lambda)>\Xi(\lambda)$ choose one with maximal possible j such that $\rho_{j} \preceq \lambda(2.5)$. Observe that $j<m$ because if $j=m$ then $\rho_{m} \preceq \lambda$ implies that $\lambda=\rho_{m}$ which we have seen is impossible. Set $\lambda^{\prime}=\lambda \vee \rho_{j+1}$ (2.6). By the maximality of j we get that $\lambda \wedge \rho_{j+1}=\rho_{j}$. Observe that Φ_{α} is an affine function, hence it is modular by Proposition 2.3(ii), so

$$
\Phi\left(\lambda^{\prime}\right)+\Phi\left(\rho_{j}\right)=\Phi(\lambda)+\Phi\left(\rho_{j+1}\right)
$$

By Proposition 2.7Ξ is supermodular, so

$$
\Xi\left(\lambda^{\prime}\right)+\Xi\left(\rho_{j}\right) \geq \Xi(\lambda)+\Xi\left(\rho_{j+1}\right)
$$

Subtracting the first equality from the second inequality, and recalling that $\Phi\left(\rho_{i}\right)=\Xi\left(\rho_{i}\right)$ for all i, we get

$$
\Xi\left(\lambda^{\prime}\right)-\Phi\left(\lambda^{\prime}\right) \geq \Xi(\lambda)-\Psi(\lambda)>0
$$

So $\Phi\left(\lambda^{\prime}\right)>\Xi\left(\lambda^{\prime}\right)$ and $\rho_{j+1} \preceq \lambda^{\prime}$ which contradicts the maximality of j.
Recall that any $\beta_{0}, \ldots, \beta_{m}$ define $V_{\beta}(k)(\omega)$ in (2.10).
Claim 2: For any $\beta_{0}, \ldots, \beta_{m}$ for which the inequalities (2.11) hold,

$$
V_{\beta}(k)(\omega) \geq C_{\max }(F, k)(\omega)
$$

In addition, $\alpha_{0}, \ldots, \alpha_{m}$ attain this lower bound, namely

$$
V_{\alpha}(k)(\omega)=C_{9}^{\max ^{2}}(F, k)(\omega) .
$$

Proof: Suppose β_{i} solve the inequalities (2.11). It follows from (2.4) that

$$
\begin{equation*}
E_{q}\left(\Phi_{\beta}\right)=\sum_{i=0}^{m} \beta_{i} S_{i}(k)(\omega) \cdot E_{q}\left(\psi_{i}\right)=R \cdot \sum_{i=0}^{m} \beta_{i} S_{i}(k)(\omega)=R V_{\beta}(k)(\omega) . \tag{2.13}
\end{equation*}
$$

Proposition 2.7 implies that $E_{q}(\Xi)=R C_{\max }(F, k)(\omega)$. Since β_{i} solve the inequalities (2.11), this means $\Phi_{\beta} \geq \Xi$. By the monotonicity of the expectation, $E_{q}\left(\Phi_{\beta}\right) \geq E_{q}(\Xi)$, and since $R>0$, it follows that $V_{\beta}(k)(\omega) \geq C_{\max }(F, k)(\omega)$ as needed.
By construction $\Phi_{\alpha}\left(\rho_{j}\right)=\Xi\left(\rho_{j}\right)$ for all $j=0, \ldots, m$. Since q is supported on $\rho_{0}, \ldots, \rho_{m}$, we deduce from (2.13) that

$$
R V_{\alpha}(k)(\omega)=E_{q}\left(\Phi_{\alpha}\right)=E_{q}(\Xi)=R \cdot C_{\max }(F, k)(\omega) .
$$

Hence $V_{\alpha}(k)(\omega)=C_{\max }(F, k)(\omega)$.
q.e.d

The theorem follows from Claims 1 and 2.

References

[1] Jarek Kędra, Assaf Libman, and Victoria Steblovskaya. Pricing and hedging contingent claims in a multi-asset binomial market. arXiv:2106.13283, 2021.
[2] L. Lovász. Submodular functions and convexity. In Mathematical programming: the state of the art (Bonn, 1982), pages 235-257. Springer, Berlin, 1983.
[3] David Simchi-Levi, Xin Chen, and Julien Bramel. The logic of logistics. Springer Series in Operations Research and Financial Engineering. Springer, New York, third edition, 2014. Theory, algorithms, and applications for logistics management.

University of Aberdeen and University of Szczecin
Email address: kedra@abdn.ac.uk
University of Aberdeen
Email address: a.libman@abdn.ac.uk
Bentley University
Email address: vsteblovskay@bentley.edu

