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Abstract: Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have
a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside
conjugates have also been reported. Agronomy practices, cereal variety and weather conditions
have been suggested to play a role in Fusarium infection in oats. The current study investigates
concentrations of free and conjugated Fusarium mycotoxins in organic and conventional oats grown
in Scotland. In 2019, 33 milling oat samples (12 organic, 21 conventional) were collected from farmers
across Scotland, together with sample questionnaires. Samples were analysed for 12 mycotoxins (type
A trichothecenes T-2-toxin, HT-2-toxin, diacetoxyscirpenol; type B trichothecenes deoxynivalenol,
nivalenol; zearalenone and their respective glucosides) using LC-MS/MS. The prevalence of type A
trichothecenes T-2/HT-2 was very high (100% of conventional oats, 83% of organic oats), whereas
type B trichothecenes were less prevalent, and zearalenone was rarely found. T-2-glucoside and
deoxynivalenol-glucoside were the most prevalent conjugated mycotoxins (36 and 33%), and co-
occurrence between type A and B trichothecenes were frequently observed (66% of samples). Organic
oats were contaminated at significantly lower average concentrations than conventional oats, whereas
the effect of weather parameters were not statistically significant. Our results clearly indicate that free
and conjugated T-2- and HT-2-toxins pose a major risk to Scottish oat production and that organic
production and crop rotation offer potential mitigation strategies.

Keywords: Fusarium mycotoxins; trichothecenes; masked mycotoxins; organic; conventional; oats

Key Contribution: This study clearly demonstrates the high prevalence of type A trichothecenes and
their frequent co-occurrence with type B trichothecenes and zearalenone in Scottish oat samples. The
study indicates the protective effect of organic cultivation against high mycotoxin contamination and
points towards the potential benefits of low-intensity cereal rotations.

1. Introduction

Fungal infection is a major problem in global cereal production and results in sub-
sequent contamination of grains with a wide range of mycotoxins. In temperate regions,
Fusarium is the predominant mycotoxigenic genus found to infect small grain cereals in the
field pre-harvest [1,2]. Prominent strains within the genus Fusarium include F. graminearum,
F. culmorum, F. langsethiae and F. poae, all of which have been shown to produce a range
of mycotoxins including trichothecenes (type A and B) and zearalenone in small grain
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cereals [3–5]. Type A trichothecenes include potent immunotoxins and intestinal toxins T-2-
toxin (T-2), HT-2-toxin (HT-2) and diacetoxyscirpenol (DAS), while type B trichothecenes in-
clude deoxynivalenol (DON) and nivalenol (NIV) [6]. Both trichothecenes and zearalenone
(ZEN) have been reported in small grain cereals, including wheat [7–11], barley [12–15]
and oats [12,16–19] grown in temperate regions of Europe and North America. Based on
their varying toxicity, a range of regulatory limits are set in Europe to minimise human
exposure and manage potential risks to consumers (Table 1).

Table 1. Overview of EC maximum levels of selected mycotoxins in oat products.

Mycotoxin Oat Product Maximum Level (µg/kg)

T-2 + HT-2 1 Unprocessed oats 1000
Oat grains for direct human consumption 200

Oat bran and flakes 200
DON 2 Unprocessed oats 1750

Oats intended for direct human consumption,
oat flour, oat meal, oat bran, or germ 750

Bread, pastries, biscuits, cereal snacks and
breakfast cereals 500

ZEN 2 Unprocessed oats 100
Oats intended for direct human consumption,

oat flour, oat meal, oat bran or germ 75

Bread, pastries, biscuits, cereal snacks and
breakfast cereals 50

1 for T-2 + HT-2 indicative levels are set by EC recommendation 2013/165/EU [20]. 2 for DON and ZEN maximum
permitted levels are set by EC regulation 1881/2006 [21].

Recent UK surveys have identified T-2/HT-2 to occur commonly in food oats, although
exceedances of European Commission (EC) indicative levels are rare [22,23]. In addition to
the free fungal mycotoxins, plant-derived modified mycotoxins such as sugar-conjugated
forms DON-glucoside and ZEN-glucoside have also been reported in wheat [12,24–26] at
proportions of 4–69% of the free parent mycotoxins. Conjugated glucoside forms of T-2
and HT-2 have also been identified [27], but less information is available on their natural
occurrence in cereal grains. These conjugated mycotoxins are released by the activity of the
intestinal microbiota in vitro [27–33] and have been found to contribute to human exposure
to free mycotoxins in vivo [34]. Hence the presence of free and modified mycotoxins in
cereals warrants further investigation.

Previous studies have identified a range of agronomy practices that might decrease the
risk of fungal infection and mycotoxin contamination in cereals. These include spring rather
than winter sowing, varietal selection (for wheat) and cereal rotation [35–38]. Furthermore,
some studies suggest that organic production systems may lower mycotoxin contamination
in some cereals [39]. Hence, the current paper presents a detailed profiling of free and
sugar-conjugated Fusarium mycotoxins in oat samples grown in conventional or organic
systems in Scotland.

2. Results
2.1. Prevalence of Free and Modified Mycotoxins in Organic and Conventional Oats

Type A trichothecenes T-2 and HT-2 were highly prevalent in Scottish oat samples, with
higher prevalence observed in conventional oats (95.2 and 100%, respectively), compared to
organic oats (58.3 and 83.3%, respectively. In contrast, DAS and DAS-Glc were not detected
(Figure 1).
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Figure 1. Prevalence of mycotoxins in organic (n = 12) and conventional (n = 21) oat samples. Data
are presented as percentage of samples contaminated >LOQ for each mycotoxin. LOQ = limit
of quantification.

Overall, type B trichothecenes DON and NIV were less prevalent in oats than type A
trichothecenes. The difference between organic and conventional oats was less pronounced
(DON 33.3 and 47.6; NIV 41.7 and 38.1%). T-2-Glc and DON-Glc were the most prevalent
modified mycotoxins, especially in conventional oats (61.9 and 42.8%, respectively). ZEN
was not frequently detected, and no ZEN-Glc was found in any sample.

2.2. Concentrations of Free and Modified Mycotoxins in Organic and Conventional Oats

HT-2 in conventional oats was the highest mycotoxin concentration found in any
sample group in this study (average 670.8 µg/kg, Figure 2). In addition, T-2 and HT-2 toxins
were frequently found in the same sample resulting in 19% of conventional oat samples
exceeding the EC indicative level of 1000 µg/kg for T-2 + HT-2. However, concentrations of
T-2 and HT-2 in organic oat samples were significantly lower (21.1 and 148.9 µg/kg mean
concentration, p = 0.0023 and p = 0.0043, respectively), with no organic oats exceeding the
EC indicative level.

DON concentrations were not significantly different (p = 0.9828) between organic
and conventional oats (mean 327.3 and 204.0 µg/kg, respectively), with 1/12 organic
and 1/21 conventional samples exceeding the EC maximum permitted level for DON
(1750 µg/kg). T-2-Glc was the most frequently detected modified mycotoxin in conven-
tional oats (61.9% prevalence, Figure 1) at ratios ranging from 6–154% of T-2 (Table 2).
Ratios of HT-2-Glc ranged from 34–174% of HT-2, whereas DON-Glc was found at lower
ratios (18–130% of DON).
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Table 2. Free and modified mycotoxins in organic and conventional oat samples.

Oat
ID

T-2
µg/kg

HT-2
µg/kg

T-2-Glc
µg/kg

HT-2-Glc
µg/kg

T-2-Glc
%

HT-2-Glc
%

DON
µg/kg

NIV
µg/kg

DON-Glc
µg/kg

NIV-Glc
µg/kg

DON-Glc
%

NIV-Glc
%

Org1 ND ND ND 19 — — ND 41 ND ND — —
Org2 42 230 ND ND — — 2988 ND 746 ND 25 —
Org4 ND 52 ND ND — — ND ND ND ND — —
Org5 71 390 11 ND 16 — ND ND ND ND — —
Org6 ND ND ND ND — — 97 ND ND ND — —
Org7 3 53 ND ND — — ND ND ND ND — —
Org8 ND 6 ND ND — — 448 27 ND ND — —
Org9 9 138 ND ND — — ND 134 ND ND — —

Org10 33 538 18 ND 55 — ND 1253 ND 44 — 4
Org11 58 173 ND ND — — 295 ND 84 ND 28 —
Org12 28 193 ND ND — — ND 156 ND ND — —

Conv1 266 1905 ND ND — ND 346 ND 20 — 6
Conv2 ND 8 ND 13 — 174 38 ND 50 ND 130 —
Conv3 33 849 51 ND 154 — 88 ND 57 ND 65 —
Conv4 88 770 27 ND 31 — ND ND ND ND — —
Conv5 97 649 23 ND 24 — 58 ND ND ND — —
Conv6 67 520 ND ND — — 67 488 15 24 23 5
Conv7 155 609 28 ND 18 — ND ND ND ND — —
Conv8 390 3084 31 ND 8 — ND ND 28 ND — —
Conv9 836 2145 53 ND 6 — ND ND ND ND — —
Conv10 41 66 ND ND — — 565 ND 101 ND 18 —
Conv11 36 509 47 ND 130 — ND ND ND ND — —
Conv12 93 705 73 ND 78 — 48 33 ND ND — —
Conv13 32 137 44 ND 137 — 263 15 47 ND 18 —
Conv14 126 343 14 ND 11 — ND ND ND ND — —
Conv15 48 298 ND ND — — 2734 132 881 21 32 16
Conv16 3 26 ND ND — — 111 ND ND ND — —
Conv17 44 157 ND ND — — 173 64 89 ND 51 —
Conv18 167 914 ND 462 — 51 ND ND ND ND — —
Conv19 34 220 ND 155 — 70 ND ND ND ND — —
Conv20 22 97 ND 67 — 70 ND 28 ND ND — —
Conv21 4 75 ND 26 — 34 ND 145 29 ND — —

Org = organic oat sample, Conv = conventional oat sample, ND = not detected (<LOQ).
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2.3. Co-Occurrence of Free Mycotoxins in Organic and Conventional Oats

Oat samples were frequently contaminated with numerous mycotoxins in different
combinations. Co-occurrence is defined here as the presence of type A trichothecenes
(T-2/HT-2), type B trichothecenes (DON or NIV) and ZEN. Modified mycotoxins are not
included in these figures as they represent plant metabolites of the parent mycotoxins
produced by fungi. One conventional oat sample (4.8%) was co-contaminated with all four
mycotoxins, while two or more mycotoxins co-occurred in 50.0% organic oats and 61.9%
conventional oat samples (Table 3). None of the samples in this survey were free of all
mycotoxins tested (i.e., all mycotoxins < LOQ).

Table 3. Co-occurrence of free mycotoxins in organic and conventional oats.

Number of
Co-Occurring
Mycotoxins

Number of
Combinations

Found

Types of
Combinations

Number (%) of
Samples
Organic

Number (%) of
Samples

Conventional

4 1 T-2/HT-2 + DON + NIV + ZEN 0 (0) 1 (4.8)

3 2 T-2/HT-2 + DON + NIV
T-2/HT-2 + DON + ZEN

1 (8.3)
2 (16.7)

4 (19.0)
2 (9.5)

2 2 T-2/HT-2 + DON
T-2/HT-2 + NIV

0 (0)
3 (25.0)

3 (14.3)
3 (14.3)

(1) 3
T-2/HT-2

DON
NIV

4 (33.3)
1 (8.3)
1 (8.3)

8 (38.1)
0 (0)
0 (0)

The highest concentrations of T-2/HT-2 (>100% of EC indicative levels) were found
in four conventional oats, but these samples were not heavily co-contaminated with type
B trichothecenes or ZEN (Figure 3). Conversely, samples with the highest levels of DON
were also co-contaminated with ZEN.
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permitted level for DON (used for DON and NIV), and % of the EC maximum permitted level for
ZEN in unprocessed oats (Table 1). The heatmap was generated in “R” [version 4.2.1 (2022-06-23)],
Org = organic oat sample, conv = conventional oat sample.

2.4. Effect of Other Agronomy Factors on Mycotoxin Concentrations in Oats

In addition to organic versus conventional oat production, the effect of cereal rotation
intensity and weather conditions, such as average monthly rainfall and average monthly
temperature one month and two months prior to harvest date, were investigated for their
potential impact on mycotoxin concentrations. Cropping history was examined, and a cereal
intensity score was calculated [40] as the number of years (over the previous 4 years) during
which the previous crop was a small grain cereal (wheat, oats or barley). A significant
positive relationship (p = 0.0426) was found between the cereal intensity score and the
levels of T-2/HT-2 across all oat samples in this survey (Figure 4). No other significant
relationships were found between mycotoxin levels and other factors in this dataset.

Toxins 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 4. Relationship between cereal intensity score and mycotoxin concentration across all sam-

ples in this survey. The data are log-transformed, and the lines show the fitted model for each my-

cotoxin. Trendlines for relationships are added for T-2+HT-2 (blue), DON (orange) and NIV (grey). 

3. Discussion 

Type A trichothecene mycotoxins T-2/HT-2 are well-recognised as major contami-

nants in oat production [17,39–41]. Our study confirms that these mycotoxins occur at the 

highest prevalence and concentration in this Scottish sample set. Additionally, our survey 

demonstrates the high prevalence of the modified mycotoxins T-2-Glc and HT-2-Glc in 

oat samples, further increasing the overall contamination levels. In a longitudinal survey 

of mycotoxins in UK cereal production [42], authors report a prevalence of T-2/HT-2 of 

86–100% (29 food oat samples each year) with mean concentrations of 313–458 µg/kg sam-

ple. The prevalence of contamination is comparable to our study (100% prevalence in con-

ventional oats), but mean concentrations are higher in our Scottish survey (793 µg/kg). 

There are currently no maximum regulatory levels set for T-2/HT-2 in oats, but indicative 

levels can be used to benchmark contamination levels. In our survey, 19% of conventional 

oats and no organic oats exceeded the EC indicative level for T-2/HT-2, resulting in overall 

12% exceedances across all 33 oat samples, which are comparable to other studies report-

ing 1–30% exceedances in conventional oats in the UK [40] and 7.4% exceedances in or-

ganic and conventional oats in Ireland [43]. 

The prevalence and mean concentration of T-2-Glc reported in the AHDB survey [42] 

(59–79%, 37.1–67.4 µg/kg) are also similar to our results (61.9%, 21.9 µg/kg), but we also 

detected HT-2-Glc in 24% of samples (mean 39.2 µg/kg) which were not assessed in pre-

vious studies. Furthermore, despite the low mean concentration across the samples, we 

observed that two conventional oat samples contained high levels of HT-2-Glc (462 and 

155 µg/kg), which significantly contributes to the overall mycotoxin contamination of 

these samples. Previous in vitro studies have clearly shown that T-2-Glc and HT-2-Glc are 

rapidly hydrolysed to free T-2 and HT-2 by the microbial activity of the human gut mi-

crobiota [27,31] and can therefore contribute to overall exposure to these potent mycotox-

ins in humans. Hence further investigations into the levels of modified forms of T-2/HT-2 

in unprocessed cereals and their carry-over into food products are needed. 

Organic oats have previously been found to be contaminated with lower levels of T-

2/HT-2 compared to conventional oats in studies conducted in the UK [17,40], Ireland [43], 

Norway, Poland and Germany [39], while no such consistent differences were found in 

Figure 4. Relationship between cereal intensity score and mycotoxin concentration across all samples
in this survey. The data are log-transformed, and the lines show the fitted model for each mycotoxin.
Trendlines for relationships are added for T-2 + HT-2 (blue), DON (orange) and NIV (grey).

3. Discussion

Type A trichothecene mycotoxins T-2/HT-2 are well-recognised as major contaminants
in oat production [17,39–41]. Our study confirms that these mycotoxins occur at the
highest prevalence and concentration in this Scottish sample set. Additionally, our survey
demonstrates the high prevalence of the modified mycotoxins T-2-Glc and HT-2-Glc in
oat samples, further increasing the overall contamination levels. In a longitudinal survey
of mycotoxins in UK cereal production [42], authors report a prevalence of T-2/HT-2 of
86–100% (29 food oat samples each year) with mean concentrations of 313–458 µg/kg
sample. The prevalence of contamination is comparable to our study (100% prevalence in
conventional oats), but mean concentrations are higher in our Scottish survey (793 µg/kg).
There are currently no maximum regulatory levels set for T-2/HT-2 in oats, but indicative
levels can be used to benchmark contamination levels. In our survey, 19% of conventional
oats and no organic oats exceeded the EC indicative level for T-2/HT-2, resulting in overall
12% exceedances across all 33 oat samples, which are comparable to other studies reporting
1–30% exceedances in conventional oats in the UK [40] and 7.4% exceedances in organic
and conventional oats in Ireland [43].
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The prevalence and mean concentration of T-2-Glc reported in the AHDB survey [42]
(59–79%, 37.1–67.4 µg/kg) are also similar to our results (61.9%, 21.9 µg/kg), but we also de-
tected HT-2-Glc in 24% of samples (mean 39.2 µg/kg) which were not assessed in previous
studies. Furthermore, despite the low mean concentration across the samples, we observed
that two conventional oat samples contained high levels of HT-2-Glc (462 and 155 µg/kg),
which significantly contributes to the overall mycotoxin contamination of these samples.
Previous in vitro studies have clearly shown that T-2-Glc and HT-2-Glc are rapidly hydrol-
ysed to free T-2 and HT-2 by the microbial activity of the human gut microbiota [27,31] and
can therefore contribute to overall exposure to these potent mycotoxins in humans. Hence
further investigations into the levels of modified forms of T-2/HT-2 in unprocessed cereals
and their carry-over into food products are needed.

Organic oats have previously been found to be contaminated with lower levels of T-
2/HT-2 compared to conventional oats in studies conducted in the UK [17,40], Ireland [43],
Norway, Poland and Germany [39], while no such consistent differences were found in other
cereals [39]. Similarly, we found the T-2/HT-2 levels to be significantly lower in organic oat
samples compared to conventional oats. Furthermore, we also found T-2-Glc + HT-2-Glc to
be significantly lower in organic oats, further supporting the notion that organic production
can decrease the risk of mycotoxin contamination in oats.

Other agronomic factors have also been identified to impact the risk of fungal infection
and mycotoxin contamination in cereals. Among them, cereal rotations, ploughing and
sowing dates (winter versus spring sowing) have been found to be important factors
affecting oat mycotoxin concentrations [40,43,44]. In the present study, we could also
confirm that cereal intensity increased the risk of T-2/HT-2 contamination but not other
mycotoxins. Similarly, Kolawole et al. (2021) report that previous crops have a stronger
impact on T-2/HT-2 than on DON and ZEN contamination in oats [43], and Edwards (2017)
reports that cereal intensity was significantly related to T-2/HT-2 levels. Still, DON and
ZEN were not investigated as they were detected less frequently in UK oats [40]. These
published studies also demonstrate that crop growth season is an important factor, with
spring-sown oats containing significantly lower concentrations of mycotoxins than winter-
sown [40,43]. However, we were unable to assess the effect of crop growth season as only
one sample in the current survey was winter-sown.

In summary, this study clearly demonstrates the high prevalence of type A tri-
chothecenes in Scottish oat samples and the frequent co-contamination with type B tri-
chothecenes and zearalenone. In addition, the study indicates the protective effect of
organic agronomy against high mycotoxin contamination and points towards the potential
benefits of low-intensity cereal rotations.

4. Materials and Methods
4.1. Study Design

This study was carried out in collaboration with SOPA, Farmton Farm, WN Lindsay
and Hamlyns of Scotland. The collaborators designed a detailed sample questionnaire
(Supplementary Materials) approved by the Rowett Institute Human Studies Ethics Com-
mittee (16 July 2019). Farmers were approached through links with the project collaborators
and were asked to provide a 1 kg aggregate sample of unprocessed, dried (<14% moisture
content) milling oats. Farmers were asked to complete the sample questionnaire as paper
copies or using the online tool https://tinyurl.com (accessed on 20 August 2019) In total,
33 oat samples and corresponding questionnaires were obtained, including 12 samples
from organic farms and 21 from conventional farms and were stored at room temperature
at the Rowett Institute. Fewer organic than conventional samples reflects the balance
between organic and conventional cropping in Scotland. Information on organic status,
fungicide use, crop rotation practices, oat variety and harvest date were obtained from
sample questionnaires. Total monthly rainfall (mm) and average monthly temperature (de-
grees centigrade) for the (1 month prior = pre-harvest period, 2 months prior = flowering)
period prior to harvest were obtained from the Met Office weather survey for the area of

https://tinyurl.com
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each farm (https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-
and-anomaly-maps, accessed on 29 October 2020).

4.2. Mycotoxin Determination in Oat Samples
4.2.1. Mycotoxin Standards

T-2-toxin (T-2), HT-2-toxin (HT-2), diacetoxyscirpenol (DAS), [13C22] HT-2, deoxyni-
valenol (DON), [13C15] DON, DON-3-β,D-glucoside (DON-Glc), nivalenol (NIV), zear-
alenone (ZEN) and [13C18] ZEN, were purchased from Romer Labs Ltd., Tulln, Aus-
tria. DAS-3-α, D-glucoside (DAS-Glc), T-2-3-α,D-glucoside (T-2-Glc) [45] and HT-2-3-β,D-
glucoside (HT-2-Glc) [46] were obtained from Dr. Mark Busman and Dr Susan McCormick,
Mycotoxin Prevention and Applied Microbiology Unit, USDA-ARS-NCAUR in the USA.
NIV-3-β,D-glucoside (NIV-Glc) was obtained from Dr. Tomoya Yoshinari, National In-
stitute of Health Sciences, Japan [47]. ZEN-14-β,D-glucoside (ZEN-Glc) standard used
in this study was previously synthesised as part of FSA-funded project FS102101. Work-
ing solutions for all mycotoxins were prepared in acetonitrile (ACN) and stored at 4 ◦C
(Table 4).

Table 4. Summary of LC-MS/MS parameters and method performance parameters for all mycotoxins used.

Compound RT (min) Precursor
Ion (m/z)

Product
Ion (m/z)

Collision
Energy Polarity % RA

(RSD)
%SSE
(RSD) LOQ Oat

T-2 10.3 489.1 327.2 −26.0 +ve 109.4 (2.2) 103.3 (8.4) 3.1
HT-2 9.8 447.3 345.2 −20.0 +ve 92.3 (6.8) 91.4 (9.1) 6.3

T-2-Glc 9.9 651.3 489.2 −34.0 +ve 118.7 (3.6) 96.5 (3.3) 12.5
HT-2-Glc 9.4 609.2 447.1 −34.0 +ve 114.1 (5.7) 77.4 (8.8) 12.5

DAS 8.9 384.2 307.5 −12.0 +ve 95.3 (16.3) 116.5 (5.0) 25
DAS-Glc 8.5 551.2 389.1 −33.0 +ve 112.0 (7.1) 111.7 (1.8) 25

DON 6.1 355.3 295.2 12.0 −ve 87.9 (7.6) 107.3 (4.9) 25
DON-Glc 5.9 517.2 427.2 23.0 −ve 95.1 (10.6) 93.2 (6.4) 12.5

NIV 5.3 371.2 281.2 20.0 −ve 101.1 (7.3) 93.3 (7.4) 12.5
NIV-Glc 5.1 533.3 473.2 14.0 −ve 94.7 (14.5) 91.9 (2.8) 12.5

ZEN 10.9 317.2 175.3 24.0 −ve 86.4 (6.4) 104.4 (7.9) 6.3
ZEN-Glc 9.4 479.4 317.2 21.0 −ve 70.4 (8.1) 59.6 (5.0) 6.3

13C22-HT-2 9.8 464.3 278.2 −20.0 +ve
13C15-DON 6.1 370.2 310.3 11.0 −ve
13C18-ZEN 10.9 335.2 185.2 26.0 −ve

Eight-point calibration curves (DON 0.625–500 ng/mL; HT-2 0.3125–250 ng/mL DON-
Glc, NIV, NIV-Glc, T-2, T-2-Glc, HT-2-Glc, ZEN, ZEN-Glc 0.1563–125 ng/mL) were used
to quantify all analytes. Stable-isotope labelled internal standards were used as follows:
DON 13C15 (50 ng/mL) was used to quantify DON, HT-2 13C22 (50 ng/mL) was used to
quantify HT-2 and T-2, and ZEN 13C18 (25 ng/mL) was used to quantify ZEN. For other
mycotoxins and modified mycotoxins (DON-Glc, NIV, NIV-Glc, DAS, DAS-Glc, T-2-Glc,
HT-2-Glc, ZEN-Glc), external calibration curves were used in quantification.

4.2.2. Extraction of Oat Samples

Oat samples were freeze-milled by using a 6870 large freezer/Mill (SPEX SamplePrep,
Metuchen, NJ, USA) into fine powder. Next, 0.5 g milled and homogenised oat samples
were extracted with 2 mL of extraction solvent (79% ACN, 20% H2O, 1% acetic acid;
HAc) [48] for 90 min at 1200 rpm on an orbital shaker (IKA® VXR basic, Thomson Scientific,
Aberdeen, UK). Samples were centrifuged at room temperature (2000× g for 5 min), and
supernatants were dried under nitrogen stream and reconstituted to achieve 10% of ACN
in sample extracts. Prior to LC-MS/MS analysis, sample extracts were combined with
13C22-HT-2, 13C15-DON and 13C18-ZEN to facilitate the quantification of parent mycotoxins
using a stable isotope dilution approach (SIDA) [49].

https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps
https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps
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4.2.3. LC-MS/MS Analysis of Mycotoxins

The detection and the quantification of all mycotoxins and the [13C]-labelled standards
were performed on a Shimadzu Nexera X2 LC Quaternary pump coupled to a Shimadzu
8060 mass spectrometer fitted with an electrospray ionisation (ESI) source (Shimadzu,
Kyoto, Japan). The liquid chromatography separation was performed on a Phenomenex
Gemini C18 column, 150 mm × 3 mm, particle size 3 µm. Mobile phase solvents were
(A) 0.1% HAc and (B) methanol; after 2 min at 100% A, the proportion of B was increased
linearly to 100% within 12 min, followed by a hold time of 3 min at 100% B and 4 min
column re-equilibration at 100% A. The flow rate was 800 µL/min, and the injection
volume was 15 µL. The LC eluent was directed into the ESI source without splitting. The
mass spectrometer was run in positive and negative ion mode with the following settings:
interface temperature 300 ◦C, desolvation temperature 250 ◦C, heating block temperature
300 ◦C, and gases 1 and 2 set at 15 and 5 L/min, respectively. Argon gas was used as the
collision gas in the collision cell for the fragmentation of the mycotoxin metabolites. Ion
transition parameters and precursors used for each mycotoxin are summarised in Table 4.
Mycotoxins were quantified using the multiple reaction monitoring (MRM) technique.
Standard solutions of approximately 1 ng/µL concentration were prepared and put into
the LC auto sampler, where the mass spectrometer sampled from them automatically to
optimise the MRM conditions of the individual mycotoxin metabolites.

4.3. Method Performance Validation

Performance characterisation included absolute recovery (RA), signal suppression/enhan
cement (SSE) and limit of quantification (LOQ). Recovery was assessed in triplicate by spiking
a blank oats sample (0.5 g) with a mycotoxin mix (15 µL in acetonitrile) containing 300 µg/kg
DON, 150 µg/kg HT-2 and 75 µg/kg DON-Glc, NIV, NIV-Glc, T-2, T-2-Glc, HT-2-Glc, DAS,
DAS-Glc, ZEN, ZEN-Glc. Following evaporation (37 ◦C, 30 min), samples were extracted
as described above (section: extraction of oat samples). Absolute recovery (RA) [50] was
calculated as

RA (%) = Observed concentration in spike sample/Spike concentration × 100

The matrix-matched calibration curves (8 levels, in triplicate) were prepared in blank
oat extracts and compared to solvent calibration curves to calculate signal suppression/enha
ncement (SSE%) as

SSE (%) = matrix-matched calibration curves slope/solvent calibration curves slope × 100.

LOQ was determined in oat matrix by a signal-to-noise ratio of 10/1.

4.4. Data calculations and Statistical Analysis

All results were corrected for recovery. For prevalence (% of positive samples), only
values > LOQ for each mycotoxin were included. For calculation of mean concentration of
mycotoxins and statistical analysis, all values < LOQ for each mycotoxin were replaced by
1⁄2 LOQ [40]

Mycotoxin concentrations were log-transformed, and for each mycotoxin (single
toxins T-2, HT-2, T-2-Glc, HT-2-Glc, DON, DON-Glc, NIV, NIV-Glc as well as T-2 + HT-2
and T-2 + HT-2 + T-2-Glc + HT-2Glc) were fitted to covariates (organic production, cereal
intensity score, cereal variety, temperature, rainfall and harvest date) using linear models.
Due to sample size, models with one or two covariates were fitted at a time. Analysis of
variance was used to test the statistical significance of the covariates in each model, with
p < 0.05 considered significant. Diagnostics were carried out to assess the assumptions of
the tests. All analyses were carried out using the statistical software “R”, version 4.2.2 (R
Core Team, 2021. R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria).
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com/article/10.3390/toxins15040247/s1, Farm Agronomy Questionnaire.
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