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abstract: Animals regulate their food intake to maximize the
expression of fitness traits but are forced to trade off the optimal
expression of some fitness traits because of differences in the nu-
trient requirements of each trait (“nutritional trade-offs”). Nutri-
tional trade-offs have been experimentally uncovered using the
geometric framework for nutrition (GF). However, current analyt-
ical methods to measure such responses rely on either visual in-
spection or complex models of vector calculations applied to mul-
tidimensional performance landscapes, making these approaches
subjective or conceptually difficult, computationally expensive, and,
in some cases, inaccurate. Here, we present a simple trigonometric
model to measure nutritional trade-offs in multidimensional land-
scapes (nutrigonometry) that relies on the trigonometric relationships
of right-angle triangles and thus is both conceptually and compu-
tationally easier to understand and use than previous quantitative
approaches. We applied nutrigonometry to a landmark GF data
set for comparison of several standard statistical models to assess
model performance in finding regions in the performance land-
scapes. This revealed that polynomial (Bayesian) regressions can
be used for precise and accurate predictions of peaks and valleys in
performance landscapes, irrespective of the underlying structure of
the data (i.e., individual food intakes vs. fixed diet ratios). We then
identified the known nutritional trade-off between life span and re-
productive rate in terms of both nutrient balance and concentration
for validation of the model. This showed that nutrigonometry en-
ables a fast, reliable, and reproducible quantification of nutritional
trade-offs in multidimensional performance landscapes, thereby broad-
ening the potential for future developments in comparative research on
the evolution of animal nutrition.
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Introduction

Animals often require different nutrient blends to maxi-
mize concurrent life history traits, creating the potential
for a conflict for optimumnutrition (Simpson andRauben-
heimer 2012; Raubenheimer and Simpson 2020). When
the optimumnutrition for two traits cannot be achieved si-
multaneously, animals must make a compromise in their
feeding decisions to support the optimal expression of
one trait over another (“nutritional trade-off”; Lee et al.
2008; Maklakov et al. 2008). Previous research has identi-
fied nutritional trade-offs between life span and reproduc-
tion or between immunity and reproduction across many
different taxa, including Drosophila melanogaster (Ponton
et al. 2019), tephritid fruit flies (Fanson and Taylor 2012;
Fanson et al. 2012), crickets (Harrison et al. 2014; Treidel
et al. 2021; Guo et al. 2022), and mice (Solon-Biet et al.
2014) (for reviews, see Ponton et al. 2011; Schwenke et al.
2016). Even traits related to different aspects of the same
life history can vary in nutritional requirements during
the lifetime of an animal, as seen, for instance, in pre-
and postmating traits related to reproduction of many in-
sect species, such as sperm number and viability (Bunning
et al. 2015), fertilization success across sperm competitive
contexts (Morimoto and Wigby 2016), cuticular hydro-
carbons, and courtship song and sperm viability (Ng et al.
2018) as well as size and numbers of eupyrene and apyrene
sperms (Gage and Cook 1994). Thus, nutritional trade-offs
are likely ubiquitous and impose significant constraints on
the feeding choices of individuals.
Measuring nutritional trade-offs is critical to under-

standing the evolution of animal feeding behavior. How-
ever, it is highly challenging because of the interactive
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effects of nutrient ratios and concentrations on the expres-
sion of life histories (Stearns 1992; Roff 2002; Hunt et al.
2004; Simpson and Raubenheimer 2012). In recent decades,
however, amethod known as the geometric framework for
nutrition (GF) has emerged as a powerful unifying frame-
work capable of disentangling the multidimensional ef-
fects of nutrients (both ratios and concentrations) on life
history traits and fitness (Raubenheimer and Simpson
1993). The GF has been applied to a diverse range of nu-
tritional studies across species such as flies (Lee et al. 2008;
Fanson and Taylor 2012; Jensen et al. 2015; Ponton et al.
2015; Barragan-Fonseca et al. 2018), crickets (Maklakov
et al. 2008; Ng et al. 2018; Rapkin et al. 2018), cockroaches
(Bunning et al. 2015), domestic cats and dogs (Hewson-
Hughes et al. 2011, 2013), and mice (Solon-Biet et al.
2014; Morimoto et al. 2019), being paramount for advanc-
ing our understanding of complex physiological and be-
havioral processes across ecological environments and
even human health (Simpson et al. 2017). With the grow-
ing applications of GF in the study of animal and human
nutrition, the development of simple, intuitive, and accu-
rate quantitative methods for identifying optimal diets in
performance landscapes and quantifying nutritional trade-
offs has become a key issue for research in comparative nu-
trition. Simple methodologies that are friendly to biologists
and ecologists will facilitate new insights into the complex
nutritional decision-making that animals have to undergo
in order to navigate physiological and behavioral constraints
of different life history traits (Morimoto and Lihoreau
2020).
Recent approaches to analyze GF data have been com-

plex to navigate, and many studies continue to use a com-
bination of approaches (including visual inspection) or
potentially inaccurate methods to quantify the strength
of nutritional trade-offs in GF landscapes (Polak et al.
2017; Ng et al. 2018, 2019; Rapkin et al. 2018; Kutz
et al. 2019; Morimoto and Lihoreau 2019; Ma et al. 2020;
Barragan-Fonseca et al. 2021). There are three major gaps
in our approaches to analyzing GF data that contribute to
inconsistencies in the analysis in the field of nutritional
ecology: (i) there has been no investigation into the suit-
ability and accuracy of different statistical models in iden-
tifying regions of interest (e.g., peaks, valleys) in multidi-
mensional performance landscapes (see, e.g., Rapkin et al.
2018; Morimoto and Lihoreau 2019). The reason for this
is because (ii) current methods to analyze multidimen-
sional GF performance landscapes are complex and diffi-
cult to implement in a comparative fashion, precluding
the exploration of the full range of statistical methods
commonly used in ecology and evolution (e.g., linear
regressions, additive models). Moreover, (iii) the struc-
ture of the data that GF empirical studies generate is also
inconsistent. For instance, some GF studies measure both
the amount of food ingested and the trait values on each
diet across a broad range of dietary compositions (e.g.,
Maklakov et al. 2008), while others consider diets as
treatments and examine the effect of a wide range of diets
on trait values without measuring food intake (e.g., Kutz
et al. 2019). This difference in experimental approach
leads to distortions in the generated performance land-
scapes that could influence the estimates of the strength
of nutritional trade-offs. No study has investigated how
current analytical methods perform in identifying peaks
and valleys across different data structures. Collectively,
these gaps in analytical methods used to estimate nutri-
tional trade-offs limit our ability to draw conclusions be-
tween studies and, more broadly, preclude our understand-
ing of the evolution of nutritional responses in comparative
analysis. Thus, there is a need for the development of con-
sistent analyses that derive precise estimates of peak (and
valley) regions from GF landscapes, thereby enabling large-
scale comparative analyses necessary to gain insights into
the evolution of animal nutrition.
Here, we address these gaps by proposing a novel ana-

lytical model (nutrigonometry) that is simple and precise
and that can accommodate different data structures. We
then use this model to conduct the first comparative anal-
ysis of different statistical methods and their performance
in identifying regions of interest (e.g., peaks or valleys) in
GF performance landscapes. Nutrigonometry is different
from our previous vector of positions approach (Morimoto
and Lihoreau 2019) because the latter used a single statisti-
cal model (i.e., a support-vector machine [SVM] model)
that required an arbitrary input threshold to identify peak
regions. Moreover, the vector of positions could not iden-
tify and delineate valley regions as accurately and the over-
all approach was computationally expensive to apply to
multiple landscapes. Nutrigonometry uses trigonometric
relationships (i.e., the Pythagorean theorem) to estimate
the difference in angles of right-angle triangles formed in
performance traits (fig. 1a), after which the difference be-
tween these angles can be estimated as a proxy for the
strength of nutritional trade-offs (i.e., wider angles indicate
stronger trade-offs; fig. 1b).
Below, we first describe the mathematical foundation

underlying the nutrigonometry method. Next, we apply
nutrigonometry to a landmark GF data set in D. mela-
nogaster with known nutritional trade-offs between life
span and reproductive rate (Lee et al. 2008; Morimoto
and Lihoreau 2019). This data set provided an important
ground truth to apply, test, and validate the precision of
nutrigonometry in identifying the known nutritional trade-
off. Moreover, the use of this data set allowed us to dem-
onstrate the consistency of the nutrigonometry model in
identifying nutritional trade-offs when the structure of
the input data set varied (i.e., individual intake vs. fixed
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000 The American Naturalist
ratio experiments). Finally, we leveraged the simplicity
(and computationally cheap) approach provided by nutri-
gonometry to conduct the first comparative analyses of a
range of “off-the-shelf” statistical models (including ma-
chine learning) in estimating the peak region in the perfor-
mance landscapes, which is an essential component for
proper quantification of nutritional trade-offs.

Material and Methods

Nutrigonometry

GF studies consider a “nutritional space” in which animals
can eat foods and navigate their nutritional state (for a re-
view, see Raubenheimer and Simpson 2020). This nutri-
tional space is defined by the food components (typically
macronutrients) under investigation. Foods are represented
in the nutritional space as nutritional rails (i.e., imaginary
lines that pass through the origin with a given positive
slope) characterized by different ratios of the food compo-
nents. For example, in studies where protein and carbohy-
drate effects are investigated, there is a 2D nutritional space
(one dimension for each nutrient) onto which the perfor-
mance landscape of the trait is mapped. This rationale
can be extended to n number of nutrients (Simpson and
Raubenheimer 1993), although to date studies with two
nutrients are the most common (Morimoto and Lihoreau
2020). If we consider this 2D nutritional space as a rectan-
gular space in which an infinite number of nutritional rails
(i.e., foods) exist that divides the space in right-angle
triangles, then it is possible to use simple trigonometric
functions to estimate the angle ai and the hypotenuse of
the triangle for all fitness traits mapped onto the nutritional
space. The angle ai is the angle of the nutritional rail, rela-
tive from the x-axis, that passes through the peak in the
landscape for the trait i, and the hypotenuse hi of the trian-
gle shows how far from the origin the peak in the landscape
sits for trait i (fig. 1a). Both ai and hi can be calculated using
the Pythagorean theorem and the relationship between the
angle and the sides of right-angle triangles (i.e., sines and
cosines), as shown in figure 1a.
Once ai and aj are known, we can estimate the angle v

(as in Morimoto and Lihoreau 2019), which is the differ-
ence in the angle between nutritional rails that maximize
two traits, i and j, and provides a measure of the strength
of the nutritional trade-off that exists between traits i and
j (fig. 1b). The larger the angle vi,j, the stronger the nutri-
tional trade-off in terms of nutrient balance (and poten-
tially nutritional compromise) between traits. Likewise,
we can compare the difference hi,j in the estimates of
the hypotenuse hj and h

*
i to quantify nutritional trade-offs

in relation to nutrient concentration (fig. 1b). These
metrics allowed us to disentangle the following theoreti-
cal scenarios in which nutritional trade-off can occur
(fig. 1c): (i) when vi,j is large but hi,j is small (strong nutri-
tional trade-off in terms of nutrient balance); (ii) when vi,j
is small but hi,j is large (strong nutritional trade-off in
terms of nutrient concentration); (iii) when vi,j and hi,j

are large (strong nutritional trade-off in terms of both nu-
trient balance and concentration); and (iv) when vi,j and
hi,j are small (weak or no nutritional trade-off ).
Here, when applying this model to empirical data sets

(see below), inferences on the strength of nutritional
trade-offs were made using confidence intervals for hi,j and
vi,j, whereby nutritional trade-offs were stronger when
confidence intervals did not overlap zero and the magni-
tude of the difference was large. Estimates are presented
in the units of the nutrient space in which the data were
collected (e.g., mg), while angles are presented in degrees.
Confidence intervals for both hi,j and vi,j were calculated
using the significance threshold of .05 and the quartiles of
a t distribution. All analyses and plots were done in R ver-
sion 3.6.2 (R Core Team 2019).
Data Sets Used for Model Application:
Diet Intake and Fixed Ratios

Nutrigonometry was designed to work on diverse types of
GF data, including those generated from experimental
approaches measuring diet intakes or fixed ratio diets
(see the introduction). To validate this, we applied the
nutrigonometry model to a landmark data set that mea-
sured the nutritional requirements for life span and re-
production in Drosophila melanogaster (Lee et al. 2008).
This data set was used to test previous approaches and
therefore has important benchmark status in the field,
providing the ground-truth data for the identification of
the now-known nutritional trade-offs between life span
and reproductive rate (Morimoto and Lihoreau 2019).
These data have the benefit of allowing us to implement
the nutrigonometry model to measure the trade-off in
data of both intake and fixed ratio structures. This is be-
cause the original data carefully estimated individual intake
across diets and provided the ratio of nutrients of all diets,
enabling us to transform the data structure from intake to
fixed ratio.We also demonstrated the application of nutrigo-
nometry to a GF data set with fixed ratios from Kutz et al.
(2019), who studied how temperature modulates nutritional
responses of larval development and adult fitness in D.
melanogaster, as an auxiliary demonstration of the applica-
tion of our model (see fig. S1).
Analytical Approach

The implementation outline of nutrigonometry is as follows.
Predicting peak (or valley) location and size. We de-

signed algorithms that fitted a range of statistical models
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(details of the models are given below) to the empirical
data in order to test their performance in predicting peaks
(or valleys; see the supplemental PDF) in the performance
landscape for life span and reproductive rate from our
landmark data set. This comparative statistical approach
enabled us to provide the first comparative assessment of
models to identify peak regions in GF performance land-
scapes. This was done for both the data set with nutrient in-
take and with fixed ratios. This enabled us to predict peak
regions in the performance landscapes for which further
analysis was possible.
Model fit. We then tested the fit of all models using sev-

eral quantitative parameters, such as (i) root mean square
error (RMSE), (ii) peak area and spread, and (iii) homo-
geneity of points within the predicted peak region. These
provide information on the error in the predictive esti-
mates of the performance trait in the z-axis, the spread
that the models predicted the peak in the landscape to
comprise, and the clustering of points that delineate the
predicted peak region, respectively.
Nutrient balance. We then compared the nutrient ratio

of the predicted peak regions with the nutrient ratio that
animals chose when given the freedom to self-balance
their diet (also known as the nutrient intake target). This
allows themodel to infer whether animals aremaximizing
any particular performance trait (i.e., the ratio of intake
target coincides with the ratio of predicted peak). Below,
we provide the details of each of the steps outlined above.
Predicting peak (or valley) location and size. As with

previous approaches, our model depends on accurate
estimates of the coordinates for the peak in the multidi-
mensional performance landscape.Without this, estimates
of hi,j and v are inaccurate, which in turn affects the ability
of the model to estimate the strength of nutritional trade-
offs. To overcome this, the basic algorithms underpinning
the identification of peak regions in performance land-
scapes were designed as follows: (a) empirical data were
split into training (75%) and test (25%) data sets; (b) the
statistical model was fitted to the training set using 10-fold
cross validation, with the fitness trait as the dependent vari-
able and the nutrient intakes (or fixed ratios) as the indepen-
dent variables (the model included the main and interactive
effects of protein and carbohydrate as well as the quadratic
effects of each nutrient for nonlinear relationships); (c) a
set of 500 random points corresponding to (protein, car-
bohydrate) coordinates were generated, and the model of
step b was used to predict the value of the performance
trait at these points and select the points with the highest
5% predicted performance trait values; and (d) step c was
repeated 100 times.
Peak area was then estimated as the area of the convex

hull incorporating all of the predicted points from the
above-described algorithm. The ci function of the Rmisc
package (Hope 2013) was used to estimate 95% confi-
dence intervals of peak area.
We compared the performance of several statistical

models (including commonly used statistical GF litera-
ture), namely, Bayesian linear regression (Bayes), general
linear regression (LM), k-nearest neighbors (KNN), gradi-
ent boost (GBoost), random forest (RF), SVM with radial
basis function, and generalized additive models (GAMs)
with smooth term or tensor product terms. Note that
SVM models were used as the underlying model in the
vector of positions approach in Morimoto and Lihoreau
(2020) and thus provides the grounds where the two
methodologies can be compared. With the exception of
GAMs that were fitted using the mgcv package (Wood
and Wood 2015), all other models were fitted using the
tidymodels package of the tidyverse (Wickham et al.
2019). Performance landscapes were estimated using the
Tps function of the fields package (Nychka et al. 2017).
We fitted the majority of models with default parameters,
as these are the most likely approach from a beginner
starting to work with GF data. Automated parameter tun-
ing built into the tidymodels packagewas done for themtry
argument (RF and GBoost), the cost argument (SVM),
and the neighbors and weight_func (KNN). For Bayes, we
fitted a weakly informative Cauchy prior using the rstan::
cauchy(. . .) function (Goodrich et al. 2020). All plots were
constructed using the ggplot2 package (Wickham 2016).
We also demonstrated how the best-performing models
in our peak analyses can be used to predict valley regions
in GF data sets (figs. S2, S3). The R code with the functions
used for this article is available in the Dryad Digital Repos-
itory and Zenodo (Morimoto et al. 2022; https://doi.org
/10.5061/dryad.5mkkwh78q).
Model Fit

RMSE. The RMSE was estimated as the difference be-
tween the predicted (generated by the above-described
algorithm) and observed (from the empirical data set)
values for the performance trait. Note that RMSE values
do not interfere with the accuracy of estimates of hi,j, and
v—and thus the estimates of nutritional trade-offs—be-
cause the z-axis is not used in the calculation of angles
and hypotenuses (fig. 1d). A model can have a high
RMSE and still be the best predictive model as long as
the predicted peak correctly matches with the observed
peak in the landscape.
Peak area. In addition to the RMSE, we estimated the

area (in squared units in which the data are collected)
of the polygon delimited by the estimated predicted peak
region (area) and the horizontal (protein) and vertical
(carbohydrate) spread of the data points of the predicted
peak region (nutrient spread) as proxies for the precision

https://doi.org/10.5061/dryad.5mkkwh78q
https://doi.org/10.5061/dryad.5mkkwh78q
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of our predicted peak regions (fig. 1d). The smaller the
area and nutrient spread, the more compact the predic-
tion of the peak region in the nutritional space.
Homogeneity of points within the predicted peak region.

Even in cases where the RMSE, area, and nutrient spread
of the predicted peak regions are small, it is important to
have evenly spaced data points within the predicted peak
region. This is because predictions of regions that contain
holes can lead to misestimation of the strength of nutri-
tional trade-offs by potentially adding noise to the set of
protein and carbohydrate coordinates used to calculate
hi,j and the angle v. Wemeasured the topological structure
of the predicted peak region using the concept of persis-
tence homology (PH), which in simple terms allows us to
investigate the overall structural organization of the data
(for details of the concept, see text S1; Zomorodian and
Carlsson 2005;Weinberger 2011; fig. 1d). PH was estimated
using the TDAstats package (Wadhwa et al. 2018). To-
gether, the estimates of the RMSE, area, nutrient spread,
and PH provided a comprehensive suite of metrics to as-
sess the quality of model predictions for the peak region
in fitness landscapes.
Nutrient Balance

Drosophila melanogaster adults balance their nutrient
intake to a protein-to-carbohydrate (P∶C) ratio of 1∶4
when given the possibility to self-select multiple nutri-
tionally complementary foods (see results in the original
study, Lee et al. 2008). We then used the peak predictions
of the nutrigonometry framework to test whether the ob-
served P∶C ratios that maximized life span and reproduc-
tive rates coincided with the P∶C ratio of 1∶4 reached by
flies in choice situations. To achieve this, we calculated
the 95% confidence interval as described for the peak area
but in this case for the P∶C ratio of each trait. Whenever
the confidence interval overlapped 1∶4, we inferred that
the estimate of peak ratio did not statistically differ from the
intake target of 1∶4.

Results

Simple (Bayesian) Linear Regressions Outshine Machine
Learning Models When Predicting Peak Region

in Multidimensional Landscapes

First, we applied the nutrigonometry model with several
underlying statistical models to test the precision of the
framework in finding peak regions in the performance
landscapes. All models generated predictions of peak re-
gion in nutritional landscapes irrespective of data struc-
ture, although the accuracy and topology of the predicted
regions varied (figs. 2–4). In general, GAMs with tensor
product and smooth function as well as Bayes and LM lin-
ear models generated peak predictions for both life span
and reproductive rate that were significantly more precise
(narrower) than other models when the structure of the
data was composed of food intakes (fig. 2; tables S1, S2).
When the data structure changed to fixed ratios, LM,

GAM with tensor product, Bayes, and KNN predicted
peaks with smaller area for life span, and all but KNN per-
form within similar scales for the peak prediction of re-
productive rate (fig. 3; tables S1, S2). In comparison,
GAM smooth did not perform well in predicting a peak
region that was homogenous and precise in the perfor-
mance landscapes.
The performance of the models was independent of the

estimates of the RMSE and nutrient spread, which showed
no clear pattern of performance. The exceptions were that
LM and Bayes displayed consistently lower spread when
the structure of the data were intakes (figs. 4, 5; table S2).
Interestingly, machine learning models consistently

underperformed, predicting peak regions that were wider
and less precise (figs. 2–4; tables S1, S2). The underlying
reason for this is unclear, but similar patterns were ob-
served when predicting the peak region of the Kutz
et al. (2019) data set (see fig. S1; table S3). This is impor-
tant because the previous vector of position approaches
uses SVM models, which, as shown here, do not perform
as well as other simpler models (Morimoto and Lihoreau
2020). Bayes, GAMs (both smooth and tensor product),
and LM also performed well when predicting valley re-
gions (see figs. S2, S3). These results indicate that simple
(Bayesian) linear regression consistently provides precise
estimates of peak regions in performance landscapes
irrespective of the structure of the data and that GAMs
with tensor product (and to a smaller extent, smooth
function) can also be used when the data structure is of
individual intakes.
Precision in Estimates of Known Nutritional
Trade-Offs in Performance Landscapes

Next, we tested whether nutrigonometry was capable of
reliably quantifying known nutritional trade-offs in the
data set. The data set used here contains a strong trade-
off between life span and reproductive rate (Lee et al.
2008; Morimoto and Lihoreau 2019). We therefore tested
how different statistical models in nutrigonometry per-
formed when estimating this nutritional trade-off. GAMs
(both smooth and tensor product), Bayes, LM, and KNN
were the only models that correctly identified the known
nutritional trade-off in the data set, measured by angle v
between life span and reproductive rate for data with indi-
vidual intakes (table 1). Given the variability in the area,
spread, and topology of the predicted region, estimates of



Figure 2: Predictions of peak region in life span and reproductive rate landscape with intake data. a, Life span landscape with the overlaid
predicted peak regions (right small panels). b, Reproductive rate landscape with the overlaid predicted peak regions. Red represents peaks, while
light green represents valleys. For the predicted region, dark blue represents points with lower predicted z values, whereas bright yellow repre-
sents points with higher predicted z values. Shaded polygon added to help visualization. Dashed lines represent the nutritional rails (i.e., foods
with fixed P∶C ratios) onwhich animals were allowed to eat. BayespBayesian linear regression; GAMp generalized additive model; GBoostp
gradient boost; KNN p k-nearest neighbors; LM p general linear regression; RF p random forest; SVM p support-vector machine.



Figure 3: Predictions of peak region in life span and reproductive rate landscape with fixed ratio data. a, Life span landscape with the overlaid
predicted peak regions (right small panels). b, Reproductive rate landscapes with the overlaid predicted peak regions. For the landscapes, red
represents peaks, while light green represents valleys. For the predicted region, dark blue represents points with lower predicted z values, whereas
bright yellow represents points with higher predicted z values. The shaded polygon was added to facilitate visualization of the predicted peak
region and the homogeneity of points within the predicted peak. Bayes p Bayesian linear regression; GAM p generalized additive model;
GBoostp gradient boost; KNNp k-nearest neighbors; LMp general linear regression; RFp random forest; SVMp support-vector machine.
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hi,j and v were more precise (narrower confidence inter-
vals) for GAMs (smooth and tenor product), Bayes, and
LM compared with KNN. GAMs, Bayes, and LM were
the only models that identified a trade-off on the hypote-
nuse estimate hi,j for data of individual intakes, while KNN
was the only model that identified this trade-off in data with
fixed ratios (table 1). Thus, simpler models are overall more
suitable to generating peak predictions that accurately
Figure 5: Root mean square error (RMSE) and peak area estimates in peak region predictions. a, RMSE and predicted peak area (i.e., area
of the shaded polygon from the predicted region for life span and reproductive rate data), with structure containing individual intakes.
b, RMSE and predicted peak area (i.e., area of the shaded polygon from the predicted region for life span and reproductive rate data), with
structure containing fixed ratios. Note that models with a high RMSE can still be the best predictors of peak region. Bayes p Bayesian linear
regression; GAM p generalized additive model; GBoost p gradient boost; KNN p k-nearest neighbors; LM p general linear regression;
RF p random forest; SVM p support-vector machine.
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describe nutritional trade-offs in multidimensional perfor-
mance landscapes for data of different structures.
Comparing Trait Optimum with Intake Target

When given a choice of imbalanced diets, animals balance
their nutrient intake to ratios that maximize the expres-
sion of some fitness traits at the expense of others. In
the landmark data set used here,Drosophila melanogaster
flies balanced their P∶C to a ratio of 1∶4, which does not
coincide with the P∶C ratios that maximize life span or
reproductive rate (Lee et al. 2008). We tested whether
nutrigonometry could identify such known nutritional
trade-off in the data. All models predicted a significantly
Table 1: Quantification of nutritional trade-offs between life span and reproduction
Data, parameter, model
 Estimate
 SD
Confidence interval
Lower
 Upper
Trade-off (intakes):

vi,j:

SVM
 14.456
 10.728
 26.574
 35.485

RF
 14.508
 8.109
 21.388
 30.404

GAM tensor
 16.128
 4.984
 6.358
 25.897

GAM smooth
 16.166
 4.962
 6.438
 25.893

GBoost
 17.063
 9.575
 21.706
 35.831

LM
 17.940
 4.826
 8.479
 27.400

Bayes
 18.205
 4.709
 8.974
 27.436

KNN
 21.203
 6.181
 9.088
 33.318
hi,j:

SVM
 16.792
 65.723
 2112.038
 145.622

KNN
 50.015
 48.137
 244.343
 144.373

GBoost
 52.851
 75.218
 294.591
 200.293

RF
 58.561
 66.066
 270.943
 188.064

LM
 75.870
 35.142
 6.984
 144.757

Bayes
 76.729
 34.444
 9.211
 144.247

GAM smooth
 120.245
 29.406
 62.604
 177.886

GAM tensor
 124.533
 27.930
 69.784
 179.282
Trade-off (fixed):

vi,j:

GAM smooth
 9.645
 5.897
 21.916
 21.205

SVM
 11.840
 5.649
 .767
 22.913

RF
 17.368
 5.848
 5.906
 28.831

GBoost
 20.177
 5.057
 10.264
 30.090

GAM tensor
 21.177
 3.872
 13.588
 28.766

Bayes
 26.454
 5.876
 14.935
 37.973

LM
 26.499
 5.903
 14.928
 38.070

KNN
 31.428
 7.186
 17.342
 45.513
hi,j:

SVM
 2.381
 68.888
 2132.653
 137.416

RF
 4.819
 64.841
 2122.283
 131.921

GBoost
 9.377
 65.605
 2119.222
 137.975

Bayes
 41.461
 34.912
 226.974
 109.896

LM
 42.305
 34.429
 225.182
 109.791

GAM smooth
 46.635
 40.358
 232.475
 125.745

GAM tensor
 49.009
 32.855
 215.394
 113.412

KNN
 82.516
 30.388
 22.949
 142.083
Note: Shown are estimates of vi,j (in degrees) and hi,j (in milligrams) for the nutritional trade-off be-
tween life span and reproductive rate. Analysis is from the data presented in Lee et al. (2008). Confidence
intervals overlapping zero implies no difference in the peaks. Magnitude of the estimates indicate the
strength of nutritional trade-offs (i.e., larger magnitudes indicate stronger nutritional trade-offs). Note
that vi,j is bound between 0 and 90 degrees (i.e., 0 and p=2). Bayes p Bayesian linear regression;
GAM p generalized additive model; GBoostp gradient boost; KNN p k-nearest neighbors; LM p gen-
eral linear regression; RF p random forest; SVM p support-vector machine.
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lower optimum P∶C ratio that maximizes reproductive
rate relative to life span, as expected from the original
visual comparison of landscapes (around 1∶2 for repro-
ductive rate and 11∶9 for life span; table 2). However,
none of the estimates overlapped the P∶C ratio of 1∶4.
This confirms the findings from the original study that
D. melanogaster females do not balance their nutrient in-
take to maximize life span or reproductive rate but in-
stead balance their P∶C to 1∶4 in order to maximize life-
time egg production (Lee et al. 2008). This validates the
power of nutrigonometry in analyzing nutritional behav-
ior in GF studies (Lee et al. 2008).
Table 2: Estimates of nutritional compromises
Data, trait, model
 Mean
Confidence interval
Target (visual)
Upper
 Lower
Peak ratio (intakes):

Life span
 16
GBoost
 5.235
 5.205
 5.265

RF
 5.533
 5.508
 5.557

SVM
 5.864
 5.836
 5.892

LM
 9.084
 9.048
 9.120

Bayes
 9.154
 9.118
 9.190

KNN
 12.075
 12.015
 12.135

GAM smooth
 13.055
 12.997
 13.114

GAM tensor
 13.108
 13.049
 13.168
Reproductive rate
 2

GBoost
 1.858
 1.853
 1.864

KNN
 2.041
 2.037
 2.045

RF
 2.138
 2.133
 2.144

SVM
 2.147
 2.138
 2.156

Bayes
 2.194
 2.191
 2.197

LM
 2.215
 2.212
 2.219

GAM smooth
 2.644
 2.639
 2.650

GAM tensor
 2.661
 2.656
 2.667
Peak ratio (fixed):

Life span
 16
GBoost
 13.078
 12.987
 13.170

SVM
 14.946
 14.873
 15.019

RF
 15.107
 15.045
 15.169

GAM smooth
 16.977
 16.859
 17.097

GAM tensor
 20.623
 20.536
 20.710

KNN
 26.050
 25.929
 26.173

Bayes
 32.426
 32.237
 32.617

LM
 32.933
 32.744
 33.125
Reproductive rate
 2

KNN
 1.467
 1.463
 1.470

LM
 1.836
 1.832
 1.839

Bayes
 1.841
 1.837
 1.845

GBoost
 2.171
 2.168
 2.174

GAM tensor
 2.244
 2.241
 2.248

RF
 2.545
 2.539
 2.552

SVM
 3.527
 3.516
 3.538

GAM smooth
 4.280
 4.265
 4.296
Note: Shown are estimates of optimal intake that maximizes life span and reproductive rate based on the predicted
peak region. Comparison is made with the visual peak ratio from Lee et al. (2008). Note that all but one model (i.e.,
generalized additive model [GAM] smooth for fixed ratio reproductive rate data) predicted a peak region of ∼1∶4,
which is the ratio that individuals balance when given the ability to balance their diet. Other models suggest that a
P∶C ratio of 1∶4 is lower than the ratio needed to maximize life span but higher than that for reproductive rate. Bayes p
Bayesian linear regression; GBoost p gradient boost; KNN p k-nearest neighbors; LM p general linear regression; RF p

random forest; SVM p support-vector machine.
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Discussion

We introduced a new simple analytical framework to an-
alyze nutritional trade-offs inmultidimensional fitness land-
scapes. Nutrigonometry uses trigonometric relationships
from right-angle triangles to identify and compare peaks
(or valleys) in 3D performance landscapes. Using a land-
mark GF data set, we demonstrated the precision and per-
formance of standard statistical (machine learning) models
in finding the peak regions in performance landscapes and
subsequently quantifying the strength of nutritional trade-
offs between traits. In the first comparative analysis of sta-
tistical methods in GF data sets, we showed that simpler
general linear models outshined machine learning models
in the prediction of peak and valley regions in the perfor-
mance landscapes. Thus, nutrigonometry is a powerful yet
easy-to-implement methodology to determine the strength
of nutritional trade-offs in fitness studies in the field of ani-
mal nutrition.
Multidimensional studies of nutrition through the GF

have been increasingly used to gain insight into animal
and human nutrition (Lee et al. 2008; Behmer 2009; Felton
et al. 2009; Simpson and Raubenheimer 2012; Hewson-
Hughes et al. 2013; Gosby et al. 2014; Solon-Biet et al.
2014). Likewise, the complexity of the applications has
also increased, ranging from studies with few nutrients
(e.g., protein and carbohydrates, salts) through to high-
dimensional studies investigating individual fatty acids and
amino acids (Simpson et al. 2006; Grandison et al. 2009;
Arien et al. 2015; Arganda et al. 2017; Piper et al. 2017). This
means that analytical frameworks that are simple and robust
must be developed to support the development of the field.
In this study, we introduced such a framework. Pre-

vious methods were either computationally expensive
(and imprecise) or could, in some cases, overestimate the
strength of nutritional trade-offs. For instance, Rapkin
et al. (2018) proposed a model that used regression slopes
of the nutrients onto the performance trait as coordinates
of a vector vi for performance trait i. From these vectors,
the angle v0 between vectors vi and vj for traits i and j,
respectively, could be calculated as the estimate of the
strength of the nutritional trade-off. This method has
the limitation that regression slopes can be positive, zero,
or negative, whereas performance landscapes can exist
only in the positive numbers (i.e., animals cannot eat neg-
ative amounts of nutrients). This can lead to overestima-
tion of nutritional trade-offs (Morimoto and Lihoreau
2019). We then proposed a method, known as the vector
of positions approach, that addressed this limitation and
used vectors with coordinates that matched the location
of peaks in the domain of positive numbers (Morimoto
and Lihoreau 2019). However, this approach was limited
because (i) we used an SVM model that required an arbi-
trary input threshold to identify peaks and (ii) was compu-
tationally expensive to apply tomultiple landscapes. Nutri-
gonometry resolves the limitations from the previousmodels
as it (1) estimates nutritional trade-offs using the domain of
positive numbers; (2) demonstrates, in the first compara-
tive study of statistical methods, that simpler (Bayesian)
linear regressions are often more precise; and (3) is com-
putationally cheap to run, as it relies on simple trigono-
metric relationships. Thus, nutrigonometry enables reliable
large-scale studies of the fitness consequences of animal for-
aging decisions that will shed light onto the evolution of
physiological and behavioral responses to nutrition.
We have provided the first comparative assessment of

the power and precision of common statistical models in
identifying regions of interest (e.g., peaks or valleys) in
multidimensional performance landscapes. More impor-
tantly, we have shown that nutrigonometry provides a
clear, concise, and simpler foundation to analyzing GF
data by demonstrating the best approach to investigate
nutritional trade-offs in 3D fitness landscapes. Because
nutrigonometry uses trigonometric relationships of right-
angle triangles, it is applicable to n dimensions. However,
given the often counterintuitive geometrical effects of high
dimensionality (e.g., Milman 1998; Watanabe 2021), such
expansion to higher dimensions requires further investiga-
tion as the topic of future developments. Nevertheless,
given the broad use of 3D fitness landscapes in GF studies
(Morimoto and Lihoreau 2020), nutrigonometry readily
enables important quantifications of nutritional trade-offs
that were otherwise absent or cumbersome to produce.
For instance, using a range of models, nutrigonometry uses
right-angle triangles to compare the ratio of nutrients that
maximize life span and reproductive rate along with the
strength of nutritional trade-offs between these traits in a
landmark article in the field (Lee et al. 2008). Moreover,
nutrigonometry is capable of comparing the nutrient ratio
that maximizes life span and reproductive rate with the
nutrient ratio that is balanced by individuals when given
a choice, providing important insights into the dietary
choices underpinning nutritional compromises. Such
quantification can bring new fundamental insights into
our understanding of nutritional trade-offs, such as the
strength and direction of the trade-offs (e.g., nutrient bal-
ance vs. concentration; see fig. 1), as well as how much
animals actually resolve these trade-offs when they have
the opportunity to do so and whether, for instance, they
favor one trait over another (distance between optimal
trade-off and observed nutrient intake target; see table 2).
An important trend in the field of multidimensional

nutrition is the study of nutritional effects across phys-
iological pathways and across levels of biological organi-
zation (Lihoreau et al. 2014; Simpson et al. 2015). These
studies generate multiple performance landscapes that
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are often compared visually, without rigorous analytical
methods to measure nutritional trade-offs. This limits
our ability to identify diet balances that maximize (or
minimize) the gene expression of a particular pathway.
For example, regions of 11 performance landscapes of
the expression of genes involved in the insulin/insulin-
like growth factor (IGF) pathway were visually compared
to provide insights into how a key endocrine pathway is
regulated on the basis of nutrient intake and how gene ex-
pression can underlie expression of life histories (Post
and Tatar 2016; McDonald et al. 2021). Likewise, regions
of 12 performance landscapes with gutmicrobial diversity
or abundance were visually compared to better understand
how nutrient composition can modulate host-microbe in-
teractions (Ng et al. 2019). Similar visual comparisons have
been made to understand the effects of nutrition on host-
endosymbiont relationships (Ponton et al. 2015). Of course,
the goal of these molecular studies may not have been the
identification of nutrient ratios that optimize (or minimize)
gene expression but instead the relative contribution of spe-
cific nutrients to changes in the gene expression profile.
Nevertheless, identifying peaks and valleys in GF gene ex-
pression landscapes is a useful concept with wider appli-
cation to veterinary and medical sciences (Simpson and
Raubenheimer 2009).Nutrigonometrywill allow researchers
to move beyond visual comparisons to quantitatively as-
sess how landscapes differ using a rigorous and reproduc-
ible framework, providing (additional) tools for better
understanding the properties of multidimensional per-
formance landscapes. As a result, nutrigonometry yields
considerable advances to the status quo in the field, en-
abling a deeper understanding of the role of nutrition in
physiology, behavior, and ecology.
Conclusion

We propose a model that is simple and robust to analyze
performance landscapes from GF studies. Contrary to
previous methods (Rapkin et al. 2018; Morimoto and
Lihoreau 2019), nutrigonometry does not rely on vector
calculations but instead harnesses the trigonometric re-
lationships of right-angle triangles to estimate nutritional
trade-offs. This is a major advance of the model, as it con-
siderably simplifies the framework in both conceptual and
computational terms. Nutrigonometry thus significantly
advances our ability to generate reliable and reproducible
estimates of nutritional trade-offs within and between spe-
cies, facilitating quantitative studies of animal nutrition
within and between species. These advances in our ap-
proach opens new avenues of research inmultidimensional
nutrition and allows for physiological and comparative
studies to be performed in a consistent and reproducible
way fromwhich insights into the evolution of animal nutri-
tion can be gained across the tree of life.
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