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Abstract
Background: Machine learning methods are used in the classification of various car-
diovascular diseases through ECG data analysis. The concept of varying subcutaneous 
implantable cardiac defibrillator (S- ICD) eligibility, owing to the dynamicity of ECG 
signals, has been introduced before. There are practical limitations to acquiring longer 
durations of ECG signals for S- ICD screening. This study explored the potential use of 
deep learning methods in S- ICD screening.
Methods: This	was	a	retrospective	study.	A	deep	learning	tool	was	used	to	provide	de-
scriptive analysis of the T:R ratios over 24 h recordings of S- ICD vectors. Spearman's 
rank correlation test was used to compare the results statistically to those of a “gold 
standard” S- ICD simulator.
Results: A	total	of	14	patients	(mean	age:	63.7	± 5.2 years,	71.4%	male)	were	recruited	
and 28 vectors were analyzed. Mean T:R, standard deviation of T:R, and favorable 
ratio	 time	 (FVR)—	a	new	concept	 introduced	 in	this	study—	for	all	vectors	combined	
were	0.21 ± 0.11,	0.08 ± 0.04,	and	79 ± 30%,	respectively.	There	were	statistically	sig-
nificant strong correlations between the outcomes of our novel tool and the S- ICD 
simulator (p < .001).
Conclusion: Deep learning methods could provide a practical software solution to 
analyze data acquired for longer durations than current S- ICD screening practices. 
This could help select patients better suited for S- ICD therapy as well as guide vec-
tor	selection	in	S-	ICD	eligible	patients.	Further	work	is	needed	before	this	could	be	
translated into clinical practice.
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1  |  INTRODUC TION

The subcutaneous implantable cardiac defibrillator (S- ICD) is an es-
tablished totally avascular alternative to the traditional transvenous 
defibrillators	 (TV-	ICDs).	 S-	ICDs	 offer	 defibrillation	 therapy	 while	
avoiding lead- related complications associated with traditional ICDs 
(Lambiase, 2022).	However,	 the	Achilles	heel	of	 the	S-	ICD	to	date	
remains the relatively high rate of inappropriate shocks when com-
pared	with	conventional	TV-	ICDs.	T-	wave	oversensing	(TWO)	is	still	
the most common cause of inappropriate shock delivery in S- ICDs 
(Knops et al., 2020).

Appropriate	functioning	of	the	S-	ICD	relies	on	the	presence	of	
vectors	with	suitable	ECG	morphology.	As	such,	not	all	patients	are	
eligible for S- ICDs, and pre- implant ECG screening is performed on 
all potential candidates to ensure they have at least one vector that 
meets	the	screening	criteria	(Francia	et	al.,	2018; Groh et al., 2014; 
Olde Nordkamp et al., 2014; Randles et al., 2014; Rudic et al., 2018). 
Surface ECGs of few seconds duration done in multiple postures are 
used as surrogates for the three standard S- ICD vectors. These are 
assessed via an automated screening tool built- into an S- ICD pro-
grammer to determine eligibility (Rudic et al., 2018).	A	major	 pre-
dictor of eligibility is the T:R ratio. ECG signals sensed by at least 
one vector needs to pass screening in at least two postural positions 
for the patient to be deemed eligible. Unfortunately, despite this 
screening process, TWO remains the commonest cause of inappro-
priate	shock	therapies	in	S-	ICD	patients	(Kamp	&	Al-	Khatib,	2019). 
This is significant as inappropriate shock therapies can have detri-
mental effects on the quality of life, psychological well- being, can 
result in the induction of ventricular arrhythmias and increase all- 
cause mortality (Daubert et al., 2008).

T- wave morphology is dynamic and can alter with position, ex-
ercise, electrolyte disturbance, progression of myocardial diseases, 
and	 changes	 in	 autonomic	 function	 (Al-	Zaiti	 et	 al.,	 2011;	 Assanelli	
et al., 2013; Hasan et al., 2012; Madias et al., 2001;	Mayuga	&	Fouad-	
Tarazi, 2007). This can provide an explanation for the occurrence of 
TWO events in vectors with ECG signals that originally passed the 
S- ICD screening. It is important to highlight that not all TWO events 
result in inappropriate shocks. If the TWO episode is not sustained 
long enough to result in capacitator charging, it will pass unmarked, 
and no record of the event is made. This is because an S- ICD is only 
programmed to store episodes of tachycardia that result in capacitor 
charging. This preserves both battery life and memory capacity of the 
system. Therefore, the true incidence of TWO in the S- ICD popula-
tion is not known.

The concept of the potential varying of S- ICD vectors eligibil-
ity over time was previously presented in a published study by Wiles 
et al. (Wiles et al., 2021) The study demonstrated that the vector score 
which determines S- ICD eligibility is dynamic in real- life ICD popula-
tion.	For	that	study,	an	S-	ICD	simulator	provided	by	the	device	manu-
facturer was utilized for vector assessment. The clinical significance of 
this dynamicity has not yet been evaluated. However, it sheds light on 
the possibility that acquiring screening data over a much longer period 
than for conventional screening can enable more reliable and descrip-
tive screening of the ECG signals sensed by the S- ICD vectors and can 

aid patient and vector selection in S- ICD candidates. The ultimate goal 
would be reducing the risk of TWO and inappropriate shocks.

The authors of this article have also previously introduced a 
novel deep learning- based screening tool, which provides a detailed 
descriptive analysis of the behavior of T:R ratios from an S- ICD per-
spective could be obtained (Dunn et al., 2021). We theorize that this 
tool can guide patient selection as well as vector selection in S- ICD 
recipients. The aim of this study was to clinically apply this tool to 
screen a cohort of ICD patients for S- ICD vectors eligibility and as-
sess	our	findings	against	a	“gold	standard”—	an	S-	ICD	simulator.

2  |  METHODS

This is a retrospective correlation study. In our previous study 
Wiles et al. (2021), adult ICD (transvenous and S- ICD) patients were 
asked	to	wear	Holter	monitors	for	24 h	to	record	ECG	signals	corre-
sponding to their S- ICD vectors. Then, these ECG recordings were 
analyzed using an S- ICD simulator to assess the vector scores au-
tomatically at regular intervals. Mean vector scores were also ana-
lyzed	and	a	new	concept—	Eligible	Vector	Time	(EVT),	representing	
the percentage of all the screening assessments with passing vec-
tor	scores—	was	introduced	in	the	study.	The	study	concluded	that	
the S- ICD vectors eligibility in an ICD population is dynamic (Wiles 
et al., 2021).

The same 24 h Holter recordings, sampling rate 500/s, from our 
previous study were first downloaded. Then, the recordings were 
analyzed	by	our	deep	learning	tool.	First,	the	data	is	split	into	10	s	
segments. Then, phase space reconstruction (PSR) was utilized to 
convert	 the	ECG	signal	 into	compressed	32 x 32	pixel	PSR	 images,	
one image for each 10 s worth of ECG data.

Phase space reconstruction is a popular technique in waveform 
analysis for representing nonlinear characteristics of time series set 
of data using delay maps. Typically, when a signal is examined, it is 
plotted against time. To construct the PSR of the signal, a copy of the 
signal, which is delayed by a given amount of time, is first created. 
Then,	the	original	signal	is	plotted	against	the	delayed	signal.	At	each	
time increment, a single point in the phase space reconstruction is 
created. Each point has an x- axis value equal to the value of the orig-
inal signal at that time increment and a y- axis value equal to the value 
of the delayed signal at that time increment. By removing the time 
axis from this plot, the repetitive behaviors of the signal can be seen 
(Rocha et al., 2008).	An	example	of	how	a	signal	can	be	transformed	
into its PSR image is illustrated in Figure 1.

Several techniques have been used before to analyze PSR. Box 
counting, where simply the image or the phase space is divided 
up into a grid and the number of boxes occupied by the image is 
counted.	Also,	measuring	the	area	covered	by	the	PSR	plot	and	cal-
culating summary statistics for rows and columns of the PSR matrix.

In the algorithm used here, a multilayered Convoluted Neural 
Network (CNN) is trained to automatically determine the optimal 
features	to	extract	from	the	transformed	ECG	32 × 32-	pixel	PSR	im-
ages. This CNN is made up of a number of feature extraction blocks, 
followed by a regression block. The outputs from the preceding 
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feature extraction blocks are flattened to a 1D vector and fed into 
a series of fully connected (dense) layers of neurons to arrive at the 
final regression output: the T:R ratio.

The end result is a plot showing the mean T:R, standard deviation 
(SD), and the number of 10 s segments that has T:R above a prede-
termined threshold for the ECG signals sensed by each lead/S- ICD 
vector over the recorded period. See Figure 2.	For	further	details	on	
the algorithm development, refer to our previously published work 
by Dunn et al. (Dunn et al., 2021)

The time that a T:R ratio of a vector was deemed favorable 
(below the eligibility threshold) was calculated as a percentage of the 
whole recording (=number of 10 s segments with T:R below eligibil-
ity	threshold/total	number	of	10	s	segments	in	the	recording × 100).	
For	this	article,	this	was	labeled	as	favorable	ratio	time	or	FRT.

2.1  |  Statistical methodology

Data analysis was done using RStudio 1.4.1106 running R 4.0.5. 
Continuous	 data	 were	 presented	 as	 mean ± SD.	 The	 distribution	
of the data was checked using normality tests and plots, and his-
tograms. The correlation was checked using Spearman's rank coef-
ficient among variables that fit interval, ordinal or ratio scale, and in 
paired observations with monotonic relation assumption.

To correlate the outcome of our deep learning tool with that 
of the S- ICD simulator, the following were compared statistically: 
(mean	 vector	 score + standard	 deviation	 of	 the	 vector	 score)	 and	
(mean	T:R + standard	deviation	of	the	T:	R,	mean	T:R + standard	devi-
ation	of	T:R)	and	EVT,	and	finally	FRT	and	EVT.

3  |  RESULTS

3.1  |  Patients' demographics

A	total	of	14	patients	(mean	age:	63.7	± 5.2 years,	71.4%	male)	were	
recruited in the original study. The primary and alternate vectors for 
each of the patients, amounting to a total of 28 vectors were ana-
lyzed.	A	 total	of	13	 (92.9%)	patients	had	 transvenous	 ICDs.	There	
was	a	high	prevalence	of	ischemic	heart	disease	(42.9%)	and	severe	
(ejection fraction <35%	on	echocardiogram)	LV	dysfunction	(28.6%)	
in the recruited cohort. The main indication for ICD therapy was 
secondary	 prevention	 (71.4%).	 See	 Table 1 for detailed patients' 
demographics.

3.2  |  T:R assessment

Mean T:R was lower in the primary vectors when compared to the 
alternate	vectors	(0.20 ± 0.06	vs.	0.22 ± 0.06,	p = .30).	Standard	de-
viation of the T:R (a representation of dynamicity) was also lower 
in	 the	 primary	 vectors	 (0.07 ± 0.02	 vs.	 0.09 ± 0.02,	 p = .11).	 This	
has	translated	to	a	higher	favorable	ratio	time	(FRT)	in	the	primary	
vectors	when	 compared	 to	 the	 alternate	 vectors	 (87.1	± 14.13	 vs.	
70.4	± 16.16%,	p = .07).

Mean	T:R	for	all	the	28	vectors	combined	was	0.21 ± 0.11,	stan-
dard	deviation	for	all	the	28	vectors	combined	was	0.08 ± 0.04,	and	
the	FRT	for	all	 the	vectors	combined	was	79 ± 30%.	For	 individual	
assessment of each vector, see Table 2.

F I G U R E  1 Illustrates	how	a	phase	
space reconstruction (PSR) image of the 
sine	wave	is	created.	As	the	sine	wave	has	
a repeated behavior, the sine wave signal 
could have any length and the phase 
space points generated from this signal 
would continuously trace and retrace the 
resulting circle figure which represents 
the PSR image of the sine wave.
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n = 14 (%)

Demographics Mean	age	(years ± 95%	Cl) 63.7	(±5.2)

Male 10 71.4

Device Primary prevention 4 14

Secondary prevention 10 71.4

Transvenous ICD 13 92.9

Subcutaneous ICD 1 7.1

Comorbidities Ischemic heart disease 6 42.9

Severe	LV	systolic	dysfunction 4 28.6

Previous atrial arrhythmia 3 23.1

Hypertension 3 23.1

Airway	disease 3 23.1

Diabetes 2 14.3

Valve	disease	(>mild) or valve 
surgery

2 14.3

Previous	CABG 2 14.3

Cerebrovascular disease 1 7.1

Peripheral vascular disease 1 7.1

eGFR < 60 mL/min/1.732 (n = 10) 1 10

eGFR < 30 mL/min/1.732 (n = 10) 1 10

Abbreviations:	CABG,	coronary	artery	bypass	graft	surgery;	eGFR,	estimated	glomerular	filtration	
rate;	LV,	left	ventricle.

TA B L E  1 Patient	demographics.

F I G U R E  2 One	example	of	the	results	of	vector	analysis	produced	by	our	tool;	This	is	the	T:	R	analysis	of	the	alternate	S-	ICD	vector	of	
patient 03.
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3.3  |  Correlation

Mean vector score was higher in the primary vectors when compared 
to the alternate vectors (412.6 ± 191	 vs.	 105.6	± 139.2,	p = .008).	
Standard deviation of vector scores was lower (i.e., more stable vec-
tor scores) in the primary vectors when compared to the alternate 
vectors	(95.23 ± 76.17	vs.	160.56 ± 60.73,	p = .10),	and	the	EVT	was	
significantly higher in the primary vectors when compared with the 
alternate	vectors	(64.55 ± 19.07	vs.	13.05 ± 15.34%,	p < .001).	Mean	
vector	score	for	all	the	vectors	combined	was	259.09 ± 129.60	(95%	
CI), the standard deviation of the vector score for all the vectors 
combined	was	127.89 ± 49.36	(95%	CI),	and	the	EVT	for	all	the	vec-
tors	combined	was	38.80 ± 15.45	(95%	CI).

There were statistically significant strong correlations between 
the outcomes of the proposed tool and the S- ICD simulator; Mean 
T:R	ratio + standard	deviation	of	T:	R	correlated	strongly	with	mean	
vector	score + standard	deviation	of	mean	vector	score,	Rho	= 0.636 
(p < .001).	Mean	T:R	 ratio + standard	deviation	of	T:R	 in	correlated	
strongly	 with	 eligible	 vector	 time	 (EVT),	 Rho	 = 0.668 (p < .001).	
Favorable	ratio	time	also	correlated	with	eligible	vector	time	(EVT),	
Rho = 0.652 (p < .001).	 See	Table 3 and Figures 3– 5 for detailed 
results.

4  |  DISCUSSION

4.1  |  T:R ratio

The S- ICD has three ECG signal sensing vectors, each with their 
own	T:R	ratio.	A	major	predictor	of	eligibility	during	the	ECG	signal	
screening	of	a	vector	 is	 the	T:R	 ratio	 (Francia	et	al.,	2018; Maurizi 
et al., 2016; Olde Nordkamp et al., 2014; Srinivasan et al., 2017). 
Large T:R ratios are unacceptable because if the T wave sits above 
the S- ICD sensitivity level, this can result in double counting 
whereby a T wave following a QRS is interpreted as another R wave. 
This “double counting” can result in inappropriate diagnosis of ven-
tricular tachycardia and subsequently activation of shock therapy. 
Despite the pre- implant screening, the commonest cause of inap-
propriate	 shocks	 in	 the	 S-	ICD	 population	 remains	 TWOS	 (Aydin	
et al., 2012; Bardy et al., 2010; Burke et al., 2015;	Dabiri	Abkenari	
et al., 2011;	Jarman	et	al.,	2012; Olde Nordkamp et al., 2012). It is 
important to note that different factors such as changes in posture, 
heart rate, electrolytes concentrations, body weight, fluid shifts, and 
lung congestion can cause detectable dynamic changes on surface 
ECG	 recordings	 (Al-	Zaiti	 et	 al.,	2011;	Assanelli	 et	 al.,	2013; Hasan 
et al., 2012; Madias, 2005; Madias et al., 2001; Walker et al., 2003). 
Subsequently, the T:R ratio is not fixed in the same individual. This 
could provide a potential explanation for the occurrence of TWO in 
S- ICD vectors that previously passed S- ICD screening.

Because of the crucial role of the T:R ratio in the sensing mech-
anism of the S- ICD and its subsequent determination of S- ICD eligi-
bility and TWO events, it was chosen specifically as the parameter 
to	be	tracked	and	analyzed	by	our	novel	tool.	A	T:R	ratio	eligibility	

cutoff ratio of 1:3 was chosen based on the manual S- ICD screening 
tool following the manufacturer's guidelines (Randles et al., 2014), 
although the manual screening method is now highly replaced with 
automatic screening methods, as they follow the same principles.

The concept of integrating deep learning methods in clinical prac-
tice is not new. Machine learning methods are already being used in 
the classification and the prediction of various cardiovascular dis-
eases	through	ECG	data	analysis	(Fan	et	al.,	2018; IEEE Conference 
Publication|IEEE Xplore, 2021; Kiranyaz et al., 2016; Lih et al., 2020; 
Pourbabaee et al., 2018; Roberts, 2001; Rocha et al., 2008; 
Vemishetty	 et	 al.,	 2019;	 Zhang	 et	 al.,	2020). Convolutional neural 
networks (CNNs) have been used before in ECG analysis for classi-
fying heart attacks, and arrhythmias as well as for predicting blood 
pressure	(Fan	et	al.,	2018; Kiranyaz et al., 2016; Lih et al., 2020; Liu 
et al., 2018; Miao et al., 2020; Pourbabaee et al., 2018; Sangaiah 
et al., 2020;	Zhang	et	al.,	2020). However, to the best of our knowl-
edge, integrating deep learning tools to predict S- ICD eligibility has 
not been reported before.

4.2  |  Practical considerations

Our previous work Wiles et al. (2021) has utilized a S- ICD simulator-  
provided	by	the	S-	ICD	manufacturer—	in	order	to	analyze	the	vector	
score	over	the	24	h	recordings	in	real-	time,	that	 is,	 it	took	24 h	for	
the S- ICD simulator to analyze a 24 h ECG recording for one vector. 
As	the	S-	ICD	simulator	essentially	replicates	the	sensing	mechanism	
of a S- ICD in real- time, it can be considered as a “gold standard” for 
evaluating various durations of ECG signals sensed by S- ICD vec-
tors. Our study demonstrated that the outcomes of our novel tool 
correlate strongly with those of the “gold standard” S- ICD simula-
tor,	aside	from	being	time-	efficient.	The	simulator—	aside	from	being	
not	readily	available—	runs	in	real	time	and	analyses	the	ECG	signals	
sensed by the S- ICD vectors consecutively, which can be a time- 
consuming process, particularly if it is required to analyze recordings 
of even longer durations. Our tool can provide detailed descriptive 
analysis of the T:R ratios simultaneously for the ECG signals sensed 
by all the vectors across the recordings within a few minutes without 
compromising on accuracy.

Acquiring	screening	data	for	eligibility	in	S-	ICD	candidates	over	
a longer period than for conventional screening practices seems 
like	 a	 reasonable	 approach	 to	minimize	 the	 effect	 of	 the—	at	 least	
theoretical—	dynamicity	of	S-	ICD	eligibility.	However,	this	approach	
increases the burden of data analysis required to assess S- ICD eligi-
bility. Our tool represents a practical software solution that could 
provide detailed data analysis within minutes; thus, facilitating in-
formed decision- making and could guide patient selection as well as 
vector selection in S- ICD candidates.

While the R:T ratio rather than the T:R ratio is more common in 
literature, the reason for choosing T:R ratio for this work can be at-
tributed to the deep learning algorithm used for data analysis; as the 
T- wave amplitude approaches 0, very small changes in the amplitude 
can result in extreme changes in the R:T ratio (but not T:R ratio). This 
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massive variation in R:T ratio makes it inappropriate for use as a label 
in the algorithm, and for this reason, the T:R ratio is used instead 
(Dunn et al., 2021).

The results of this study denote overall more favorable ratios in 
the primary vectors on average. However, this might not be true for 
every individual patient. This highlights the importance of individu-
alizing S- ICD screenings and tailoring the device programming for 
each patient.

There are some limitations to our study; first, the relatively low 
number of ECG signals were analyzed in this study. Second, only 
the ECG signals sensed by the primary and alternate vectors were 

available for analysis, because the Holter that was used to collect the 
S- ICD vectors was limited to recording only two simultaneous chan-
nels.	Also,	the	S-	ICD	simulator	analyzed	the	data	at	1	min	intervals,	
while our novel tool provided analysis of the T:R ratios at 10 s inter-
vals.	In	addition,	the	role	of	the	SMART	PASS	algorithm	that	could	
help differentiate between R and T waves based on other charac-
teristics rather than just their amplitudes, was not considered in this 
study. We propose that our algorithm is to be used as a supplement 
and	not	a	replacement	of	the	SMART	pass	algorithm,	that	is,	ECG	sig-
nals	are	processed/filtered	first	through	the	SMART	pass	algorithm,	
and then, analyzed using our algorithm as an additional step.

TA B L E  2 Results	of	T:	R	assessment	using	the	deep	learning	tool.

Study ID Vector Mean T:R T:R standard deviation
T:R segments 
over threshold

T:R segments 
below 
threshold

Favorable ratio time 
(FRT) (%)

01 Alternate 0.274 0.078 2045 6565 76.25

01 Primary 0.057 0.064 28 8582 99.67

02 Alternate 0.075 0.062 5 8785 99.94

02 Primary 0.175 0.064 84 8706 99.04

03 Alternate 0.045 0.047 4 8686 99.95

03 Primary 0.110 0.107 411 8279 95.27

04 Alternate 0.199 0.138 980 7630 88.62

04 Primary 0.164 0.107 545 8065 93.67

05 Alternate 0.113 0.076 20 8590 99.77

05 Primary 0.102 0.046 10 8600 99.88

06 Alternate 0.363 0.180 4902 3708 43.07

06 Primary 0.187 0.098 414 8196 95.19

07 Alternate 0.297 0.139 4003 4607 53.51

07 Primary 0.479 0.026 8605 5 0.06

08 Alternate 0.382 0.059 6949 1740 20.03

08 Primary 0.311 0.032 1420 7269 83.66

09 Alternate 0.338 0.023 4778 3832 44.51

09 Primary 0.168 0.031 10 8600 99.88

10 Alternate 0.048 0.040 0 8610 100

10 Primary 0.153 0.049 2 8608 99.98

11 Alternate 0.260 0.139 3452 5158 59.91

11 Primary 0.203 0.088 410 8200 95.24

12 Alternate 0.381 0.060 7346 1264 14.68

12 Primary 0.195 0.027 0 8610 100

13 Alternate 0.203 0.107 944 6760 87.75

13 Primary 0.340 0.107 2891 4813 62.47

14 Alternate 0.142 0.070 168 8442 98.05

14 Primary 0.143 0.105 413 8197 95.20

Mean Primary 0.20 ± 0.06
(95%	CI)

0.07 ± 0.02
(95%	CI)

87.1	± 14.13
(95%	CI)

Mean Alternate 0.22 ± 0.06
(95%	CI)

0.09 ± 0.02	(95%	CI) 70.4	± 16.16
(95%	CI)

Mean Combined 0.21 ± 0.11(95%	Cl) 0.08 ± 0.04(95%	Cl) 79 ± 30
(95%	Cl)
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Theoretically, our deep learning tool could be potentially used 
to predict the risk of TWO events and allow informed decisions to 
be made by the physicians and patients alike prior to committing to 

S- ICD therapy. The tool could also be used to guide vector selection 
in S- ICD eligible patients. However, further work is needed before 
it	 is	 possible	 to	 apply	 our	 tool	 to	 clinical	 practice.	A	 prospective	

F I G U R E  3 Mean	T:R	ratio + standard	
deviation of T:R (x- axis) in correlation 
with	mean	vector	score + standard	
deviation of mean vector score (y- axis) 
using Spearman's rank correlation test. 
Rho = 0.636 (p < .001)	denoting	strong	
correlation.

F I G U R E  4 Mean	T:R	ratio + standard	
deviation of T:R (x- axis) in correlation 
with	eligible	vector	time	(EVT;	y- axis) 
using Spearman's rank correlation test. 
Rho = 0.668 (p < .001)	denoting	strong	
correlation.

F I G U R E  5 Favorable	ratio	time	(x- 
axis) in correlation with eligible vector 
time	(EVT;	y- axis) using Spearman's rank 
correlation test. Rho = 0.652 (p < .001)	
denoting strong correlation.
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    |  9 of 11ELREFAI et al.

study, with a larger number of recruited patients, and a more con-
trolled data protocol, is needed to assess the effect of different 
physiological states, such as exercise, sudden changes in position 
or mental stress on the ECG recordings, and subsequently, the out-
come of our deep learning tool. In addition, our algorithm needs 
to be tested on ECG signals, acquired from a larger number of pa-
tients, or simulated patients, that are processed with the widely 
utilized	 SMART	 PASS	 algorithm,	 to	 assess	 if	 our	 algorithm	 could	
improve upon the current method of sensing vector selection.

5  |  CONCLUSION

T:R	 ratio—	a	 crucial	 element	 in	 the	 S-	ICD	 sensing	 mechanism	 and	
a	 major	 determinant	 of	 S-	ICD	 eligibility—	is	 dynamic	 in	 “real-	life”	
ICD patients. Deep learning methods could provide reliable and 
time- efficient analysis of T:R ratios. This could help with the S- ICD 
screening process as well as guide vector selection in S- ICD eligible 
patients. Prospective studies with larger cohorts of recruited pa-
tients are needed before the findings from our study could be trans-
lated into clinical practice.
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