

## Title: Biomarker-defined clusters by level of Type 2 inflammatory involvement in severe asthma

David Price<sup>1,2,3</sup>, Sarah Burkill<sup>1,2</sup>, Eileen Wang<sup>4,5</sup>, Michael E. Wechsler<sup>6</sup>, Eve Denton<sup>7,8</sup>, Trung N. Tran<sup>9</sup>, Neil Martin<sup>9,10</sup>, Rohit Katial<sup>9</sup>, Peter Barker<sup>9</sup>, Jorge Maspero<sup>11,12</sup>, Mark Hew<sup>13,14</sup>, Guy Brusselle<sup>15,16</sup>, George C. Christoff<sup>17</sup>, Mohsen Sadatsafavi<sup>18</sup>, Carlos A. Torres-Duque<sup>19</sup>, Celeste M. Porsbjerg<sup>20</sup>, Charlotte Ulrik<sup>21</sup>, Susanne Hansen<sup>22,23</sup>, Alan Altraja<sup>24</sup>, Arnaud Bourdin<sup>25</sup>, Nikolaos G. Papadopoulos<sup>26,27</sup>, Konstantinos Kostikas<sup>28</sup>, Sundeep Salvi<sup>29</sup>, Richard W. Costello<sup>30</sup>, Puggioni Francesca<sup>31,32</sup>, Takashi Iwanaga<sup>33</sup>, Chin Kook Rhee<sup>34</sup>, Mona Al-Ahmad<sup>35</sup>, Désirée Larenas-Linnemann<sup>36</sup>, João A. Fonseca<sup>37</sup>, Borja G. Cosio<sup>38</sup>, Mariko Koh Siyue<sup>39,40</sup>, Bruce Kirenga<sup>41</sup>, Chau-Chyun Sheu<sup>42,43</sup>, Ming-Ju Tsai<sup>42,43</sup>, Bassam Mahboub<sup>44,45</sup>, John Busby<sup>46</sup>, Liam G. Heaney<sup>47</sup>, Paul E. Pfeffer<sup>48,49</sup>, Pujan H Patel<sup>50</sup>, Flavia Hoyte<sup>4,5</sup>, Yang Liu<sup>51</sup>, Juntao Lyu<sup>1,52</sup>, Celine Goh<sup>1,2</sup>, Thendral Uthaman,<sup>1</sup> William Henley<sup>1,2,53</sup>, on behalf of the ISAR EMBER working group.

Affiliations: <sup>1</sup>Observational and Pragmatic Research Institute, Singapore; <sup>2</sup>Optimum Patient Care Global, Cambridge, UK;<sup>3</sup>Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK; <sup>4</sup>Division of Allergy & Clinical Immunology, Department of Medicine, National Jewish Health, Denver, CO, USA; <sup>5</sup>Division of Allergy & Clinical Immunology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; <sup>6</sup>NJH Cohen Family Asthma Institute, Department of Medicine, National Jewish Health, Denver, CO, USA; <sup>7</sup>Allergy, Asthma & Clinical Immunology, Alfred Health, Melbourne, Australia; <sup>8</sup>Public Health and Preventive Medicine, Monash University, Australia; <sup>9</sup>AstraZeneca, Gaithersburg, MD, USA; <sup>10</sup>University of Leicester, Leicester, UK; <sup>11</sup>Clinical Research for Allergy and Respiratory Medicine, CIDEA Foundation; <sup>12</sup>University Career of Specialists in Allergy and Clinical Immunology at the Buenos Aires University School of Medicine, Argentina; <sup>13</sup>Allergy, Asthma & Clinical Immunology Service, Alfred Health, Melbourne, Australia; <sup>14</sup>Public Health and Preventive Medicine, Monash University, Melbourne, Australia; <sup>15</sup>Departments of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; <sup>16</sup>Department of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; <sup>17</sup>Medical University-Sofia, Faculty of Public Health, Sofia, Bulgaria; <sup>18</sup>Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada; <sup>19</sup>Fundación Neumológica Colombiana, Bogotá, Colombia; <sup>20</sup>Respiratory Research Unit, Copenhagen University Hospital-Bispebjerg; <sup>21</sup>Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark; <sup>22</sup>Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark; <sup>23</sup>Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; <sup>24</sup>Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University Hospital, Tartu, Estonia; <sup>25</sup>PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France; <sup>26</sup>Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK; <sup>27</sup>Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece; <sup>28</sup>Respiratory Medicine Department, University of Ioannina, Greece; <sup>29</sup>Pulmocare Research and Education Foundation, Pune, India; <sup>30</sup>Clinical Research Centre, Smurfit Building Beaumont Hospital, Department of Respiratory Medicine, RCSI, Dublin, Ireland; <sup>31</sup>Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; <sup>32</sup>Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; <sup>33</sup>Center for General Medical Education and Clinical Training, Kindai University Hospital, Osakasayama, Japan; <sup>34</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; <sup>35</sup>Microbiology Department, Faculty of Medicine, Kuwait University, Al-Rashed Allergy Center, Ministry of Health, Kuwait; <sup>36</sup>Directora Centro de Excelencia en Asma y Alergia, Hospital Médica Sur, Ciudad de México, Mexico; <sup>37</sup>Health Information and Decision Sciences Department (MEDCIDS) & Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine of University of Porto, Porto, Portugal; <sup>38</sup>Son Espases University Hospital-IdISBa-Ciberes, Mallorca, Spain; <sup>39</sup>Respiratory & Critical Care Medicine, Singapore General Hospital, Singapore; <sup>40</sup>SingHealth Duke-NUS Lung Centre, Singapore; <sup>41</sup>Makerere University Lung Institute, Kampala Uganda; <sup>42</sup>Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University,



Taiwan; <sup>43</sup>Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; <sup>44</sup>College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; <sup>45</sup>Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates; <sup>46</sup>Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland; <sup>47</sup>Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland; <sup>48</sup>Department of Respiratory Medicine, Barts Health NHS Trust, London, UK; <sup>49</sup>Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; <sup>50</sup>Respiratory Medicine, Royal Brompton Hospital, London, UK; <sup>51</sup>Consulting, Strategy AI & Transformation, Deloitte, Brisbane, Australia; <sup>52</sup>Optimum Patient Care, Queensland, Australia; <sup>53</sup>Health Statistics Group, Institute of Health Research, University of Exeter Medical School, Exeter, United Kingdom.

**Introduction/Background:** Biomarker-defined clusters of severe asthma patients were previously identified via hierarchical cluster analysis; a cluster of older females with low-to-medium Type 2 (T2) biomarkers was characterized (Denton, E. et al. *J Allergy Clin Immunol Pract* 2021;9:2680-8.e7).

**Aims and Objectives:** To describe biomarker-defined clusters (blood eosinophil counts [BEC], FeNO, and serum IgE [IgE]) in severe asthma patients, and characterize T2-low asthma.

**Methods:** Patients in the International Severe Asthma Registry (ISAR) with biomarker data were included, regardless of biologic use. The Gaussian finite mixture 5-cluster model was used to perform cluster analyses using BEC, FeNO, IgE and demographic variables standardized by z score. The prespecified thresholds for low biomarkers were BEC <300cells/µL, FeNO <25ppb and IgE <75 IU/mL.

**Results:** Of 4459 patients, five clusters were identified. Cluster 1 had females with low T2 biomarkers. Cluster 2 had high BEC and FeNO; Cluster 3, triple T2 biomarker high; Cluster 4, high BEC; Cluster 5, high IgE.

|                | Cluster 1 | Cluster 2 | Cluster 3   | Cluster 4 | Cluster 5 | <i>p</i> ≤0.001 |
|----------------|-----------|-----------|-------------|-----------|-----------|-----------------|
| N              | 747       | 1038      | 357         | 1,503     | 814       |                 |
| BEC (cells/μL) | 200 (200) | 850 (752) | 1160 (2900) | 400 (400) | 300 (300) |                 |
| FeNO (ppb)     | 16 (12)   | 93 (75)   | 52 (77)     | 37 (36)   | 24 (22)   |                 |
| lgE (IU/mL)    | 28 (40)   | 304 (362) | 1669 (2525) | 115 (126) | 650 (657) |                 |
| Females        | 73%       | 56%       | 54%         | 63%       | 58%       |                 |
| Age            | 55 (21)   | 54 (20)   | 55 (23)     | 56 (19)   | 52 (22)   |                 |
| BMI            | 29 (10)   | 27 (7)    | 26 (7)      | 29 (8)    | 28 (9)    |                 |

Figure: Median (IQR) biomarker levels and characteristics of clusters

**Conclusions:** In line with previous findings, a cluster with females and low biomarkers suggested low T2 involvement. The other 4 clusters varied in biomarker elevations, highlighting the complexity of T2 inflammatory involvement in severe asthma.

**Funding:** This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pte Ltd and was partially funded by Optimum Patient Care Global and AstraZeneca Ltd. No funding was received by OPRI for its contribution.

Current length of abstract: 1758 characters

Maximum Length of an abstract: 1810 characters