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Abstract
Introduction: S- ICD eligibility is assessed at pre- implant screening where surface ECG 
traces	 are	 used	 as	 surrogates	 for	 S-	ICD	 vectors.	 In	 heart	 failure	 (HF)	 patients	 un-
dergoing diuresis, electrolytes and fluid shifts can cause changes in R and T waves. 
Subsequently, T:R ratio, a major predictor of S- ICD eligibility, can be dynamic.
Methods: This is a prospective study of patients with structurally normal hearts and 
HF	patients	undergoing	diuresis.	All	patients	were	fitted	with	Holters®	to	record	their	
S- ICD vectors. Our deep learning model was used to analyze the T:R ratios across the 
recordings. Welch two sample t- test and Mann– Whitney U were used to compare the 
data between the two groups.
Results: Twenty-	one	patients	(age	58.43 ± 18.92,	62%	male,	14	HF,	7	normal	hearts)	
were enrolled. There was a significant difference in the T:R ratios between both 
groups.	Mean	T:	R	was	higher	in	the	HF	group	(0.18 ± 0.08	vs	0.10	± 0.05,	p < .001).	
Standard	deviation	of	T:	R	was	also	higher	in	the	HF	group	(0.09 ± 0.05	vs	0.07 ± 0.04,	
p = .024).	There	was	no	difference	between	leads	within	the	same	group.
Conclusions: T:R ratio, a main determinant for S- ICD eligibility, is higher and has more 
tendency	to	fluctuate	 in	HF	patients	undergoing	diuresis.	We	hypothesize	that	our	
novel	neural	network	model	could	be	used	to	select	HF	patients	eligible	for	S-	ICD	by	
better	characterization	of	T:R	ratio	reducing	the	risk	of	T-	wave	over-	sensing	(TWO)	
and	inappropriate	shocks.	Further	work	is	required	to	consolidate	our	findings	before	
applying to clinical practice.
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1  |  INTRODUC TION

We report a novel application of artificial intelligence and deep learn-
ing methods used to screen patients for S- ICD eligibility. Screening 
data are acquired over a much longer period than for conventional 
screening approaches and provide an in- depth description of the 
behavior of the T:R ratio over that period across the three S- ICD 
vectors (Dunn et al., 2021).	We	hypothesize	that	this	novel	screen-
ing approach could enable more reliable and descriptive screening 
to better assess patient eligibility for S- ICD implantation with lower 
risk of inappropriate shock therapy.

2  |  METHODS

This is a prospective observational study on healthy volunteers with 
structurally normal hearts and patients with a known history of 
heart	failure	admitted	for	diuresis	on	clinical	grounds.	None	of	the	
recruited	patients	had	an	ICD	(TV-	ICD	or	S-	ICD).	All	the	participants	
were	asked	 to	wear	a	seven	 lead/three	channel	Holter®	monitors	
for	24 h.	The	 leads	 for	 the	Holters®	were	positioned	so	 that	 they	
mimic and correspond to the three vectors (primary, alternate, and 
secondary)	of	an	S-	ICD	(Figure 1).

The aim of our study was to quantify, describe and compare the 
degree	 of	 variation	 in	 T:R	 ratio	 observed	 in	 patients	with	HF	 and	
healthy participants with structurally normal hearts from an S- ICD 
vector perspective.

T:R ratio was chosen specifically as the parameter to be tracked 
and analyzed by our novel tool because of the crucial role of the T:R 
ratio in the sensing mechanism of the S- ICD and its subsequent de-
termination	of	S-	ICD	eligibility	and	TWO	events.	A	T:R	ratio	eligibility	
cut- off ratio of 1:3 was chosen based on the manual S- ICD screening 
tool following the manufacturer's guidelines (Randles et al., 2014),	

although the manual screening method is now highly replaced with 
automatic screening methods, alas they follow the same principles.

Patients	 were	 recruited	 to	 the	 HF	 group	 based	 on	 clinical	 di-
agnosis	of	HF	regardless	of	underlying	 left	ventricular	function	on	
echocardiography and having received intravenous diuretic ther-
apy	(at	least	120 mg	furosemide/24 h)	on	clinical	grounds	under	the	
discretion of the treating physician. Patients' demographics (age, 
gender,	cardiovascular	history,	LV	function)	were	obtained	from	the	
medical records. There was no requirement for further patient fol-
low-	up.	The	study	was	performed	REC	(17/SC/0623)	approval	and	
was	granted	R&D	(RHMCAR0528)	approval.

Raw	data	 from	 the	Holters	were	downloaded	 in	ASCII	 (American	
Standard	Code	 for	 Information	 Interchange)	 format	at	a	 frequency	of	
500	Hertz	(Hz).	A	bespoke	tool	developed	by	Dunn	et	al	efficiently	and	
accurately tracked and analyzed the T:R ratio for the leads corresponding 
to the S- ICD vectors over the 24- h recordings period (Dunn et al., 2021).

3  |  ARTIFICIAL INTELLIGENCE AND 
NEUR AL NET WORKING MODEL

Machine learning methods are already being used in a variety of 
applications such as the classification and the prediction of various 
cardiovascular	diseases	through	ECG	data	analysis	(Fan	et	al.,	2018; 
Kiranyaz et al., 2016; Lih et al., 2020; Pourbabaee et al., 2018; 
Roberts et al., 2001; Rocha et al., 2008; Vemishetty et al., 2016; 
Vemishetty et al., 2019; Zhang et al., 2020).	A	well-	recognized	tech-
nique for preprocessing ECG data is to create its phase space recon-
struction	matrix	(PSR).	Typically,	manually	selected	features	such	as	
box counting as well as column and row statistics are extracted from 
the PSR of the ECG data which then can be used as inputs for a clas-
sification	model.	Convolutional	neural	networks	(CNNs)	have	been	
used in ECG analysis for classifying heart attacks, atrial fibrillation, 

F I G U R E  1 Showing	the	typical	S-	ICD	vectors	on	the	left	and	on	the	right,	the	Holter®	surface	ECG	positions.	1	= 1 cm infero- lateral 
to the xiphisternum. 2 =	14 cm	superior	to	position	1.	3	= 5th intercostal space, parasternal position. 4 =	6th	intercostal	space	left	mid	
axillary	line.	6	= Adjacent	to	2.	7	= Adjacent	to	4.	Holter	Channel	A	records	between	points	1	and	4	= surrogate	of	S-	ICD	primary	vector.	
Holter Channel B records between points 2 and 3 = surrogate	of	S-	ICD	alternate	vector.	Holter	Channel	C	records	between	points	6	and	
7 = surrogate	of	S-	ICD	secondary	vector.	5	= 5th intercostal space right midclavicular line = neutral electrode. Image prior to annotation © 
Boston Scientific Corporation or its affiliates.
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and other arrhythmias as well as for predicting blood pressure (Cho 
et al., 2020;	 Fan	 et	 al.,	2018; Jo et al., 2021; Lih et al., 2020; Liu 
et al., 2018; Miao et al., 2020; Pourbabaee et al., 2018; Sangaiah 
et al., 2020; Zhang et al., 2020; Zhu et al., 2020).

The method we proposed diverges from standard approaches 
by	using	the	whole	PSR	matrix	as	the	input	to	a	CNN	model	which	
to the best of our knowledge has not been attempted before. The 
proposed method is capable of automatically extracting a set of fea-
tures that are much more descriptive than those that are found man-
ually with more time- consuming methods.

For	our	 tool,	 the	data	 (in	ASCII	 format)	were	 first	 split	 into	10	s	
segments. Baseline drift correction techniques were applied, followed 
by adaptive band stop filtering to suppress power- line noise with 
a	frequency	of	50 Hz	while	a	low	pass	filter	was	used	to	remove	the	
remaining high- frequency noise. Then, PSR— a popular technique in 
waveform analysis for representing non- linear characteristics of time 
series set of data using delay maps— was utilized to convert the ECG 
signal	into	a	compressed	32 x 32	pixel	PSR	image,	one	image	for	each	
10	s	worth	of	ECG	data.	A	Convolutional	Neural	Network	(CNN)	model	
was then trained to predict the T:R ratio from these PSR images with 
a high degree of accuracy without explicitly locating the R or T waves. 
The end result is a plot showing the variation of the T:R ratios for each 
lead/S-	ICD	vector	over	the	recorded	period	(24 h	in	our	study),	where,	
for readability, the line graph is smoothed to where each point gives 
the average T:R ratio for the preceding half hour, thus making it easy to 
detect any period where the T:R ratio was consistently high and thus 
increased the risk of TWO. To better examine how the behavior of the 
T:R ratio differs between each lead, our tool can plot a histogram of 
what proportion of the 24- h screening period the T:R ratio of a particu-
lar lead spent in each range of T:R ratios (Dunn et al., 2021).

We note that it is more standard in the literature to consider the 
R:T ratio as opposed to the T:R ratio. Despite this, as the T- wave 
amplitude approaches 0, subtle changes in the T- wave amplitude 
can result in extreme variations in the R:T ratio, which makes the 
latter	 inappropriate	 for	 use	 as	 a	 label	 in	our	model.	 For	 this	 rea-
son, we use the T:R ratio as a dependent variable in our regression 
problem.

3.1  |  Statistical methodology

The distribution of the data was identified using histograms, 
QQ plots, and box plots. Parametric data were described using 
mean ± standard	deviation	(SD),	and	categorical	data	as	n/N	(%).	The	
Welch two sample t- test, Wilcoxon rank test and Mann– Whitney U 
were used to compare between the continuous variables in the two 
groups.

4  |  RESULTS

Twenty- one patients were recruited into two groups: 7 patients in 
the structurally normal heart group and 14 patients in the heart 
failure	 group.	 The	 mean	 age	 was	 58.43 ± 18.92 years	 (62%	 male)	
(Table 1).	Age	and	gender	were	not	significantly	different	for	either	
mean	or	the	standard	deviation	(SD)	of	the	T:R	ratio.

Mean	 T:R	 ratio	 was	 higher	 in	 the	 HF	 group	 (0.181 ± 0.084	 vs	
0.104 ± 0.054,	p < .001),	 and	 the	 SD	 (a	measure	 of	 dynamicity)	 of	
the	 T:R	 ratio	 was	 also	 higher	 in	 the	 HF	 group	 (0.093 ± 0.048	 vs	
0.067 ± 0.036,	p = .02).	There	was	no	significant	difference	found	in	

TA B L E  1 Patients'	demographics

Total number of participants N = 21 Heart failure N = 14

Structurally 
normal heart 
N = 7

Demographics: Mean	age	[years ± 95%	CI] 58.43 ± 18.92 70 ± 11 36 ± 8

Male 13 61.9% 10/14	(71%) 3/7	(43%)

Cardiac co- morbidities: Heart failure 14 66.67% 14 0

Atrial	fibrillation 6 28.57% 6	(42.85%) 0

LV diastolic dysfunction 4 19.05% 4	(28.57%) 0

Ischemic heart disease 6 28.57% 6	(42.85%) 0

LV systolic dysfunction 10 47.62% 10	(71.43%)
Ejection fraction 
%	=	25.3 ± 6.97	[95%	Cl]

0

Fluid	loss	in	24 h	in	mls	for	the	HF	group 2326.07 ± 1253.18	[95%	Cl]

Furosemide	dose	in	24 h	in	mgs	for	the	HF	
group

257.86 ± 45.86	[95%	Cl]

Shift	in	Na	levels	before	and	after	diuresis	
[mmol/l]	for	the	HF	group

1.93 ± 0.73	[95%	Cl]

Shift in K levels before and after diuresis 
[mmol/l]	for	the	HF	group

0.49 ± 0.27	[0.95	Cl]
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the mean or the SD of the T:R ratio between different leads within 
the same group (Table 2, Figure 2).

To highlight the impact of the differences in the mean and SD 
of T: R between both groups, the percentage of time when the T:R 
ratio	was	 found	 to	be	above	 the	 screening	 threshold	 (1/3)	 for	 the	
T:R	ratio	(unfavorable)	was	calculated	and	compared	in	both	groups.	
The heart failure group had an unfavorable T:R ratio for significantly 
longer time in the 24- h tape compared to the normal group, this was 
also	evident	in	all	the	vectors:	(13.3% ± 10%	vs	4% ± 8%,	p = .26)	in	
the	primary	vector,	(9.7% ± 7.4%	vs	3% ± 4%,	p = .29)	in	the	alternate	
vector,	and	(10.8% ± 12.8%	vs	<1%,	p = .22)	in	the	secondary	vector	
(Table 3).

To summarize the results, T:R ratios of S- ICD vectors were higher 
at	the	baseline	and	exhibited	more	fluctuations	in	the	HF	group.	This	
has translated into higher likelihood of unfavorable crossing of the 
screening	threshold	in	HF	patients	when	compared	to	the	structur-
ally normal heart group.

5  |  DISCUSSION

Heart	 failure	 (HF)	 is	 a	 global	 cardiovascular	 disease	 with	 an	 esti-
mated prevalence of more than 37.7 million patients worldwide 
affecting	 1%–	2%	 of	 adults	 in	 developed	 countries	 (Chaudhry	 &	
Stewart, 2016).	A	high	proportion	of	deaths	among	patients	with	HF	
occur	suddenly	and	can	be	attributed	to	ventricular	arrhythmias.	As	
such many international guidelines recommend using implantable 
ICDs to reduce sudden death in patients with heart failure. Thus 
an ICD is recommended to reduce the risk of sudden death and all- 
cause	mortality	in	patients	with	symptomatic	HF	(NYHA	Class	II–	III),	
and	an	LVEF	≤35%	despite	≥3	months	of	optimal	medical	 therapy	
(Class	IA	and	IB	indications	in	patients	with	ischemic	heart	disease	
and patients with dilated cardiomyopathy respectively Ponikowski 
& Voors, 2017).

Transvenous	 ICDs	 employ	 transvenous	 (intracardiac)	 leads	 for	
rhythm discrimination and delivery of defibrillation shock therapy, 

TA B L E  2 Comparison	between	the	parameters	of	the	T:	R	between	both	groups

Parameter

Group

p valueHeart failure Structurally normal heart

Mean T:R ratio 0.181 ± 0.084	(95%	CI) 0.104 ± 0.054	(95%	CI) <.001 (Welch two sample t-	test)

Standard deviation of T:R ratio 0.093 ± 0.048	(95%	CI) 0.067 ± 0.036	(95%CI) =.024 (Welch two sample t- test

F I G U R E  2 Box	plots	for	the	mean	(p < .001)	and	standard	deviation	(p = .02)	of	the	T:R	ratio	over	24 h	screening	period	in	the	studied	
subgroups	(heart	failure	patients	undergoing	diuresis	vs	healthy	volunteers	with	structurally	normal	hearts).	Leads	A,	B	and	C	correspond	to	
primary, alternate, and secondary vectors of an S- ICD respectively.
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and as such are associated with potential complications related to 
invasion of the vascular space. These comprise complications that 
can occur at the time of implants such as pneumothorax and car-
diac	tamponade	due	to	traumatic	placement	of	lead(s),	and	long-	term	
complications such as device infection of the device progressing to 
systemic sepsis and/or infective endocarditis with potentially fatal 
consequences.	 Additionally,	 ICD	 leads	 that	 remain	 in	 the	 vascula-
ture for many years may, ultimately, compromise flow or cause 
obstruction.

The S- ICD offers an alternative solution to the traditional TV- 
ICD for prevention of sudden cardiac death in patients with heart 
failure. Studies have confirmed comparable efficacy to TV- ICD but 
the S- ICD avoids many of the complications associated with TV- ICDs 
and may be the only ICD therapy for patients with no venous access 
or	at	high	 risk	of	 infective	endocarditis	 (Kamp	&	Al-	Khatib,	2019).	
Thus	the	AHA/ACC/HRS	Guidelines	for	Ventricular	Arrhythmia	and	
Sudden cardiac death have a Class I recommendation for S - ICD im-
plantation in patients who are at a high risk for infection, or have no 
appropriate venous access and who have no indication for brady-
cardia	or	biventricular	pacing	and/or	anti-	tachycardia	pacing	 (ATP)	
(Kamp	&	Al-	Khatib,	2019).

However, not all patients are eligible for an S- ICD. Eligibility is 
identified during a recommended pre- implant screening process 
that	is	undertaken	in	all	potential	recipients.	An	S-	ICD	programmer	
with a built- in automated screening tool is utilized in screening. It 
has external ECG cables which can acquire ECG traces via position-
ing the skin electrodes on the chest wall using the same anatomical 
landmarks	that	would	guide	future	S-	ICD	implantation.	As	such,	ob-
tained ECG traces— usually of short duration of few seconds in multi-
ple postures— act as a surrogate for the three S- ICD vectors allowing 
non- invasive assessment of vector morphology and S- ICD eligibility. 
A	major	predictor	of	eligibility	of	a	vector	 is	 the	T:R	ratio	which	 is	
unique for every vector as varying the angle of recording alters the 
amplitude of both R wave and T wave. Vectors with lower T:R ratios 
are more likely to pass the screening and are safe for clinical use, 
while a vector that fails cannot be used in clinical practice. To be 
eligible for an S- ICD a patient requires at least a single vector to pass 
screening in at least two postural positions at the same amplitude. 
Patients with vectors that do not meet the screening criteria are at 
high risk of TWO and deemed ineligible for an S- ICD. This is import-
ant as inappropriate shock therapies can have detrimental effects on 
the quality of life, psychological well- being and can even result in the 

TA B L E  3 Differences	in	the	“unfavorable”	T:R	ratios	in	both	groups

ID Group

Primary vector Alternate vector Secondary vector

10- s segments of T: 
R > 1/3 N = 8640

Proportion of the 
24- h recording (%)

10- s 
segments >1/3 
N = 8640

Proportion of the 
24- h recording (%)

10- s 
segments >1/3 
N = 8640

Proportion of the 
24- h recording (%)

1 Normal 3 <1% 0 0% 23 <1%

2 Normal 2613 30% 19 <1% 0 0%

3 Normal 17 <1% 51 <1% 0 0%

4 Normal 1 <1% 3 <1% 1 <1%

5 Normal 0 0% 452 5% 14 <1%

6 Normal 2 <1% 12 <1% 277 3%

7 Normal 1 <1% 1074 12% 3 <1%

Mean 377 ± 731 4% ± 8% 230 ± 301 3% ± 4% 45 ± 76 <1%

8 HF 8 <1% 1524 17.6% NA NA

9 HF 1024 11.9% 815 9.4% NA NA

10 HF 1280 14.8% 219 2.5% NA NA

11 HF 0 0% 1828 21.2% NA NA

12 HF 2305 26.7% 637 7.4% NA NA

13 HF 0 0% 31 <1% NA NA

14 HF 1104 12.8% 5 <1% 37 <1%

15 HF 3555 41.1% 4652 53.8% 4054 46.9%

16 HF 389 4.5% 452 5.2% 291 3.4%

17 HF 5562 64.4% 417 4.8% 0 0%

18 HF 13 <1% 400 4.6% 222 2.6%

19 HF 808 9.4% 383 4.4% 2866 33.2%

20 HF 0 0 0 0 0 0

21 HF 2 <1% 406 4.7% 1 <1%

Mean 1146 ± 862 13.3% ± 10% 841 ± 640 9.7% ± 7.4% 934 ± 1105 10.8% ± 12.8%
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induction of ventricular arrhythmias (Daubert et al., 2008).	Despite	
the current screening process, the incidence of inappropriate shocks 
is greater in S- ICDs when compared with conventional TV- ICDs and 
the most common reason for inappropriate shocks in S- ICDs is T- 
wave oversensing (Boersma et al., 2017).

It is important to note that temporal variations in R wave and 
T wave amplitudes in the same individual are frequently observed 
on ECG recordings and thus, the T:R ratio— a major predictor of 
S-	ICD	eligibility—	is	not	fixed	in	any	given	individual.	Factors	such	
as changes in posture and heart rate can influence ECG parame-
ters.	 Also	 changes	 in	 electrolytes	 concentrations,	 body	 weight,	
fluid shifts, and lung congestion can cause detectable dynamic 
changes	on	surface	ECG	recordings	(Al-	Zaiti	et	al.,	2011;	Assanelli	
et al., 2013; Hasan et al., 2012; Madias, 2005; Madias et al., 2001; 
Walker et al., 2003).	 HF	 patients	 share	 a	 lot	 of	 the	 factors	 that	
cause variation in the ECG components, particularly patients with 
significant changes in their weight and shifting of their body fluid 
status over short time such as heart failure patients undergoing 
diuresis. The mere presence of LV dysfunction is an independent 
factor contributing to the variation of ECG parameters over time 
(Fosbøl	et	al.,	2008).

Rhythm discrimination by the S- ICD and its vector sensing algo-
rithms has been shown to be non- inferior to TV- ICD systems (Gold 
et al., 2012).	However,	it	is	important	to	ensure	that	the	S-	ICD	sys-
tem	does	not	“over	sense”	T	waves	which	can	lead	to	inappropriate	
arrhythmia detection and shock therapy. This occurs when the T 
wave is of greater amplitude than the sensitivity level of the device 
and is miscounted as an R wave such that the device misinterprets 
a	single	heartbeat	(QRS	complex	followed	by	a	T	wave)	as	two	sep-
arate R waves with a short R: R interval, so doubling the detected 
heart rate.

We identified these signal analysis processes for S- ICD screen-
ing	in	HF	patients	as	being	suited	to	a	novel	mathematical	approach	
employing artificial intelligence and neural networks analyzing vec-
tor data recorded over a 24- h period.

The concept of the potential varying of S- ICD vectors eligibility 
over time was previously presented in a study by (Wiles et al., 2021).	
The study demonstrated that the vector score which determines 
S- ICD eligibility is in fact dynamic in real- life ICD population. Our 
approach demonstrated that one of the main determinants of S- ICD 
eligibility— the T:R ratio— is in fact dynamic. The changes in the T:R 
ratio in some of the vectors that were observed over time in our 

F I G U R E  3 An	example	of	the	T:R	ratio	fluctuating	overtime	crossing	the	S-	ICD	screening	threshold	for	the	T:R	ratio	(0.33)	on	multiple	
occasions over the 24- h period. The histogram illustrates the exact number of 10- s segments at each T:R ratio throughout the 24- h 
recording.	The	above	example	represents	the	alternate	vector	for	one	of	the	patients	who	was	recruited	to	the	HF	group.
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cohort of patients were significant enough in some instances to 
cause the T:R ratio to cross the threshold for the S- ICD screening 
(Figure 3).

The	T:R	ratios	were	unfavorable	a	priori	 in	the	HF	group	when	
compared to the normal hearts group. Importantly T:R ratios were 
more likely to fluctuate and cross the S- ICD screening threshold in 
HF	patients	than	in	the	normal	heart	patients.	The	cohort	of	HF	pa-
tients in our study shared many characteristics, such as rapid fluid 
and body weight shifts and quick changes in electrolyte concentra-
tions, known to cause dynamic changes in ECG signals.

In the event of multiple vectors passing the S- ICD screening— 
not an uncommon occurrence— our tool can also guide the se-
lection of the most favorable vector for programming the S- ICD. 
The most favorable vector would be the most stable or the least 
likely to fluctuate and cross the screening threshold and thus the-
oretically pose the least risk of TWO and inappropriate shocks 
(Figure 4).

It	 is	 important	 to	 interpret	our	 results	with	 caution.	Firstly,	
because of the relatively small number of patients involved in 

our study— though each patient provided significant amount of 
data on the behavior of the T:R ratio for the 3 standard S- ICD 
vectors for a much longer duration than that currently used in 
the day- to- day practice. It is also important to note that none of 
the patients recruited to our study in either group had S- ICD im-
plants or were candidates for an S- ICD. While it could be argued 
that our analysis will not apply to real- life S- ICD patients, many 
such S- ICD recipients fall into either of our recruited patients' 
cohorts.	Also,	T:R	ratio,	despite	being	a	key	component	in	the	S-	
ICD sensing process, is not the only parameter and other factors 
that play a role in the S- ICD sensing process such as QRS dura-
tion as well as the impact of the relatively newer S- ICD sensing 
algorithms, i.e., Smart Pass, were not examined in our analysis. 
It is also important to note that— while theoretically relevant— 
there is no evidence that the fluctuations in the T:R ratios that 
were demonstrated in this study would inevitably lead to ad-
verse clinical outcomes such as TWO and inappropriate shocks 
and further work is needed to appreciate the clinical significance 
of our findings.

F I G U R E  4 An	example	of	how	our	tool	can	help	select	the	most	suitable	vector	for	programming	the	S-	ICD.	The	analysis	of	the	Holter	
recording	for	one	of	the	patient	recruited	in	the	HF	group:	All	the	3	leads	had	acceptable	T:R	ratios	at	some	stage	of	the	24-	h	recordings,	
however,	while	the	T:R	ratios	for	leads	A	and	B	(corresponding	to	the	primary	and	alternate	vectors)	showed	significant	fluctuations	over	the	
24-	h	recording	and	crossed	the	screening	threshold	multiple	times,	T:R	ratio	for	Lead	C	(secondary	vector)	was	stable	in	comparison	and	did	
not cross the threshold throughout the 24- h posing the least risk of TWO.
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6  |  CONCLUSIONS

T:R ratio, one of the integral components of the S- ICD sensing 
mechanism and a main determinant of S- ICD eligibility, has the ten-
dency to significantly fluctuate overtime, particularly in patients 
with heart failure when compared to patients with structurally nor-
mal hearts. This poses a theoretical risk for TWO and inappropriate 
shocks	in	HF	patients	who	have	S-	ICDS	fitted	in	after	being	found	S-	
ICD eligible following the current screening practices. Incorporating 
deep learning methods could enable more accurate and efficient 
screenings and the adoption of novel mathematical approaches for 
data analysis of longer, data- rich, screening practices to determine 
HF	patient	eligibility	for	S-	ICD	implantation	seems	promising.	The	
principles of our study need to be tested in a larger, more diverse 
patient cohort and the clinical relevance of our findings needs to be 
further investigated before it is possible to apply our tool to clinical 
practice.
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