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A B S T R A C T

The influence of fluid–fluid interfacial properties on the dynamics of viscoelastic thin liquid films bounded
above by liquid–liquid interface and below by a horizontal solid plate is studied in this work. The present
study allows for integration of both chemical and physical properties of the thin liquid film within the long
wave approximation of the evolution equation for viscoelastic thin films. The effects of the contact angle,
slippage and exposure time on interfacial film dynamics are verified. We demonstrate the importance of the
interfacial tension due to surfactant concentration and the Marangoni number to responses of thin films to
prescribed perturbations. The linear stability analysis shows that the rupture time is dependent on the initial
tension, Marangoni number, slippage and contact angle, whereas the cut off wavenumber is only affected by
the contact angle. Results of the numerical simulations of the nonlinear regime show that the film dynamics
is faster with slippage and exposure time. We confirm that viscoelasticity increases the number of droplets
formed after the film rupture. However, the linear relationship between interfacial tension and surfactant
concentration fails to describe the thin film dynamics when the Weissenberg number exceeds the Reynolds
number.
. Introduction

Stability of thin films is an important aspect of surface and interface
nteractions, and it has received wide attention in the literature [1–7].
lmost all petroleum, chemical and biomedical engineering processes

hat involve applications of liquid mixtures consider the forces at play
n interfaces especially when the interfacial pressure could lead to
ilm rupturing [8]. Theoretically, there exist at least two mathematical
nterfaces (fluid–solid and fluid–fluid) when liquid films spread on
olid surfaces [9,10]. These interfaces can overlap depending on the
ettability of the rock surface. The effect of disjoining pressure is

aid to be significant on both boundaries. The fluid–fluid interface is
herefore constantly under disjoining pressure which tends to separate
t from the fluid–solid interface [11].

The nonlinear evolution of free films (not necessarily of viscoelastic
ype) with the presence of surfactants has also received considerable
ttention in the literature [2,12–14] since the linear theory on free
ilm bounded by two free surfaces presented by Ruckenstein and Jain
15]. Wit et al. [13] extended the work of Maldarelli et al. [12]
y developing the nonlinear evolution equation for free films with
nsoluble surfactants. In their work, the authors showed that the region
f film stability depends on the van der Waals attraction and interfacial

∗ Corresponding author.
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tension. It was shown that increasing the Marangoni number decreases
the growth rate of the perturbation, and increases thus the time of
rupture of the film. The authors concluded that surfactant monolayer
has a stabilizing effect on the growth of the instability. Moreover, the
flow dynamics in a rupture case indicates that the surfactants will flow
away from the depressions of the thickness of the film to concentrate
at its elevations. Kovalchuk and Vollhardt [16] presented the criteria
of instability for the surfactant transfer through a liquid interface.
The authors indicated that the instability criteria are dependent on
interfacial structure (planar or spherical), surface area, thickness of
the liquid layers and the relationship between rates of diffusion and
adsorption. Agble and Mendes-Tatsis [17] studied the instability of
various binary liquid–liquid interfaces in the presence of surfactant
transferring.

The interfacial tension gradient due to surfactant concentration dis-
turbance induces Marangoni instability and has been widely reported
in the literature since Pearson [18] and Sternling and Scriven [19].
Marangoni instability in liquid/liquid systems occurs with the presence
of bulk concentration gradient normal to the interface. Marangoni
instability is a subject of interest since the interface instability sig-
nificantly promotes interfacial mass transfer [20]. Slavtchev et al.
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Nomenclature

𝛽 Elasticity number
𝛿ℎ0 Amplitude of the Fourier mode
�̇� Strain rate tensor
𝜅 Local curvature
𝜆1 Relaxation time
𝜆2 Retardation time
𝐧 Outward unit normal
𝜇 Dynamic viscosity
𝜈 Kinematic viscosity
𝜔 Growth rate
𝜌 Density
𝛴 Dimensionless interfacial tension
𝜎 Interfacial tension
𝜎0 Dimensionless interfacial tension for the

constant part of the interfacial tension
𝜃 Contact angle
𝜑 Tangential stress
𝜏 Stress tensor
𝑏 Slip coefficient
𝐶 Dimensionless surfactant concentration
𝐶0 Equilibrium surfactant concentration
ℎ0 Mean thickness
𝐼 Identity matrix
𝑘 Wavenumber
𝑘𝑐 Cut off wavenumber
𝑘𝑚 Wavenumber of maximum growth
𝑀 Marangoni number
𝑃 Dimensionless capillary pressure
𝑝 Capillary pressure
𝑅𝑒 Reynolds number
𝑡 Exposure time
𝑢 Velocity component in longitudinal direc-

tion
𝑣 Velocity component in transverse direction
𝑊 Dimensionless van der Waals induced by

disjoining pressure
𝑤 Normal stress
𝑊 𝑖 Weissenberg number
𝑥 Longitudinal direction
𝑥𝐶𝑂 Dimensionless surfactant coverage
𝑦 Transverse direction

[21] studied the onset of Marangoni instability in partially miscible
liquid–liquid systems in the presence of surface-active solutes. Their
study indicated that the stability conditions depend mainly on physical
parameters of the system, such as the solute diffusivity ratio and the
kinematic viscosity ratio. Slavtchev et al. [22] studied the influence of
low frequency vibration on Marangoni instability in a layer of binary
mixture. Their results indicated that the vibration destabilizes the
layer and the instability takes place even for zero Marangoni number.
The above approaches only discuss Marangoni instability and rarely
consider the important effects of viscoelasticity which is a significant
factor in any liquid flow near the interface, and in the stability of the
thin films separating emulsion drops or foam bubbles [23]. Surfactant-
covered bodies such as those exposed to a fluid–fluid interface possess
own elasticity and viscosity relating to the non-equilibrium values of
the interfacial tension and are described using viscoelasticity.
2

Extending the lubrication model for thin viscoelastic films of Jef-
freys types developed in [24], a computational investigation of thin
viscoelastic films and drops on a solid substrates, subjected to the van
der Waals interaction force in two spatial dimensions was presented
initially in the absence of gravity in [1], and subsequently including the
competing effects of the gravitational force in [25]. in [1], the authors
verified that, in absence of other external driving mechanisms such
as gravity, the van der Waals interaction force drives the instabilities
of liquid interface and causes the film to break up, forming holes
bounded by retracting rims. Furthermore, the investigation presented
in [1] shows that the dewetting of thin viscoelastic films in the non-
linear regime reveals novel complex morphologies that depend on
viscoelasticity. However, in the existing literature, the assumption of
constant surface tension idealized the model by simplifying the fluid–
fluid interfacial boundary description. Consequently, in some of the
existing studies, it is difficult to ascertain the importance of surface
tension on the fluid–fluid interfaces, in addition to the fluid rheological
properties, while evaluating the dynamics of viscoelastic thin films.

The stability of a thin film of Walters-type B" viscoelastic fluid
flowing down a heated inclined plane was investigated by Fu et al. [26].
The authors studied the effects of the Marangoni number, viscoelastic
parameter and Biot number. In that study, the authors found that the
stability of the thin films under the prescribed condition is weakened by
viscoelasticity and thermocapillarity. In addition, the authors demon-
strated that increase in Marangoni number leads to expansion of the
region of instability of the films. The authors, however, reported a
reduction in the accuracy of their model with increase of the Marangoni
number. Sarma and Mondal [27] investigated the Marangoni instability
in a thin polymeric liquid film heated from the free surface. The authors
established that, for heating a thin polymeric film from the free surface,
the solutocapillary force often can destabilize a system which otherwise
remains stable under the action of thermocapillarity.

In this work, the viscoelastic thin film evolution base model [1,24]
is modified to accommodate gradients of interfacial tension that may
occur in fluids with and without surfactants [13]. Integrating interfacial
tension gradients allows us to evaluate the influence of the Marangoni
number, initial interfacial tension, and surfactant concentration on the
dynamics of viscoelastic thin films. We begin the modification by repre-
senting the surface tension term in the expression for stress balance at
the interface with a dimensionless linear relationship. Various physical
properties of the thin liquid film can thus be defined within this
expression. Generally, the interest to include thin liquid film properties
emanates from the application of thin film theory to substance mixing
which requires surfactant effects. Subsequently, the expression for sur-
face tension is integrated into the asymptotic expansion of the stress
balance as described by [24]. Scaling the surface tension term reveals
its influence on the capillary term of the final evolution equation and
therefore allows us to verify the effects of individual physical properties
on interfacial dynamics of thin liquid films. We verify the effects of the
viscoelastic characteristic times, i.e. relaxation and retardation times,
slip coefficient and the exposure time. Subsequently, the influence of all
physical parameters in the present model are investigated. Finally, the
relevance of the relationship between interfacial tension and surfactant
concentration, whether linear or nonlinear, on the dynamics of thin
liquid films is studied.

The rest of the paper is organized as follows: The formulation
of the nonlinear evolution equation for the problem is discussed in
Section 2. In Section 3, we perform the linear stability analysis (LSA)
to confirm and demonstrate the roles of the relevant parameters on
the dynamics of the evolved free films while the numerical simulations
of the dynamic behaviour of the system under different conditions are
presented in Section 4. The analysis of the shape in the dewetted region
is discussed in Section 5 and the conclusion drawn from the results of
this study is presented in Section 6. Derivation of the full long wave

approximation described in this study is presented in the Appendix.
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Fig. 1. Geometry of a thin liquid film bounded below by a horizontal plate, 𝐴 and
above by the fluid–fluid interface, 𝐵. The height, ℎ0, represents the mean thickness of
the viscoelastic thin liquid film. The prescribed forcing at the interface is composed of
the normal and tangential stresses, w and 𝜑 respectively.

2. Model development

The lubrication approximation is applied to a system consisting of
a viscoelastic thin liquid film bounded by two interfaces that can be
described mathematically. The system is bounded above and below by
liquid–liquid and liquid–solid interfaces, respectively. The interfacial
properties are assumed to respond to any changes caused by addition of
surfactant in the thin liquid film. Fig. 1 shows the schematic of the thin
liquid film geometry where the longitudinal direction is denoted by 𝑥,
the transverse direction by 𝑦, and the respective velocity components by
𝑢 and 𝑣. The liquid film is assumed to be thin enough that van der Waals
forces are effective and thick enough that a continuum theory of the
liquid is applicable. The free surface of the film, defined by 𝑦 = ℎ(𝑥, 𝑡),
is subject to an external normal stress, 𝑤, and a tangential stress, 𝜑.

The general Navier–Stokes and the continuity equations for incom-
pressible fluids are of the form

𝜌
( 𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮
)

= − ∇(𝑝 +𝑤) + ∇⋅𝜏, (1)

∇ ⋅ 𝐮 =0, (2)

where ∇ = (𝜕𝑥, 𝜕𝑦), 𝐮 = (𝑢, 𝑣) is the velocity and 𝑝 is the capillary
pressure, 𝑤 is the normal stress which corresponds to the van der Waals
induced disjoining pressure and 𝜏 is the stress tensor.

To derive the equations that will apply to continuous liquid films
on a horizontal plate, which spread and displace the surrounding fluid,
a condition of no penetration and a Navier type model that relates slip
to shear stress are assumed, i.e.,

𝑣 = 0, 𝑢 = 𝑏
𝜂
𝜏21, at 𝑦 = 0, (3)

where the slip coefficient, 𝑏, is zero when a no-slip boundary condition
is considered.

At 𝑦 = ℎ(𝑥, 𝑡), the kinematic boundary condition (in the absence of
interfacial mass transfer), which balances the normal component of the
liquid velocity at the interface with the speed of the interface, is given
as

𝑣 = 𝜕ℎ
𝜕𝑡

+ 𝑢 𝜕ℎ
𝜕𝑥

. (4)

The stress balance at the interface is given by

(𝜏 − (𝑝 +𝑤)𝐼) ⋅ 𝐧 = 𝜎𝜅𝐧, (5)

where 𝐧 is the outward unit normal, 𝐼 is the identity matrix with same
dimensionality of the problem. 𝜅 = −∇ ⋅𝐧 and 𝜎 are the local curvature
and the interfacial tension respectively.

The viscoelastic stresses are modelled by applying the linear Jeffreys
model which is expressed as [28]

𝜏 + 𝜆1
𝜕𝜏
𝜕𝑡

= 𝜇
(

�̇� + 𝜆2
𝜕�̇�
𝜕𝑡

)

, (6)

where �̇� is the strain rate tensor, e.g. ̇𝛾12 = 𝜕𝑥𝑢+ 𝜕𝑦𝑣 (other components
of �̇� are similarly expressed in terms of derivatives of 𝐮). In this model,
3

the response to the deformation of a viscoelastic liquid is characterized
by two-time constants, 𝜆1 and 𝜆2, called the relaxation time and the
retardation time, respectively.

The long-wave approximation theory requires that appropriate scal-
ing, which relates the thin film height to its lateral extension, is applied.
Introducing the scale ℎ0 towards the film height direction and L for the
lateral direction, the distortion can be of long scale if

𝜖 =
ℎ0
𝐿

≪ 1. (7)

We can further define the dimensionless capillary pressure, 𝑃 and
the dimensionless van der Waals induced disjoining pressure, 𝑊 , as

(𝑃 ,𝑊 ) = 1
𝑝0

(𝑝,𝑤). (8)

The dimensionless interfacial tension, 𝛴, resulting from the changes
caused by surfactant addition to the system is

𝛴 = 𝜖2𝜎
𝜇𝑢0

. (9)

The leading-order terms of the normal and tangential components of
the stress balance at the free surface respectively (shown in Appendix)
are

𝑃 = −𝛴 𝜕2ℎ
𝜕𝑥2

−𝑊 (ℎ), at 𝑦 = ℎ(𝑥, 𝑡), (10)

𝜕ℎ
𝜕𝑥

𝜏21 = 0. (11)

Contrary to earlier simplifications by Rauscher et al. [24], it is clear
from Eq. (10) that the capillary term of the pressure field is influenced
by dimensionless interfacial tension at the fluid–fluid interface. It is
therefore essential to retain interfacial tension effects at the leading
order. Hence, the effects of fluid properties can be studied even if there
is no interionic reactions at the fluid–solid interface.

The system under consideration consists of an incompressible thin
liquid film of initial, unperturbed thickness ℎ0, density 𝜌, kinematic
viscosity 𝜈, and dynamic viscosity 𝜇. The film is expected to be of
finite extent with its length, 𝐿, greatly exceeding its thickness, ℎ0. The
fluid–fluid interface possesses properties such as interfacial tension and
surface coverage. Consequently, if the surfactants are free to flow along
the interface, the interfacial tension gradient will develop depending
on surfactant concentration at the interface [19]. Other dimensionless
variables can be introduced using the following scales

length = ℎ0, time =
ℎ20
𝜈
,

velocity = 𝜈
ℎ0

and pressure =
𝜌𝜈2

ℎ20
.

(12)

To proceed from the findings from previous studies [1–3,29], we
consider the spatial variation of surfactant concentration, 𝐶, along the
interfaces which gives rise to interfacial shear stress. Interfacial tension
is assumed to decrease linearly with surfactant concentration [4], so
that

𝛴 = 𝛴0 −𝑀𝐶, (13)

where

𝛴0 =
𝜎0ℎ0
𝜌𝜈2

(14)

is the dimensionless interfacial tension for the constant part of the
interfacial tension, 𝜎0, at the equilibrium concentration, 𝐶0, and 𝑀 is
the solution version of the Marangoni number, proportional to

𝑀 = −𝐶0

(

ℎ0
𝜌𝜈2

)

( 𝜕𝜎
𝜕𝐶

)

, (15)

where we remind the reader that 𝜎 is the dimensional interfacial
tension, and the dimensionless surfactant concentration is expressed as
𝐶 = 𝐶∕𝐶0. Hence,

𝑝 = −
(

𝛴0 −𝑀𝑠𝐶
)

(

𝜕2ℎ
)

−𝑊 (ℎ). (16)

𝜕𝑥2
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The final dimensionless form of the nonlinear evolution equation
for bounded viscoelastic thin films is
(

1 + 𝜆2
𝜕
𝜕𝑡

) 𝜕ℎ
𝜕𝑡

+ 𝜕
𝜕𝑥

{

(𝜆2 − 𝜆1)
(

ℎ2

2
𝑄 − ℎ𝑅

)

𝜕ℎ
𝜕𝑡

+
[

(

1 + 𝜆1
𝜕
𝜕𝑡

) ℎ3

3
+
(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑏ℎ2
]

𝜕
𝜕𝑥

(

𝛴 𝜕2ℎ
𝜕𝑥2

−𝑊 (ℎ)
)}

= 0,

(17)

where, for compactness, 𝑄 and 𝑅 have been used such that
(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑄 = − 𝜕
𝜕𝑥

(

𝜕𝑝
𝜕𝑥

)

, (18)

(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑅 = −ℎ 𝜕
𝜕𝑥

(

𝜕𝑝
𝜕𝑥

)

. (19)

The equilibrium contact angle, 𝜃𝑒, which indicates the wetting
condition of the solid substrate is included directly into a disjoining
pressure, 𝑊 (ℎ), in the expression which has been applied to thin liquid
films of this nature [1,30–32] as follows

𝑊 (ℎ) =
𝜎
(

1 − 𝑐𝑜𝑠𝜃𝑒
)

𝑁ℎ∗

[(

ℎ∗
ℎ

)𝑛1
−
(

ℎ∗
ℎ

)𝑛2]

, (20)

with

𝑁 =

(

𝑛1 − 𝑛2
)

[(

𝑛1 − 1
) (

𝑛2 − 1
)] , (21)

where 𝑛1 and 𝑛2 are constants such that 𝑛1 > 𝑛2 > 1. Several values of
(𝑛1, 𝑛2) have been experimented in the literature and (3, 2) which have
been widely used [1,30–32] are chosen for this work. 𝜎 and ℎ∗ are the
interfacial tension and the equilibrium thickness introduced by the van
der Waals potential respectively.

The physical implication of the Marangoni number on residual oil
mobilization is captured in the ability of thin liquid films to withstand
snap-off. Snap-off occurs when a mobilized oil droplet breaks up into
daughter droplets due to the compression it encounters while being
forced through the narrow ducts (pore throats) connecting two pore
spaces [33]. Integration of the Marangoni effects into the original evo-
lution equation for thin viscoelastic films allows us to reliably evaluate
the contributions of solutocapillarity on the interfacial dynamics of the
prescribed films.

3. Linear stability analysis

The response of the developed thin liquid films to prescribed dis-
turbances is studied by performing a linear stability analysis (LSA).
A flat film of initial thickness, ℎ0, containing a unitary surfactant
concentration at zero velocity is considered. Hence, we seek a solution
of the kind

ℎ(𝑥, 𝑡) = ℎ0 + 𝛿ℎ0𝑒𝑥𝑝(𝜔𝑡 + 𝑖𝑘𝑥). (22)

where 𝛿ℎ0 is the amplitude of the Fourier mode, 𝜔 is the growth rate
and 𝑘 is the wavenumber. The dispersion relation and corresponding
characteristic for the growth rate is obtained:

𝜆2𝜔
2 +

[

1 + (𝛴𝑘4 − 𝑘2𝑊 (ℎ0))

(

𝜆1
ℎ30
3

+ 𝜆2𝑏ℎ
2
0

)]

𝜔

+(𝛴𝑘4 − 𝑘2𝑊 (ℎ0))

(

ℎ30
3

+ 𝑏ℎ20

)

= 0,

(23)

and the cut off wavenumber 𝑘𝑐 for which 𝜔 = 0 is implicitly defined by
the following relationship

𝑘2𝑐 =
𝑊 (ℎ0)

𝛴
. (24)

The relationship that describes the cut off wavenumber in Eq. (24),
agrees with the linear theory results of viscous thin liquid films previ-
ously reported in [13,15]. The wavenumber of maximum growth, 𝑘 =
4

𝑚

Fig. 2. Growth rate of viscoelastic thin liquid films plotted for surfactant concentration,
𝐶 = 1, slip coefficient, 𝑏 = 0, initial interfacial tension, 𝛴0 = 3 and contact angle, 𝜃 = 45◦

showing the effects of increasing values of: Marangoni number, 𝑀 = 0.25 (blue solid
line), 0.5 (red dashed lines), 1 (black dashed lines). Increasing M leads to a decrease
in maximum growth rate and hence to a increase of the rupture time.

𝑘𝑐∕
√

2 does not depend on the characteristic viscoelastic properties, 𝜆1
and 𝜆2, or on the slippage but on the critical contact angle, included
in the disjoining pressure term 𝑊 (ℎ), and the dimensionless interfacial
tension, 𝛴, as dictated by the surfactant concentration. This implies
that the domain of stable wavenumbers of free films is controlled by
the critical contact angle and the dimensionless interfacial tension. We
only analyse the roots of the quadratic Eq. (23) for 𝑘2𝑐 = 𝑊 (ℎ0)∕𝛴 since
our interest is to have a qualitative understanding of how the physical
parameters of the problem affect the domain of unstable wave numbers
and the rupture time. We obtain two roots, one of which has varying
sign and another root which is strictly negative for 𝑘2𝑐 < 𝑊 (ℎ0)∕𝛴.
The positive growth rate denotes that the film is mostly unstable.
The domain of unstable wave can shrink by reducing the surfactant
concentration.

We can draw several conclusions by considering the influence of
the Marangoni number, the contact angle, the slip coefficient, and the
dimensionless interfacial tension, on the maximum growth rate and the
cut off wavenumber. We choose parameter values in Table 1 which are
consistent with the orders of magnitude of the development according
to the procedure established by Wit et al. [13]. The properties of the
thin films encountered in oil–brine–rock system are within the chosen
range of values [34–37].

Fig. 2 shows a decrease in the maximum growth when the value of
M (dimensionless) is doubled from 0.25 to 0.5 and eventually to 1. This
observation can be explained by the phenomenon of the Marangoni
effect. Because of the depletion of surfactant at the centre of the thin
film interface, a diffusion flux is generated in the opposite direction
of the drainage, increasing the rigidity of the interface and slowing
fluid drainage. Increasing 𝑀 does not affect the cut off wavenumber
which means that the domain of unstable wave number of viscoelastic
thin liquid films is the same irrespective of surfactant concentration.
The rupture time of the films will increase in response to a decrease in
the maximum growth rate. In fact, these two quantities are inversely
proportional to each other. The stability of the films, therefore, can be
enhanced by an increase in the initial concentration of surfactants in
the film or the rate of interfacial tension gradient, 𝜕𝜎∕𝜕𝐶, to increase
the Marangoni number.

The response of the films to an increase in the constant part of the
dimensionless interfacial tension, 𝛴0, takes an opposite trend compared
to the effect of variation of M, on the films. Increasing the dimension-
less tension from 3 to 4 leads to increased maximum growth rate, as
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Table 1
Constant parameters for both the Linear Stability Analysis (LSA) and the numerical simulations
[13].

Parameter Symbol Best estimates

Equilibrium interfacial tension 𝜎0 1–30 [dyn cm−1]
Equilibrium contact angle 𝜃 15–45◦

kinematic viscosity 𝜈𝑝 10−2 [cm2 s−1]
Film viscosity 𝜇 10−2 [g cm−2]
Density of thin film 𝜌 1.0 [g cm−1]
Equilibrium thin film thickness ℎ0 10−6–10−5 [cm]
Dimensionless interfacial tension 𝛴0 = 𝜎0ℎ0∕𝜌𝜈2𝑠 10−2–4
Equilibrium surfactant concentration C0 10−12–10−10 [mol cm−2]
Dimensionless Marangoni number 𝑀 = −𝐶0

(

ℎ0

𝜌𝜈2

)(

𝜕𝜎
𝜕𝐶

)

10−5–1
i
𝑏
t

t
s

Fig. 3. Growth rate of viscoelastic thin liquid films plotted for surfactant concentration,
𝐶 = 1, slip coefficient, 𝑏 = 0, Marangoni number, 𝑀 = 0.25 and contact angle, 𝜃 = 45◦

showing the effects of increasing values of initial interfacial tension, 𝛴0 = 3 (blue solid
line), 3.5 (red dashed lines), 4 (black dotted lines). Increasing the constant part of the
dimensionless interfacial tension 𝛴0 leads to an increase in maximum growth rate and
hence to a decrease of the rupture time.

shown in Fig. 3. However, as mentioned above, the cut off wavenum-
ber, is not affected by variation in the constant part of the dimension-
less interfacial tension. Consequently, the domain of stable/unstable
modes remains unchanged with varying interfacial tension, but the rup-
ture time decreases due to the upward trend of the maximum growth
rate. This observation shows that films with higher interfacial tension
will experience greater instabilities when a prescribed disturbance is
applied.

There is decrease in the rupture time when the films respond to
increased slip coefficient. In fact, as found in [1], the maximum growth
rate increases with increasing slip coefficient, as also shown in Fig. 4,
though the domain of unstable mode is constant. Contrarily, variations
in contact angle results in corresponding changes in maximum growth
rate and cut off wavenumber, as shown in Fig. 5. Increasing the contact
angle shortens the domain of instability and decreases the rupture
time. This latter behaviour is similar to the observed response of the
films to increased slip coefficient. The dynamics of the film rupture
which strongly depends on the nonlinear interactions of prescribed
disturbances can only be determined by numerical solutions to the
viscoelastic thin film equation that we are going to present in the next
section.

4. Numerical implementation

The results of the numerical simulations of the film dynamics are
presented in this section. All numerical results regarding the nonlinear
dynamics are obtained by using the software by Barra et al. publicly
available at Barra [38] and extending it to include interfacial tension
5

Fig. 4. Growth rate of viscoelastic thin liquid films plotted for surfactant concentration,
𝐶 = 1, Contact angle, 𝜃 = 45◦, Marangoni number, 𝑀 = 0.25 and dimensionless
nterfacial tension, 𝛴0 = 3 showing the effects of increasing values of slip coefficient,
= 0 (blue solid line), 0.5 (red dashed lines), 1 (black dotted lines). Increasing 𝑏 leads

o an increase in maximum growth rate and hence to a decrease of the rupture time.

Fig. 5. Growth rate of viscoelastic thin liquid films plotted for surfactant concentration,
𝐶 = 1, slip coefficient, 𝑏 = 0, Marangoni number, 𝑀 = 0.25 and dimensionless interfacial
ension, 𝛴0 = 3 showing the effects of increasing values of Contact angle, 𝜃 = 15◦ (blue
olid line), 30◦ (red dashed lines), 45◦ (black dotted lines). Increasing 𝜃 leads to an

increase in the cut off wavenumber and maximum growth rate and hence to a decrease
of the wavelength of maximum instability, and a decrease in the rupture time.

variations. We solve the set of Eqs. (1) by discretizing the dimension-
less Eq. (17) using finite difference method and Newton’s method
according to Kondic [39] and Barra et al. [1]. The time derivatives
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Fig. 6. The comparison of the computed growth rate against the LSA viscoelastic thin
liquid films plotted for surfactant concentration, 𝐶 = 1, slip coefficient, 𝑏 = 0, Marangoni
number, 𝑀 = 0.25 and dimensionless interfacial tension, 𝛴0 = 1 for contact angles,
𝜃 = 30◦ and 𝜃 = 45◦.

are isolated from the spatial ones, so that an iterative scheme can
be applied to find the approximation to the solution at the new time
step. The time derivatives are then integrated according to the Crank–
Nicolson scheme. An initial flat fluid interface of thickness, ℎ0 = 1
is perturbed with 𝑘 = 𝑘𝑚 and 𝛿 = 0.01. The spatial domain [0, L] is
discretized so that it is divided in uniform intervals, with spatial mesh
size 𝛥𝑥 = 0.005. L is chosen to have the domain of maximum growth
rate for instability with 𝐿 = 2𝜋∕𝑘𝑚. The numerical discretization of the
governing PDEs were performed using the procedure outlined in [1].
At the endpoints of the domain, the 𝜕ℎ∕𝜕𝑥 = 𝜕3ℎ∕𝜕𝑥3 = 0 boundary
conditions are imposed. The condition ℎ𝑥 = 0 gives the value of ℎ at the
two ghost points 𝑥0 and 𝑥𝑁+1 outside the physical domain, i.e. ℎ0 = ℎ1
and ℎ𝑁+1 = ℎ𝑁 ; the condition 𝜕3ℎ∕𝜕𝑥3 = 0 specifies the two ghost
points 𝑥−1 and 𝑥𝑁+2, i.e. ℎ−1 = ℎ2 and ℎ𝑁+2 = ℎ𝑁−1.

The linear equations obtained from discretization and lineariza-
tion are solved by a direct solver following the numerical procedure
outlined in [1]. The values of the Marangoni numbers used for the nu-
merical simulations are similar to the ones used for the linear stability
analysis. A normalized surfactant concentration is assumed throughout
the simulations and a 45◦ contact angle is used for clarity of distinctions
among the results since the effects of other values of contact angles
studied in the LSA show similar trend for the influence of other tested
parameters. The numerical results are validated using the methods
explained by Barra et al. [1]. The computed growth rates are compared
with the theoretical values given by the LSA as shown in Fig. 6. The
validation was completed across two values of contact angle, 𝜃 = 30◦

and 𝜃 = 45◦.
The responses of the films to prescribed perturbations are exper-

imented for viscoelastic thin films at three different time scales. The
time scales are referred to as early, middle and late regimes to follow
the dynamics of the films to rupture. The early time corresponds to the
initial stage/phase of film deformation when the impact of the pertur-
bation is just noticeable, the middle regime indicates the morphology
of the films after later than the early stage and before film rupturing.
The late regime shows the time when the film is just about to rupture
or has ruptured. These time scales are chosen based on the response of
the film with the lowest parameter values.

There is no significant difference in the responses of the films based
on the increase of retardation time, 𝜆2 > 0, throughout the three
regimes. Hence, one figure each is used to represent the film dynamics
whether 𝜆2 = 0 or 𝜆2 = 0.01 to avoid unnecessary repetition of figures.
Fig. 7 shows the evolution and growth of the films with different values
of the Marangoni number, during the early regime when 𝑡 = 3.45× 105.
6

Fig. 7. Evolution of three thin films for 𝑏 = 0, 𝜆2 = 0.01, 𝑀 = 0.025 (blue solid lines),
0.05 (red dashed lines), 0.1(black dotted lines) at early time regime, 𝑡 = 3.45 × 105,
when (a) 𝜆1 = 4 and (b) 𝜆1 = 10.

Smaller values of 𝑀 are chosen for the nonlinear analysis to show the
significant impact of 𝑀 on the film morphology compared to the larger
value of 𝑀 chosen for the linear stability analysis for magnification
purpose to show clearly the impact of contact angle. The influence of
the Marangoni number is evident in the film behaviour and responses to
perturbations. The film with 𝑀 = 0.025 is fully developed and separated
into rims in the early regime, while the films with 𝑀 = 0.05 and
𝑀 = 0.1 are respectively still in the developing stages but the film with
𝑀 = 0.05 is ahead of the other, as shown in Fig. 7(a). It is noted that the
growth rate of the films is reduced by an increased Marangoni number.

The influence of an increased relaxation time, 𝜆1, is investigated
on the responses of the films according to the values of Marangoni
numbers. Fig. 7(b) shows the film behaviour when 𝜆1 = 10 and 𝜆2 =
0.01 at 𝑡 = 3.45 × 105. Increasing the relaxation time shows observable
effects on the film with maximum growth rate or the fully developed
film with 𝑀 = 0.025. There is no observable differences in the film
height and the film morphology compared with the film height resulted
from 𝜆1 = 4 at the same time regimes other than the formation of
secondary droplets which are more in number when 𝜆1 = 10.

During the middle time regime when 𝑡 = 3.56 × 105, as shown
in Fig. 8, the two films with 0.025 and 0.05 Marangoni number,
respectively, had fully developed with higher thicknesses compared to
the films state in the earlier time regime. There are, however, multiple
droplets formed due to an increment in the relaxation time from 𝜆1 = 4
(see Fig. 8(a)) to 𝜆 = 10, as shown in Fig. 8(b). While the number of
1
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Fig. 8. Evolution of three thin films for 𝑏 = 0, 𝜆2 = 0.01, 𝑀 = 0.025 (blue solid lines),
0.05 (red dashed lines), 0.1 (black dotted lines) at middle time regime, 𝑡 = 3.56 × 105,
when (a) 𝜆1 = 4 and (b) 𝜆1 = 10. The insert is a closed in on the secondary droplets
caused by the increase in characteristic relaxation time.

droplets is higher for 𝑀 = 0.025 and 𝑀 = 0.05 at 𝜆1 = 10, the growth
of the height of the rims for 𝑀 = 0.05 is higher at 𝜆1 = 4.

Fig. 9(a) shows that the films have fully formed and the rim sep-
arated at the late regime when 𝑡 = 4.0 × 105. The film responses are
the same irrespective of the amount of Marangoni numbers. While the
films with 𝜆1 = 4 have only one droplet, the films with 𝜆1 = 10 ruptured
into multiple secondary droplets in Fig. 9(b). These observations point
to the importance of the relaxation time in the film evolution process,
which have also been reported in [1]. In addition to this, the number
of secondary droplets and the speed at which they are formed when
𝜆1 = 10 are dependent on Marangoni number. Number of droplets
decreases from 13 in the absence of Marangoni effect [1], 10 when
𝑀 = 0.025 and 0.05 to 9 at 𝑀 = 0.1. Besides, increasing the Marangoni
number leads to delays in the formation of secondary droplets.

To investigate the effects of the slip coefficient on the dynamics of
the evolved thin liquid films, previous Figs. 7–9 are repeated, but with
a fixed 𝑏 = 1. The results show that the dynamics with slip coefficient
is faster. Similar results were also reported by Barra et al. [1] when
non-zero slip coefficients were studied. It can be seen in Figs. 10(a) and
10(b) that the perturbation have grown significantly and the film with
𝑀 = 0.025 has already retracted at time 𝑡 = 8.16 × 104. Subsequently
at times 𝑡 = 8.2 × 104 (Fig. 11) and 𝑡 = 8.5 × 104 (Fig. 12) respectively,
the films with 𝑀 = 0.025 and 𝑀 = 0.05 have already fully developed.
It can also be seen that there are no formation of secondary droplets at
𝑏 = 1.
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Fig. 9. Evolution of three thin films for 𝑏 = 0, 𝜆2 = 0.01, 𝑀 = 0.025 (blue solid lines),
0.05 (red dashed lines), 0.1(black dotted lines) at late time regime, 𝑡 = 4.0 × 105, when
(a) 𝜆1 = 4 and (b) 𝜆1 = 10. The insert is a closed in on the secondary droplets caused
by the increase in the characteristic relaxation time.

The influence of the slip boundary condition is tested to study
the dynamics of the films at the three-time regimes. Fig. 13 shows
the comparisons of the evolved films with 𝑀 = 0.025 when the slip
coefficient, 𝑏 = 0 and 𝑏 = 1, at three different time regimes in
Figs 13(a)–13(c). It is noted that all the multiple secondary droplets
introduced by larger value of relaxation time disappeared when a
higher slip coefficient is considered. There are no observable effects of
time scales (see Fig. 13) on the dynamics of the films with 𝑏 = 1. The
films that are already fully developed at the early time regime when
𝑡 = 3.45×105 (Fig. 13(a)) remain unchanged at 𝑡 = 3.56×105 (Fig. 13(b))
and 𝑡 = 4.0 × 105 (Fig. 13(c)). In comparison with the findings in [1]
for no-slip boundary conditions, the presence of Marangoni number
decreases the rupture time and leads to increasing number of secondary
droplets formed (Fig. 13(a)).

The focus of this study is on the effects of the insoluble surfactant on
interfacial dynamics of thin liquid films and elasticity number is, there-
fore, one important parameter to be considered since the surfactant
is assumed to be uniformly distributed at the interface. The elasticity
number, 𝛽, which characterizes the response of interfacial tension to
changes in surfactant concentration is given as

𝛽 =
𝑀𝐶0
𝛴0

= 𝑊 𝑖
𝑅𝑒

, (25)

here, 𝛴0, is the interfacial tension of the interface without surfactants,
𝑊 𝑖 is Weissenberg number and 𝑅𝑒 is Reynolds number.
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Fig. 10. Evolution of three thin films for 𝑏 = 1, 𝜆2 = 0.01, 𝑀 = 0.025 (blue solid lines),
0.05 (red dashed lines), 0.1(black dotted lines) at early time regime, 𝑡 = 8.16 × 104,
when (a) 𝜆1 = 4 and (b) 𝜆1 = 10.

The elasticity number can be related to the interfacial tension
corresponding to the initial uniformly distributed surfactant with con-
centration, 𝐶0, as

𝛴 = 𝛴0(1 − 𝛽), (26)

Therefore, the effects of the surfactant on thin film interfacial
dynamics by varying 𝛽 is studied. Fig. 14 shows the thin film responses
to varying values of elasticity number at three different time regimes
𝑡 = 3.45 × 105 (Fig. 14(a)), 3.56 × 105 (Fig. 14(b)) and 4.0 × 105

(Fig. 14(c)) respectively. Here, a linear relationship between interfacial
tension and surfactant concentration is considered. Three values of
elasticity number are tested while letting flow patterns dominate the
elastic and the viscous forces. The thin film evolutions follow similar
trend that is observed for changes in the Marangoni number. Dewetting
of the substrate reduces with increasing elasticity number. The linear
relationship (Eq. (25)) fails when the Weissenberg number is equal or
greater than the Reynolds number.

Beside the surfactant concentration gradient and elasticity num-
ber, the Marangoni stress can also be determined by the dependence
of interfacial tension on local surfactant concentration. Although the
linear equation of state is used in the present study, the relation is
often nonlinear in practice, especially at high surface coverage of the
surfactant [40]. Thus, it is necessary to examine the Marangoni effect
on the dynamics of viscoelastic thin liquid films when a nonlinear
equation of state is employed for the relation. The following typical
8

Fig. 11. Evolution of three thin films for 𝑏 = 1, 𝜆2 = 0.01, 𝑀 = 0.025 (blue solid lines),
0.05 (red dashed lines), 0.1(black dotted lines) at middle time regime, 𝑡 = 8.2 × 104,
when (a) 𝜆1 = 4 and (b) 𝜆1 = 10.

example of the nonlinear equation of state, Eq. (24), derived from
Langmuir adsorption is used [41].

𝛴 = 1 + 𝛽𝑙𝑛(1 − 𝑥𝐶𝑂𝐶), (27)

where 𝑥𝐶𝑂 = 𝐶0∕𝐶∞ is the dimensionless surfactant coverage, which is
set to 0.1 in this study.

The thin film evolutions and responses to changes in elasticity num-
ber when there is nonlinear relationship between interfacial tension
and surfactant concentration are shown in Fig. 15. Nonlinearity leads
to higher film growth and rupturing compared to results for the linear
relationship reported in Fig. 14. The response of the films to variations
in the values of the elasticity number is similar to the observations
for linear relationships. The faster separation of the rims as shown in
Fig. 15(a) through Fig. 15(c) indicates how long the substrate stays
exposed. For 𝛽 = 0.1 , the number of secondary droplets reduces from
25 at 𝑡 = 3.45 × 105 (Fig. 15(a)) to 16 at 𝑡 = 3.56 × 105 (Fig. 15(b)) and
10 at 4.0×105 (Fig. 15(c)). The number of secondary droplets increases
with an increased elasticity number such that for 𝛽 = 0.2, the number
of secondary droplets reduces from 39 at 𝑡 = 3.45 × 105 (Fig. 15(a)) to
19 at 𝑡 = 3.56×105 (Fig. 15(b)) but also 10 at 4.0×105 (Fig. 15(c)). The
film with 𝛽 = 0.3 shows slow dynamics (Fig. 15(a)) but ruptured into
23 secondary droplets at 𝑡 = 3.56 × 105 (Fig. 15(b)) and reduced to 8
droplets at 4.0 × 105 (Fig. 15(c)).

Fig. 16 shows the evolution of four distinct films at late time regime
when the product of the Marangoni number and the surfactant concen-
tration (𝑀𝐶 ) or the Weissenberg number is equal to or greater than
0
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Fig. 12. Evolution of three thin films for 𝑏 = 1, 𝜆2 = 0.01, 𝑀 = 0.025 (blue solid lines),
0.05 (red dashed lines), 0.1(black dotted lines) at late time regime, 𝑡 = 8.5× 104, when
(a) 𝜆1 = 4 and (b) 𝜆1 = 10.

the constant part of the interfacial tension (𝛴0) or the Reynold number
for nonlinear relationship between interfacial tension and surfactant
concentration i.e., for 𝛽 > 1. Film growth and rupturing correspond to
variations in elasticity number and exposure time. However, the effects
of the Marangoni number becomes less pronounced compared to the
observed film evolutions when the dimensionless interfacial tension
for the constant part of the interfacial tension, (𝛴0) is greater than
the product of the Marangoni number and surfactant concentration.
Meanwhile, a higher elasticity number reduces the speed at which the
secondary droplets are formed.

5. Analysis of the shape in the dewetted region

Rauscher et al. [24] performed a linear stability analysis to in-
vestigate the shape of the rim of a dewetting viscoelastic thin film.
The authors concluded that the analysis would result in two negative
real parts of the growth rate and concluded that normal modes with
negative real 𝜔 cannot be a solution to the equation for the growth rate.
Similarly, Barra et al. [1] observed that the linearized solution in the
dewetted region, under quasi steady state conditions, does not depend
on the viscoelastic parameters. Hence, they found that ‘‘the oscillations
that the viscoelastic interface exhibits in the inner region of the dewet-
ting hole cannot be analytically described with a linear analysis’’. In this
9

Fig. 13. Evolution of three thin films for 𝜆1 = 10, 𝜆2 = 0.01, 𝑀 = 0.025, 𝑏 = 0 (blue
solid lines), 1 (red dashed lines) at (a) early time regime, 𝑡 = 3.45 × 105, (b) middle
time regime, 𝑡 = 3.56× 105 and (c) late time regime, 𝑡 = 4.0× 105. The insert is a closed
in on the secondary droplets formed when no slip boundary condition is applied.

section, we examine the contributions of the dimensionless interfacial
tension to the linear problem of the decay of the capillary response the
opening hole creates towards the flat film state.

To study the correlations between the number of droplets and the
wavenumber of the most unstable mode, we analyse the observed
oscillations in the dewetted region according to the linear analysis
presented in [24]. Linear stability analysis of Eqs. (17) with 𝑄 (Eq. (18))
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Fig. 14. Linear Evolution of three thin films for 𝛽 = 0.1 (blue solid lines), 0.2 (red
dashed lines), 0.3 (black straight lines) at (a) early time regime, 𝑡 = 3.45 × 105, (b)
middle time regime, 𝑡 = 3.56 × 105 and (c) late time regime, 𝑡 = 4.0 × 105.

and 𝑅 (Eq. (19)) are conducted for the 2-dimensional situation of a
cross-section of the growing hole. The van der Waals force contribution
is considered negligible since the behaviour near the contact line is not
of interest in this analysis.

If the co-ordinate system is shifted to the frame co-moving with the
growing hole located at s(t), i.e.

ℎ(𝑥, 𝑡) = ℎ(𝜉, 𝑡), 𝑄(𝑥, 𝑡) = 𝑄(𝜉, 𝑡), 𝑅(𝑥, 𝑡) = 𝑅(𝜉, 𝑡)
(28)
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with 𝜉 = 𝑥 − 𝑠(𝑡),
Fig. 15. Evolution of three thin films for nonlinear relationship between interfacial
tension and surfactant concentration at 𝛽 = 0.1 (blue solid lines), 0.2 (red dashed
lines), 0.3 (black straight lines) at (a) early time regime, 𝑡 = 3.45×105, (b) middle time
regime, 𝑡 = 3.56 × 105 and (c) late time regime, 𝑡 = 4.0 × 105.

where 𝑄 and 𝑅 are the first components of Eqs. (18) and (19) in two
dimensions, we have
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Fig. 16. Nonlinear Evolution of three thin films for 𝛽 = 1.0 (blue solid lines), 1.1 (red
dashed lines), 1.2 (black straight lines) and 1.3 (brown dash lines) at the late time
regime, 𝑡 = 4.0 × 105.

together with
(

1 + 𝜆2
𝜕
𝜕𝑡

− 𝜆2�̇�
𝜕
𝜕𝜉

)

𝑄 = −𝛴 𝜕3ℎ
𝜕𝜉3

, (30)
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𝜕
𝜕𝜉

)

𝑅 = −ℎ𝛴 𝜕3ℎ
𝜕𝜉3

. (31)

If a quasi-steady state is assumed in which the shape of the rim
in the dewetted region changes only slowly and the speed �̇� is con-
stant, a linearized form of the perturbation Eqs. (29)–(31) is obtained
(see Rauscher et al. [24]. Solving the linearized equation would always
have a growth rate 𝜔 with a negative real part in the following equation
for the growth rate,

−�̇� + 𝜆2�̇�
2𝜔 +

(

ℎ30
3

+ 𝑏ℎ20

)

𝛴𝜔3

−�̇�

(

𝜆1
ℎ30
3

+ 𝜆2𝑏ℎ
2
0

)

𝛴𝜔4 = 0.

(32)

The influence of dimensionless interfacial tension, 𝛴, and therefore,
the Marangoni number is significant and can serve as either increasing
or reducing factor in the coefficients of both the third and fourth order
in 𝜔. It can be concluded from Eq. (32) that the oscillations exhibited by
viscoelastic thin films can only be described analytically if the product
of Marangoni number and surfactant concentration is large enough to
exceed the value of the constant part of the dimensionless interfacial
tension.

6. Conclusion

A modified nonlinear evolution equation for viscoelastic thin films
bounded below by a solid substrate and above by liquid–liquid interface
is presented. The effects of gradient of interfacial tension is considered
on the responses of the thin films to prescribed perturbation. Model
formulation reveals that both the capillary and van der Waals compo-
nents of the pressure term are affected by the properties of the thin film
including the fluid–fluid interactions. Linear stability analysis shows
that the region of stability of the films is affected by the Marangoni
number, tension, slip length and contact angle.

We verified the following observations: (1). The dynamics of the
thin films varies greatly across different time regimes. Most of the
actions occurred at early time regime when the films developed and
at the late time regime when the rims tend to separate. (2). Increase
in the characteristic relaxation time leads to the formation of multiple
secondary droplets and stability in the film behaviour, respectively.

Integration of the Marangoni number into thin film evolution equa-
tion allows the study of how interfacial dynamics is influenced by
11
interfacial tension gradients. High variations in interfacial tension gra-
dient reduces growth rate and rupturing of thin films in the presence
of surfactants. A linear relationship between interfacial tension and
surfactant concentration can only be assumed where the product of the
Marangoni number and surfactant concentration does not exceed the
dimensionless interfacial tension for the constant part of the interfa-
cial tension. Otherwise, a nonlinear correlation between dimensionless
interfacial tension and surfactant concentration is required to describe
viscoelastic flow at interfaces. The application of a nonlinear relation-
ship between interfacial tension and surfactant concentration leads to
faster film dynamics and rupturing speed.
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Appendix. Derivation of the long wave approximation

The two mutually orthogonal vectors n and t are defined as

𝐧 =

(
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]

1
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(33)
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]
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(34)

and
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)
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. (35)

Other parameters can be further scaled as follows

𝑋 = 𝑥
𝐿
, (36)

(𝑌 ,𝐻,𝐵) = 1
ℎ0

(𝑦, ℎ, 𝑏). (37)

If the characteristic velocity of the problem is denoted by 𝑢0, then

𝑈 = 𝑢
𝑢0

, 𝑉 = 𝑣
(𝜖𝑢0)

, (38)

(𝑡∗, 𝜆∗1 , 𝜆
∗
2) =

1
𝑇
(𝑡, 𝜆1, 𝜆2), (39)

𝜏𝑖𝑗
∗ = 𝑇

𝜇
𝜏𝑖𝑗 , (40)

𝑝𝑜 =
𝜇

(𝑇 𝜖2)
, (41)

𝑇 = 𝐿
𝑢0

, (42)

𝑅𝑒 =
(𝜌𝑢0𝐿)

𝜇
. (43)

All quantities are, therefore, considered from now on dimensionless
but original notations will be maintained to avoid cumbersomeness.
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𝜏

(

𝑢

w

𝑚

I
(

R

Substituting the scaled forms into Eq. (1), the following system is
obtained:

𝜖𝑅𝑒 𝜕𝑢
𝜕𝑡

= 𝜖2
𝜕𝜏11
𝜕𝑥

+
𝜕𝜏21
𝜕𝑦

−
𝜕𝑝
𝜕𝑥

, (44)

𝜖3𝑅𝑒𝜕𝑢
𝜕𝑡

= 𝜖2
(

𝜕𝜏12
𝜕𝑥

+
𝜕𝜏22
𝜕𝑦

)

−
𝜕𝑝
𝜕𝑦

. (45)

The dimensionless components of the stress tensor given by the
effreys model, Eq. (6), satisfy

11 + 𝜆1
𝜕𝜏11
𝜕𝑡

= 2
( 𝜕𝑢
𝜕𝑥

+ 𝜆2
𝜕
𝜕𝑡

( 𝜕𝑢
𝜕𝑥

))

, (46)

𝜏22 + 𝜆1
𝜕𝜏22
𝜕𝑡

= 2
(

𝜕𝑣
𝜕𝑦

+ 𝜆2
𝜕
𝜕𝑡

(

𝜕𝑣
𝜕𝑦

))

, (47)

𝜏12 + 𝜆1
𝜕𝜏12
𝜕𝑡

= 𝜕𝑢
𝜕𝑦

+ 𝜆2
𝜕
𝜕𝑡

(

𝜕𝑢
𝜕𝑦

)

+𝜖2
( 𝜕𝑣
𝜕𝑥

+ 𝜆2
𝜕
𝜕𝑡

( 𝜕𝑣
𝜕𝑥

))

.
(48)

The leading-order terms in the governing Eqs. (44) and (45) respec-
tively, are
𝜏21
𝜕𝑦

=
𝜕𝑝
𝜕𝑥

, (49)

𝜕𝑝
𝜕𝑦

= 0. (50)

Integrating Eq. (49), we have

𝜏21 =
𝜕𝑝
𝜕𝑥

(𝑦 − ℎ) . (51)

Substituting 𝜏21 into Eq. (48), we obtain (up to the leading order)

𝜕𝑝
𝜕𝑥

(𝑦 − ℎ) + 𝜆1
𝜕
𝜕𝑡

(

𝜕𝑝
𝜕𝑥

(𝑦 − ℎ)
)

= 𝜕𝑢
𝜕𝑦

+ 𝜆2
𝜕
𝜕𝑡

(

𝜕𝑢
𝜕𝑦

)

, (52)

1 + 𝜆2
𝜕
𝜕𝑡

)

(

𝜕𝑢
𝜕𝑦

)

=
(

1 + 𝜆1
𝜕
𝜕𝑡

)

(𝑦 − ℎ)
𝜕𝑝
𝜕𝑥

. (53)

Integrating Eq. (53) from 𝑦 = 0 to 𝑦 = ℎ(𝑥, 𝑡) using the corresponding
boundary conditions, we have
(

1 + 𝜆2
𝜕
𝜕𝑡

)

[𝑢]ℎ(𝑥,𝑡)0 =
(

1 + 𝜆1
𝜕
𝜕𝑡

)(1
2
𝑦2 − ℎ𝑦

) 𝜕𝑝
𝜕𝑥

. (54)

Applying the boundary conditions we obtain
(

1 + 𝜆2
𝜕
𝜕𝑡

)

[

𝑢 + 𝑏ℎ
𝜕𝑝
𝜕𝑥

]

=
(

1 + 𝜆1
𝜕
𝜕𝑡

)(1
2
𝑦2 − ℎ𝑦

) 𝜕𝑝
𝜕𝑥

, (55)

(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑢 +
(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑏ℎ
𝜕𝑝
𝜕𝑥

=
(

1 + 𝜆1
𝜕
𝜕𝑡

)(1
2
𝑦2 − ℎ𝑦

) 𝜕𝑝
𝜕𝑥

, (56)

+ 𝜆2
𝜕
𝜕𝑡
𝑢 = 𝑚, (57)

ith

=
(

1 + 𝜆1
𝜕
𝜕𝑡

)(1
2
𝑦2 − ℎ𝑦

) 𝜕𝑝
𝜕𝑥

−
(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑏ℎ
𝜕𝑝
𝜕𝑥

. (58)

The solution to Eq. (56) can be represented as

𝑢 = 1
𝜆2 ∫

𝑡

−∞
𝑒
− 𝑡−𝑡′

𝜆2 𝑚(𝑥, 𝑦, 𝑡′)𝑑𝑡′. (59)

ntegrating Eq. (56) from 0 to 𝑦 = ℎ(𝑥, 𝑡) and

1 + 𝜆2
𝜕
𝜕𝑡

)

∫

ℎ(𝑥,𝑡)

0
𝑢𝑑𝑦 +

(

1 + 𝜆2
𝜕
𝜕𝑡

)

∫

ℎ(𝑥,𝑡)

0
𝑏ℎ

𝜕𝑝
𝜕𝑥

𝑑𝑦

= ∫

ℎ(𝑥,𝑡)

0

(

1 + 𝜆1
𝜕
𝜕𝑡

)(1
2
𝑦2 − ℎ𝑦

) 𝜕𝑝
𝜕𝑥

𝑑𝑦,
(60)

∫

ℎ(𝑥,𝑡)

0
𝑢𝑑𝑦 + 𝜆2

𝜕
𝜕𝑡 ∫

ℎ(𝑥,𝑡)

0
𝑢𝑑𝑦 + 𝑏ℎ2

𝜕𝑝
𝜕𝑥

+ 𝜆2𝑏
𝜕ℎ2

𝜕𝑡
𝜕𝑝
𝜕𝑥

−𝜆2
𝜕ℎ
𝜕𝑡

𝑢(𝑦 = ℎ(𝑥, 𝑡)) − 𝜆2
𝜕ℎ
𝜕𝑡

𝑏ℎ
𝜕𝑝
𝜕𝑥

= −ℎ3 𝜕𝑝
− 𝜆 ℎ2 𝜕ℎ

𝜕𝑝
+ 𝜆 ℎ2 𝜕ℎ 𝜕𝑝

.

(61)
12
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Integrating the kinematic boundary condition, Eq. (4), from 0 to 𝑦 =
ℎ(𝑥, 𝑡) using integration by parts gives

𝜕ℎ
𝜕𝑡

+ 𝜕
𝜕𝑥

(

∫

ℎ(𝑥,𝑡)

0
𝑢𝑑𝑦

)

= 0. (62)

Taking partial derivative of Eq. (61) and substitute it into the kinematic
boundary condition Eq. (62), the long wave approximation is

(

1 + 𝜆2
𝜕
𝜕𝑡

) 𝜕ℎ
𝜕𝑡

+ 𝜆2
𝜕
𝜕𝑥

[ 𝜕ℎ
𝜕𝑡

𝑢(𝑦 = ℎ(𝑥, 𝑡))
]

= 𝜕
𝜕𝑥

[

(

1 + 𝜆1
𝜕
𝜕𝑡

)

(

ℎ3

3
𝜕𝑝
𝜕𝑥

)

+
(

1 + 𝜆2
𝜕
𝜕𝑡

)

(

𝑏ℎ2
𝜕𝑝
𝜕𝑥

)]

− 𝜕
𝜕𝑥

[(

𝜆1
ℎ2

2
+ 𝜆2𝑏ℎ

)

𝜕ℎ
𝜕𝑡

𝜕𝑝
𝜕𝑥

]

.

(63)

Eq. (63) can be simplified by performing integration by parts

𝜆2𝑢 =
(

𝜆2 − 𝜆1
)

( 1
2
ℎ2𝑄 − ℎ𝑅

)

−
(

𝜆1
1
2
ℎ2 + 𝜆2𝑏ℎ

) 𝜕𝑝
𝜕𝑥

, (64)

where, for compactness, we have used 𝑄 and 𝑅 such that
(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑄 = − 𝜕
𝜕𝑥

(

𝜕𝑝
𝜕𝑥

)

, (65)

(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑅 = −ℎ 𝜕
𝜕𝑥

(

𝜕𝑝
𝜕𝑥

)

. (66)

Substituting for Eq. (64) in Eq. (63), the final modified form of the
nonlinear evolution equation for bounded viscoelastic thin films with
gradient of surfactant concentration is

(

1 + 𝜆2
𝜕
𝜕𝑡

) 𝜕ℎ
𝜕𝑡

+ 𝜕
𝜕𝑥

{

(

𝜆2 − 𝜆1
)

(

ℎ2

2
𝑄 − ℎ𝑅

)

𝜕ℎ
𝜕𝑡

+
[

(

1 + 𝜆1
𝜕
𝜕𝑡

) ℎ3

3

+
(

1 + 𝜆2
𝜕
𝜕𝑡

)

𝑏ℎ2
] 𝜕
𝜕𝑥

(

𝛴 𝜕2ℎ
𝜕𝑥2

+𝑤(ℎ)
)}

= 0.

(67)
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