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Abstract: The extended application of device-dependent systems’ vision is growing exponentially,
but these systems face challenges in precisely imitating the human perception models established by
the device-independent systems of the Commission internationale de l’éclairage (CIE). We previously
discussed the theoretical treatment and experimental validation of developing a calibrated integrated
sphere imaging system to imitate the visible spectroscopy environment. The RGB polynomial function
was derived to obtain a meaningful interpretation of color features. In this study, we dyed three
different types of textured materials in the same bath with a yellow reactive dye at incremental
concentrations to see how their color difference profiles tested. Three typical cotton textures were
dyed with three ultra-RGB remozol reactive dyes and their combinations. The color concentration
ranges of 1%, 2%, 3%, and 4% were chosen for each dye, followed by their binary and ternary
mixtures. The aim was to verify the fundamental spectral feature mapping in various imaging color
spaces and spectral domains. The findings are quite interesting and help us to understand the ground
truth behind working in two domains. In addition, the trends of color mixing, CIE color difference,
CIExy (chromaticity) color gamut, and RGB gamut and their distinguishing features were verified.
Human perception accuracy was also compared in both domains to clarify the influence of texture.
These fundamental experiments and observations on human perception and calibrated imaging color
space could clarify the expected precision in both domains.

Keywords: computer vision; integrating sphere imaging; CIE color space; CIExy; color
characterization; color difference; color gamut

1. Introduction

We discussed the significance of this study, prior art, and theoretical treatment of
imaging from an integrating sphere in our previous paper [1]. We experimented with
textile texture and color by varying these factors in a controlled manner (red, blue, yellow,
and cyan dyes at various concentrations (0.25%, 0.5%, 0.75%, 1%, 1.5%, 2%, 3%, 4%, 5%, and
6%)). In addition, a simple calibration technique that describes how unique digital color
signatures can be derived from calibrated RGB to extract the best features for color and
texture was proposed and validated. This alter ego of the reflectance function, missing in the
imaging domain, was experimentally validated to be used for visualization, identification,
and application for qualitative and quantitative color–texture analysis [1].

The present investigation aims to conduct a qualitative and quantitative analysis of
color perception in terms of DERGB and DE precision using our proposed method, along
with a study of color combination. Further, we studied various RGB spaces that were
critically represented with varied texture and color combinations.
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Many applications such as spectral measurements, image processing, and human
vision require congruent and precise results in real-world problems. Complex operations,
such as calibration protocols, device profiling, illumination uniformity, viewing geometry,
device characterization, and so on, are used to bridge the gap between device-dependent
and device-independent color transformation. In most cases, the characterization or predic-
tion models are prone to theoretical assumption errors [1–3] as well as practical imperfec-
tions or limitations [4,5]. It could be stated that the illumination source’s properties and
its uniformity over the material are likely the main offenders and play a crucial role in the
precise estimation of color and texture qualities [6,7].

Most of the challenges were discussed in our previous article, and it is noteworthy here
to mention some conclusive inferences from a few current researchers. Nie et al. (2023) [8]
reported on problems with serious interference of specular reflections in the endoscopic
image that majorly contribute to errors in computer vision algorithms. Abdulateef and
Hasoon (2023) [9] studied the limitations of image analysis as it essentially needs a clear,
bright, and no-shadow RGB image to obtain accurate results. As stated by Lin and Finlayson
(2023) [10], “Surprisingly, we show that all compared algorithms—regardless of their model
complexity—degrade to broadly the same level of performance.”

As a matter of fact, the device-dependent systems of RGB color spaces were knowingly
evolved with the color compressed gamut of CIE and encouraged widely as a tool for easy
communication, real-time application, business, and so on, with the growth of users of
computers, phones, and other digital media [1,3]. As of today, it is a big challenge for AI
systems and advanced algorithms to be trained accurately with prior domain knowledge
for better identification, classification, and prediction of subjects or materials of interest.
Nature has many colors and it may be beyond our knowledge how they react physically for
our color perception. In physics terms, reflection, transmission, absorption, and scattering
within the visible range of light involve numerous materials like dyes, pigments, and
biomaterials for varied applications.

Materials show their unique properties of light reflectance and absorption over the
visible range. If a substrate is dyed, we can see its family of curves by increasing the
dye concentration (e.g., Figure 1). Interestingly, textile materials are quite suitable for
experimenting with varied textures and dyes.
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We dyed three different types of textured materials with a yellow reactive dye at
incremental concentrations in the same bath. Dyeing experiments for three ultra-RGB
remozol reactive dyes and their combinations were then carried out on the same substrate
for four concentration ranges (single, binary, and ternary mixtures) to validate the funda-
mental spectral feature mapping in both domains and varied imaging color spaces. The
motivation behind these ground truth experiments was to analyze the critical issue of
human perception and computer vision: the device-independent human perception CIE
model and current progress in digital image processing, with a simplified explanation.

2. Materials and Methods

In our previous study, we discussed the development of a novel integrating sphere
imaging system with a theoretical explanation. We experimented with textile properties by
varying the texture in a controlled way and coloring the samples with red, blue, yellow,
and cyan dyes at various concentrations (0.25%, 0.5%, 0.75%, 1%, 1.5%, 2%, 3%, 4%, 5%,
and 6%). We experimented and derived calibrated RGB polynomials and compared them
with spectral measurement profiles. Procedures to precisely define the qualitative and
quantitative influences of color and texture and color prediction capabilities were also
planned and investigated. The present investigation aims to conduct a qualitative and
quantitative analysis of the precision of our proposed method along with an analysis of
color combination. Three types of bleached cotton fabrics with plain, twill, and modified
twill were initially dyed in the same dye bath with a yellow reactive dye (Levafix Brilliant
Yellow 4GL; vinyl sulphone class) in an incremental order of concentration, i.e., 0.25%,
0.5%, 0.75%, 1%, 1.5%, 2%, 2.5%, 3%, 4%, and 5% (10 shades for each of the three textures).
Further, dyeing was carried out with three kinds of ultra-RGB Remozol reactive dyes
and their combinations (single, binary, and ternary mixtures) on the same substrate in
four concentration ranges: 1%, 2%, 3%, and 4% (Ultra-RGB Carmen (Dye A), Navy Blue
(Dye B), and Red (Dye C)). The dyes were provided by Dystar, Hong Kong. A Minolta
2600D spectrophotometer was used to measure reflectance (360 to 740 nm with a 10 nm
gap), XYZ, CIEL*a*b*, and color difference (DE). Images of plain, twill, and modified twill
samples of the same percentage shade were taken together (Figure 2) and, after calibrating
the diffused imaging system with a white tile, their average RGB values were computed in
MATLAB. All the detailed measurement values are provided as Supplementary File.
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3. Results and Discussion
3.1. Three Types of Textures with Incremental Yellow Color Variations

Textile samples with three different textures were dyed in the same bath so that color
uptake could be verified in both domains and a quantitative and qualitative analysis of color
and the color difference between textiles could be conducted effectively. The integrated
sphere imaging system was initially calibrated with the white plate, and all three kinds of
textures dyed in the same bath were measured together (Figure 2) to ensure clarity in the
determination of RGB values, denoted as Canon D450 (Camera) RGB.

Figure 3 shows the sample images and Table 1 shows the experimental RGB and
color difference DE (root mean square difference of CIE L*a*b*) and DERGB (calculated
as root mean square difference of R, G, and B), using the first plain weaved sample Y2 as
a reference.
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Table 1. Experimental RGBs, color difference DE, and DERGB of three textures (Y42 as reference).

Image Plain R G B L a b DERGB DE

Y42 204.533 209.373 157.184 82.264 −10.591 40.672 0.000 0.000
Y45 208.447 207.940 135.769 81.522 −11.025 52.999 21.817 12.357
Y48 209.246 207.691 130.600 81.427 −10.942 56.523 27.051 15.877
Y51 210.326 206.055 121.697 80.914 −10.662 61.406 36.109 20.778
Y54 211.899 205.708 116.833 80.870 −10.024 64.534 41.182 23.910
Y55 217.369 207.660 109.919 82.483 −9.235 70.781 49.007 30.141
Y58 219.379 205.177 99.177 82.355 −8.232 75.616 60.023 35.024
Y61 219.503 203.863 95.189 82.013 −7.573 76.966 64.015 36.420
Y64 219.910 201.003 88.265 81.746 −7.075 79.624 71.108 39.114
Y67 221.463 201.337 85.567 81.241 −6.406 81.147 74.028 40.704
Y70 221.886 199.651 80.806 80.811 −5.926 82.224 78.926 41.839

Image Twill R G B L a b DERGB DE

Y43 213.043 212.648 157.694 84.994 −10.574 43.934 9.132 4.254
Y46 214.214 211.979 136.878 84.005 −10.878 56.473 22.646 15.899
Y49 213.269 208.123 126.858 83.784 −10.610 62.748 31.584 22.129
Y52 215.311 209.160 120.162 82.911 −10.050 66.032 38.559 25.374
Y56 221.901 208.694 107.559 84.147 −7.277 75.269 52.581 34.807
Y59 225.645 204.784 91.718 83.460 −5.961 80.494 68.939 40.108
Y62 224.473 202.668 88.074 83.045 −5.239 82.006 72.241 41.686
Y65 226.816 201.740 84.951 82.349 −4.162 82.504 75.977 42.324
Y68 227.116 198.948 81.704 82.181 −3.247 82.999 79.473 42.960
Y71 226.662 195.977 75.430 81.522 −2.684 85.341 85.749 45.370

Image M. Twill R G B L a b DERGB DE

Y44 217.647 216.200 152.434 87.016 −10.600 48.633 15.528 9.271
Y47 218.018 213.410 129.578 85.588 −9.775 63.200 30.987 22.787
Y50 218.583 212.677 124.088 85.232 −9.178 68.215 36.107 27.739
Y53 219.456 210.864 115.429 84.960 −8.427 70.903 44.367 30.428
Y57 213.761 202.186 102.455 80.302 −8.790 71.804 55.965 31.246
Y60 213.628 200.362 96.945 79.861 −8.503 73.383 61.585 32.866
Y63 215.491 201.274 95.167 79.881 −8.519 73.122 63.496 32.604
Y66 215.868 199.699 89.600 79.372 −7.628 76.591 69.208 36.157
Y69 214.343 195.389 84.453 78.937 −7.086 78.145 74.710 37.784

In both domains, their spectral and derived imaging RGB polynomials are profound.
A visual difference is observed in the higher wavelength ranges of red and green (1-r, 2-g,
and so on in the RGB polynomial graph in Figure 4).
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3.2. Color Difference for Human Perception

From Figure 4 and Table 1, it can be observed that the textures can be visually distin-
guished into 3 families: plain, twill, and modified twill. The highest was M.Twill (on top),
followed by Twill (middle), and the least was plain (below). The same trend can be seen by
observing CIE L* values in the spectral domain as well as intensity values (R+G+B/3) in
the calibrated imaging domain in Figure 7. The color difference can be distinguished much
better in terms of DERGB from the proposed system than DE in CIEL*a*b* (Figure 5). It
was observed that the DERGB and color difference DE readings follow obvious trends as
the color concentration increases among each of the three textures. Further, we ranked all
samples to compare both domains’ perception in terms of DE and DERGB.
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Figure 5. DERGB and DE of three textures, dyed with yellow in the same bath.

Experimental RGBs, color difference DE, and DERGB of the textures (Y42 as reference)
are given in Table 1 and plotted in Figure 5. More discrimination is noticed in the case of
DERGB compared with DE. For the color perception point of view, images were ranked in
terms of measured DE and estimated DERGB from images using Y42′s RGB as reference.
The congruent ranks are highlighted in italic with thick borders and the flipped reading
sets are in bold (color difference ranks are flipped while evaluating DE and DERGB). It can
be observed that these flipped sets (Y46, Y48), (Y53, Y55), and (Y65, Y70) have closer DE
values among them (0.022, 0.287, and 0.485, respectively).

If the color difference (DE) is less than 0.5, it can be perceived as the same color
and we accept it for industrial applications as well [11,12]. While observing this set of
samples (shown in Figure 6) carefully, it can be easily noticed that the left-side samples
Y46, Y53, and Y65 may be perceived as more colored than the samples Y48, Y55, and Y70,
respectively. In fact, texture clearly has a greater impact on imaging systems, whereas color
spectral reflection measurement was designed for color (reflection spectra in the visible
wavelength range).
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Critically, these color perception mismatches, or zones of confusion, are always de-
bated, and the errors were profoundly significant. This is because, in most cases, the
imaging domain RGB parameters are derived with a lot of assumptions and a lack of
calibration, illumination information, viewing geometry, etc., while being transformed
from or to CIE spaces. The reason for this is that human perception models only accept
the CIE system because standardization of RGB color space is near to impossible [3,13].
These theoretical errors have been reported for decades, and it is evident that the images
obtained from this calibrated imaging system could be closer to our color perception and
appearance due to texture change. In addition, a color image with calibrated RGBs can
be much more useful than spectral ones for real-world applications. Complex algorithms
for domain transfer from device-dependent systems to device-independent systems are
progressively being used for various important applications, including medical imaging;
however, these conversions may cause serious errors and outliers when generalized. Sciuto
et al. (2017) [14] and Lo Sciuto et al. (2021) [15] reported some improved network classi-
fiers and feature extraction algorithms for better results to recognize organic solar cells
defects. The typical RGB values of standard illuminants in different device-dependent
RGB spaces are given in Table 2. These values can be computed and were available from
the spectral calculator spreadsheet by Bruce Justin Lindbloom [16], which was used later
for RGB calculations and visualizations in various RGB color spaces. The application of
device-dependent systems has been growing exponentially for AI, cloud computing, virtual
realities, and many more. It is critical that device-independent systems like CIEL*a*b* are
always associated with their illumination and observer pairs. However, image processing
researchers rarely consider this and incorrectly assume many parameters for computing
RGB associations for empirical models with complex algorithms.



Electronics 2023, 12, 2135 9 of 17

Table 2. Typical RGB values of standard illuminants in different device-dependent RGB spaces.

Working Reference Range = [0.0, 1.0] Range = [0, 255]

Space Illuminant Red Green Blue Red Green Blue

Adobe RGB (1998) D65 0.4947 0.4219 0.4095 126 108 104
Apple RGB D65 0.4440 0.3459 0.3347 113 88 85
Best RGB D50 0.4933 0.4333 0.4120 126 110 105
Beta RGB D50 0.4913 0.4270 0.4115 125 109 105

Bruce RGB D65 0.5099 0.4219 0.4095 130 108 104
CIE RGB E 0.5120 0.4322 0.4130 131 110 105
ColorMatch RGB D50 0.4444 0.3454 0.3333 113 88 85
Don RGB 4 D50 0.4934 0.4285 0.4115 126 109 105

ECI RGB v2 D50 0.5319 0.4586 0.4445 136 117 113
Ekta Space PS5 RGB D50 0.4983 0.4275 0.4114 127 109 105
NTSC RGB C 0.4922 0.4251 0.4122 126 108 105
PAL/SECAM RGB D65 0.5166 0.4219 0.4088 132 108 104

ProPhoto RGB D50 0.4071 0.3599 0.3386 104 92 86
SMPTE-C RGB D65 0.5261 0.4199 0.4092 134 107 104
sRGB D65 0.5246 0.4233 0.4098 134 108 105
Wide Gamut RGB D50 0.4875 0.4326 0.4109 124 110 105

3.3. Color Intensity for Quantitative Evaluation

The intensity values were computed as (R+G+B)/3 for 10 ranges of incremental dye
concentration (Table 3). It can be easily noticed that the estimated intensity decreases as
the concentration of dye increases, which implies lower reflection properties of the surface
with higher dye absorption.

Table 3. Intensity of all three textured samples with respect to 10 incremental concentration ranges.

Dye Conc. Plain Twill M. Twill

0.25 194.656 199.113 200.631
0.5 188.669 191.246 191.7
0.75 185.828 186.492 186.726

1 182.218 183.356 184.989
INTENSITY 1.5 179.798 180.277 180.537

2 175.681 176.884 176.851
3 174.65 176.792 177.01
4 173.182 173.664 173.835
5 170.434 172.941 173.575
6 170.315 171.017 170.746

The relationship between color concentration and intensity was established using
quantitative evaluation (Figure 7). Here, it is relevant to investigate whether the calibrated
image intensity could imitate absorbance or dye uptake (K/S), i.e., the intensity should be
estimated reasonably well when the concentration is known. The measured intensities of
the three textures (total of 30) were plotted against the 10 incremental concentration ranges,
as shown in Figure 7, below. The Hoerl model (y = a*(bx)*(xc)) was one of the simplest and
best-fitted models that we used, and the estimated values were as follows:

PLAIN: a = 181.97, b = 1.0034, c = −0.04.891; R2 = 0.996
TWILL: a = 182.54, b = 1.008, c = −0.060; R2 = 0.9958
M.TWILL: a = 183.04, b = 1.0084, c = −0.0626 R2 = 0.9942



Electronics 2023, 12, 2135 10 of 17

Electronics 2023, 12, x FOR PEER REVIEW 10 of 17 
 

 

A high coefficient of correlation was observed for all the cases (R2 > 0.99), confirming 
a good prediction probability from calibrated imaging. 

 
Figure 7. Intensity average vs. dye concentrations (a) of all 30 yellow samples; Hoerl model fit for 
(b) plain weave, (c) twill weave, and (d) modified twill weave. 

3.4. Color Combinations and Verification of Various Color Space and CIE Chromaticity 
Visualizations 

Further, we conducted ground truth experiments with three dyes using an equal pro-
portion of their primary, secondary, and ternary mixtures (Table 4 and Figure 8). Various 
color space RGB representations of the dye mixtures (BC at 1, 2, 3, and 4%) were computed 
[14] and represented in Figure 9. 

Table 4. Experimental RGBs of dyed samples; three dyes: primary, secondary, and ternary mix-
ture. 

  Expt. RGB      Dye Conc.   
R1 G1 B1  Dye A Dye B Dye C 

244.94 245.19 245.07 White plate 
Start 

0 0 0 

212.67 215.70 220.67 Plain 0 0 0 
221.82 224.30 229.30 Twill 0 0 0 
222.30 223.41 228.29 M.Twill 0 0 0 

225.8854 183.092725 161.5266  1    
228.9698 171.01615 145.9466  2    
231.4409 157.77435 128.4438  3    
229.0542 151.03805 120.8743  4    
132.9036 187.883875 199.5574   1   
103.2905 171.487225 186.7164   2   

Figure 7. Intensity average vs. dye concentrations (a) of all 30 yellow samples; Hoerl model fit for
(b) plain weave, (c) twill weave, and (d) modified twill weave.

A high coefficient of correlation was observed for all the cases (R2 > 0.99), confirming
a good prediction probability from calibrated imaging.

3.4. Color Combinations and Verification of Various Color Space and CIE Chromaticity Visualizations

Further, we conducted ground truth experiments with three dyes using an equal
proportion of their primary, secondary, and ternary mixtures (Table 4 and Figure 8). Var-
ious color space RGB representations of the dye mixtures (BC at 1, 2, 3, and 4%) were
computed [14] and represented in Figure 9.

The reflectance measurement was conducted using spectrophotometry, and calibrated
imaging RGBs were calculated in MATLAB. The spreadsheet by Bruce Justin Lindbloom
was used to calculate various device-dependent RGB standards, and all raw data were
provided on an Excel file. Typical binary combinations of 1, 2, 3, and 4% of Dye B and
Dye C for three major color space RGB representations (Apple RGB, Adobe RGB, and
Pro-photo RGB) are given in Figure 9. It is evident that they could be well represented in
both qualitative and quantitative analyses (curves of the same family have similar spectral
reflectance). In addition, we investigated the similarity of their representations in the
CIE chromaticity (CIExy) diagram (Figure 10) and the 3D representation of linearity of
individual and dye mixtures in both domains (Figure 11). The physical significance of
this is that a two-dye mixture in a particular proportion will be in a straight line until it
becomes saturated.
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Table 4. Experimental RGBs of dyed samples; three dyes: primary, secondary, and ternary mixture.

Expt. RGB Dye Conc.
R1 G1 B1 Dye A Dye B Dye C

244.94 245.19 245.07 White plate Start 0 0 0
212.67 215.70 220.67 Plain 0 0 0
221.82 224.30 229.30 Twill 0 0 0
222.30 223.41 228.29 M.Twill 0 0 0

225.8854 183.092725 161.5266 1
228.9698 171.01615 145.9466 2
231.4409 157.77435 128.4438 3
229.0542 151.03805 120.8743 4
132.9036 187.883875 199.5574 1
103.2905 171.487225 186.7164 2
81.85803 154.90475 171.7595 3
68.36905 147.47215 165.4398 4
226.5088 143.528725 168.8932 1
237.1594 109.479525 143.0099 2
237.0265 93.90495 128.7294 3
237.1948 76.637475 114.6642 4
66.98825 86.420775 68.52315 1 1
42.9088 54.638625 40.33238 2 2
32.21978 40.2767 31.8978 3 3
33.49718 37.416775 31.14613 4 4
236.8776 47.72975 53.10033 1 1
228.1448 32.008575 40.05553 2 2
219.2528 22.077875 32.17638 3 3
216.452 20.80095 30.01298 4 4
75.47473 56.261325 81.50173 1 1
51.27668 37.812475 56.64295 2 2
40.11753 31.79935 45.60925 3 3
34.06043 26.35805 38.14755 4 4
122.5145 90.82425 96.30858 0.5 0.5 0.5
88.75988 60.102025 62.1925 1 1 1
28.35833 33.9254 37.27445 2 2 2

245.04 245.13 245.36 White plate end

Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
 

 

81.85803 154.90475 171.7595   3   
68.36905 147.47215 165.4398   4   
226.5088 143.528725 168.8932    1 
237.1594 109.479525 143.0099    2 
237.0265 93.90495 128.7294    3 
237.1948 76.637475 114.6642    4 
66.98825 86.420775 68.52315  1 1   
42.9088 54.638625 40.33238  2 2   
32.21978 40.2767 31.8978  3 3   
33.49718 37.416775 31.14613  4 4   
236.8776 47.72975 53.10033  1  1 
228.1448 32.008575 40.05553  2  2 
219.2528 22.077875 32.17638  3  3 
216.452 20.80095 30.01298  4  4 
75.47473 56.261325 81.50173   1 1 
51.27668 37.812475 56.64295   2 2 
40.11753 31.79935 45.60925   3 3 
34.06043 26.35805 38.14755   4 4 
122.5145 90.82425 96.30858  0.5 0.5 0.5 
88.75988 60.102025 62.1925  1 1 1 
28.35833 33.9254 37.27445   2 2 2 
245.04 245.13 245.36 White plate end    

  : Dye A -Ultra-RGB Carmen, Dye -B - Ultra-RGB Navy Blue, Dye -C: Ultra-RGB Red  

 
Figure 8. Images of the dyed samples; three dyes: primary, secondary, and ternary mixture. 

: Dye A -Ultra-RGB Carmen, Dye -B - Ultra-RGB Navy Blue, Dye -C: Ultra-RGB Red.



Electronics 2023, 12, 2135 12 of 17

Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
 

 

81.85803 154.90475 171.7595   3   
68.36905 147.47215 165.4398   4   
226.5088 143.528725 168.8932    1 
237.1594 109.479525 143.0099    2 
237.0265 93.90495 128.7294    3 
237.1948 76.637475 114.6642    4 
66.98825 86.420775 68.52315  1 1   
42.9088 54.638625 40.33238  2 2   
32.21978 40.2767 31.8978  3 3   
33.49718 37.416775 31.14613  4 4   
236.8776 47.72975 53.10033  1  1 
228.1448 32.008575 40.05553  2  2 
219.2528 22.077875 32.17638  3  3 
216.452 20.80095 30.01298  4  4 
75.47473 56.261325 81.50173   1 1 
51.27668 37.812475 56.64295   2 2 
40.11753 31.79935 45.60925   3 3 
34.06043 26.35805 38.14755   4 4 
122.5145 90.82425 96.30858  0.5 0.5 0.5 
88.75988 60.102025 62.1925  1 1 1 
28.35833 33.9254 37.27445   2 2 2 
245.04 245.13 245.36 White plate end    

 : Dye A -Ultra-RGB Carmen, Dye -B - Ultra-RGB Navy Blue, Dye -C: Ultra-RGB Red  

 
Figure 8. Images of the dyed samples; three dyes: primary, secondary, and ternary mixture. Figure 8. Images of the dyed samples; three dyes: primary, secondary, and ternary mixture.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 9. Various color space RGB representations of the dye mixture (BC at 1, 2, 3, and 4%). 

The reflectance measurement was conducted using spectrophotometry, and cali-
brated imaging RGBs were calculated in MATLAB. The spreadsheet by Bruce Justin Lind-
bloom was used to calculate various device-dependent RGB standards, and all raw data 
were provided on an Excel file. Typical binary combinations of 1, 2, 3, and 4% of Dye B 
and Dye C for three major color space RGB representations (Apple RGB, Adobe RGB, and 
Pro-photo RGB) are given in Figure 9. It is evident that they could be well represented in 
both qualitative and quantitative analyses (curves of the same family have similar spectral 
reflectance). In addition, we investigated the similarity of their representations in the CIE 
chromaticity (CIExy) diagram (Figure 10) and the 3D representation of linearity of indi-
vidual and dye mixtures in both domains (Figure 11). The physical significance of this is 
that a two-dye mixture in a particular proportion will be in a straight line until it becomes 
saturated. 

Figure 9. Various color space RGB representations of the dye mixture (BC at 1, 2, 3, and 4%).



Electronics 2023, 12, 2135 13 of 17Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. CIExy diagram for all 27 color combinations. 

 
Figure 11. 3D Plots of CIExyz and RGBs of all 27 dyed samples. 

These experimental findings demonstrate that both qualitative and quantitative eval-
uations are possible in the calibrated digital domain and that they are comparable to spec-
tral or device-independent systems. The calibrated red, green, blue, RG, RB, GB, and RGB 
polynomial expansion can be treated as an alter ego of spectral responses for any color 
space, including dye mixtures, for practical applications. The CIE XYZ and 3D RGB trends 
revealed the distinct dye and combination profiles. 

3.5. Reflectance Prediction in Terms of Calibrated RGB Polynomial Regression 
As we discussed how the proposed RGB polynomial could potentially be used as an 

alter ego for the reflectance function earlier, we investigated further how well the reflec-
tance function (31 values over a visible wavelength of 400–700 nm with a 10 nm gap) could 
be predicted. It is logical that the mixture of primary RGBs generates a wide gamut of 

Figure 10. CIExy diagram for all 27 color combinations.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. CIExy diagram for all 27 color combinations. 

 
Figure 11. 3D Plots of CIExyz and RGBs of all 27 dyed samples. 

These experimental findings demonstrate that both qualitative and quantitative eval-
uations are possible in the calibrated digital domain and that they are comparable to spec-
tral or device-independent systems. The calibrated red, green, blue, RG, RB, GB, and RGB 
polynomial expansion can be treated as an alter ego of spectral responses for any color 
space, including dye mixtures, for practical applications. The CIE XYZ and 3D RGB trends 
revealed the distinct dye and combination profiles. 

3.5. Reflectance Prediction in Terms of Calibrated RGB Polynomial Regression 
As we discussed how the proposed RGB polynomial could potentially be used as an 

alter ego for the reflectance function earlier, we investigated further how well the reflec-
tance function (31 values over a visible wavelength of 400–700 nm with a 10 nm gap) could 
be predicted. It is logical that the mixture of primary RGBs generates a wide gamut of 

Figure 11. 3D Plots of CIExyz and RGBs of all 27 dyed samples.

These experimental findings demonstrate that both qualitative and quantitative evalu-
ations are possible in the calibrated digital domain and that they are comparable to spectral
or device-independent systems. The calibrated red, green, blue, RG, RB, GB, and RGB
polynomial expansion can be treated as an alter ego of spectral responses for any color
space, including dye mixtures, for practical applications. The CIE XYZ and 3D RGB trends
revealed the distinct dye and combination profiles.

3.5. Reflectance Prediction in Terms of Calibrated RGB Polynomial Regression

As we discussed how the proposed RGB polynomial could potentially be used as an
alter ego for the reflectance function earlier, we investigated further how well the reflectance
function (31 values over a visible wavelength of 400–700 nm with a 10 nm gap) could be
predicted. It is logical that the mixture of primary RGBs generates a wide gamut of colors.
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Here we have taken these 27 dye mixture samples in a similar fashion to how the database
is prepared for computer color matting for prediction. It can be mathematically denoted
as follows:

R(λ) = f (RGBpolynomial)

We used 3, 8, 11, 20, and 23 argument coefficients here, and did not try more arguments
as they caused more complexity and predilection in our earlier investigation [5,17,18].
The predicted reflectance were then converted into theoretical CIEL*a*b* for various
illuminant–observer pairs to calculate the predicted DE. All the experimental data (ac-
tual and predicted reflectance, coefficients, and DE) for various illuminat–observer pairs
are provided as a Supplementary File. Figure 12 clearly shows that the reflectance function
is well predicted from the 23-argument polynomial RGB. The arguments for the polynomial
RGB function are denoted below. Table 5 illustrates the summary of color difference results
based on these 5 RGB polynomial arguments were derived from the predicted reflectance
values. In Figure 12a the experimental reflectance was plotted as continuous line and
predicted reflectance of 23 argument model was marked as *.

Table 5. DE from predicted reflectance for D65_64.

D65_64 3 coeff 8 coeff 11 coeff 20 coeff 23 Coeff
DE Avg 2.3401 1.5 1.3221 0.4106 0.3072
DE Max 4.0535 2.72 2.9029 1.0776 1.0373
DE Min 0.8291 0.4039 0.0873 0.1007 0.0595
DE std 0.848 0.7361 0.7566 0.2691 0.2486

3: R G B
8: R G B R×G×B R×G R×B G×B 1
11: R G B R×G×B R×G R×B G×B R2 G2 B2 1
20: R G B R×G×B R×G R×B G×B R2 G2 B2 R3
G3 B3 G×R2 B×G2 R×B2 B×R2 R×G2 G×B2 1
23: R G B R×G×B R×G R×B G×B R2 G2 B2
R3 G3 B3 G×R2 B×G2 R×B2 B×R2 R×G2 G×B2
G×B×R2 B×R×G2 R×G×B2 1
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Figure 12. (a) Reflectance functions of 27 samples predicted from a 23-argument RGB polynomial. It
is noteworthy that these reflectance models would be more accurate in cases where we use the same
substrate and dye combinations and it is highly probable that their predictions would ensure non-
metameric matches for all sets of ASTM illuminant–observer pairs. The experimental and predicted
CIE L*a*b* are plotted in (b–d). (b) CIE L* vs. Lp*, (c) CIE a* vs. ap*, and (d) CIE b* vs. bp*.
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4. Conclusions

In fact, exact spectral reconstruction is even more difficult to achieve. These challenges
can be easily understood if we revisit the development of CIE systems themselves with
defined illuminants, observer functions (cleverly designed with real-time inputs from
expert human observers), and viewing geometry set-ups. For example, we need to predict
31 values (%R from 400–700 nm in a 10 nm gap) from three colorimetric readings of CIE
L*, a*, and b*. The systems required to do this are well established and being utilized for
specific domain applications as of today, unlike RGBs; those are being evolved for use in
pleasant images with less know-how.

In current practice, the transformation of device-dependent imaging parameters into
device-independent CIE parameters is mandatory as human perception only accepts the
CIE system. Before pre- and post-processing of the color images in compressed digital color
space or to map specific RGBs to a specific spectrophotometer or colorimetric reading under
a certain illuminant and observer, domain knowledge is a definite prerequisite. Specifi-
cally, the color and appearance perception mismatches, or zones of confusion, are being
critically debated in real-world applications. In fact, humans can differentiate more colors
than CIEs. The fundamental cause of these errors was profoundly significant for critical
decision-making applications when imaging domain parameters with a lot of assumptions
and a lack of calibration, illumination information, uniformity, etc., were transformed to
CIE spaces.

Previously, we proposed an alternative reflectance function obtained from the cali-
brated sphere imaging system with a theoretical explanation to analyze and validate the
close proximity of texture and color. Here, with three different textures and the incremental
color depth of three color combinations, we experimented and validated the qualitative
analysis of color and proximity texture in both domains. The concentration of a particular
color can be estimated from the calibrated image intensity. The human perception of
color differences and its ambiguity are explained. The color difference in terms of DERGB
can be perceived well and texture has a large influence on it. The reflectance predictions
from polynomial regression RGB models were found to be reasonably accurate. The var-
ious RGB spaces and CIExyz for color combinations were found to be congruent, and
finally, precision can be ensured if an image is well calibrated with diffused and uniform
illumination constancy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics12092135/s1, All the experimental data were provided
as a Supplementary File.
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