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Abstract: Radical translocation reactions are finding various uses in organic synthesis, in particular
the stereospecific formation of complex natural products. In this work, the syntheses and single-
crystal structures of two substituted 2-iodo-phenyl methyl-amides are reported, namely cyclo-propane
carboxylic acid (2-iodo-phenyl)-methyl-amide, C11H12INO (1), and cyclo-heptane carboxylic acid
(2-iodo-phenyl)-methyl-amide, C15H20INO (2). In each case, the methyl-amide group has a syn
conformation, and this grouping is perpendicular to the plane of the benzene ring: these solid-state
conformations appear to be well setup to allow an intramolecular hydrogen atom transfer to take
place as part of a radical translocation reaction. Short intermolecular I· · ·O halogen bonds occur
in each crystal structure, leading to [010] chains in 1 [I· · ·O = 3.012 (2) Å] and isolated dimers in 2
[I· · ·O = 3.024 (4) and 3.057 (4) Å]. The intermolecular interactions are further quantified by Hirshfeld
surface analyses.
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1. Introduction

Radical translocation reactions (radical generation by photolysis, heat, or reaction
with an initiator, followed by an intramolecular H atom shift) have found various uses in
organic synthesis, from forming simple carbocycles [1] to complex natural products [2,3].
These reactions rely on the translocation (i.e., H atom migration) of an initially generated
radical to a remote site, usually four [4] to seven [5] atoms away. Figure 1 illustrates the
general principle involved.
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1. Introduction 
Radical translocation reactions (radical generation by photolysis, heat, or reaction 

with an initiator, followed by an intramolecular H atom shift) have found various uses in 
organic synthesis, from forming simple carbocycles [1] to complex natural products [2,3]. 
These reactions rely on the translocation (i.e., H atom migration) of an initially generated 
radical to a remote site, usually four [4] to seven [5] atoms away. Figure 1 illustrates the 
general principle involved. 
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Figure 1. Schematic of a 1,5-hydrogen atom abstraction reaction (X = C, N or O). 

The driving force behind the rearrangement is assumed to be the formation of a more 
stable radical after translocation; typically, the initially formed radical is an aryl or vinyl 
species, perhaps formed by photolytic cleavage of a C—X (X = halogen) bond in a benzene 
ring, which is unstable and highly reactive [6]. The high reactivity and lack of stability of 
these radicals is presumed to be a result of the lone electron occupying an σ-orbital that 
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Figure 1. Schematic of a 1,5-hydrogen atom abstraction reaction (X = C, N or O).

The driving force behind the rearrangement is assumed to be the formation of a more
stable radical after translocation; typically, the initially formed radical is an aryl or vinyl
species, perhaps formed by photolytic cleavage of a C—X (X = halogen) bond in a benzene
ring, which is unstable and highly reactive [6]. The high reactivity and lack of stability of
these radicals is presumed to be a result of the lone electron occupying an σ-orbital that is
orientated perpendicular to the aromatic/conjugated π system, and therefore, stabilization
of the radical by delocalization is not possible.
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In order for the intramolecular translocation reaction to occur, it has been deter-
mined that the molecule must adopt a cis conformation [7], in which the two components
(the initial radical and the C—H bond to supply the transferrable H atom) face each
other, and the use of a suitable N-bonded substituent attached to the aromatic ring can
provide a ‘conformational lock’, thereby optimizing the likelihood of translocation and
subsequent cyclization [8]. In order to help further understand this process, the related
compounds cyclo-propane carboxylic acid (2-iodo-phenyl)-methyl-amide (alternative name:
N-(2-iodophenyl)-N-methylcyclopropanecarboxamide), C11H12INO (1), and cyclo-heptane
carboxylic acid (2-iodo-phenyl)-methyl-amide (alternative name: N-(2-iodophenyl)-N-
methylcycloheptanecarboxamide), C15H20INO (2), were prepared, and their crystal struc-
tures were determined.

2. Materials and Methods
2.1. Synthesis of 1

Cyclopropane carbonyl chloride (1.04 g, 10.4 mmol) was added dropwise to a solution
of 2-iodoaniline (2.00 g, 9.13 mmol) and N,N-diisopropylethylamine (Hünig’s base or
DIPEA) (1.53 g, 11.9 mmol) in tetrahydrofuran (THF) (20 mL) at 0 ◦C under nitrogen
(Figure 2). The solution was then allowed to warm to room temperature and stirring was
continued for a further four hours. The reaction mixture was then diluted with diethyl
ether (50 mL) and washed with brine (2 × 30 mL) and then water (30 mL). The ether layer
was then dried with MgSO4 and filtered, and the solvent was removed at reduced pressure.
The product was purified by recrystallization from the mixed solvents of dichloromethane
and hexane, yielding cyclopropane carboxylic acid (2-iodo-phenyl)-amide (3) (Figure 1) as
a white solid (2.49 g, 95%); m.p. 111–113 ◦C; HRMS: found MH+, 287.9885, C10H11INO
requires M+ 287.9885; ν(KBr/cm−1) 3280, 2998, 1667, 1480, 1456, 1393, 1241; 1H NMR δH
(250 MHz, CDCl3) 1.65 (2H, m, CH2), 1.79 (2H, m, CH2), 2.79 (1H, m, CH), 6.82 (1H, dd
apparent t, J 7.3, 7.9, ArH-4), 7.33 (1H, dd apparent t, J 7.6, 7.9, ArH-5), (7.48 (1H, br s, NH),
7.76 (1H, d, J 7.3, ArH-3), 8.25 (1H, d, J 7.6, ArH-6); 13C NMR δC (62.5 MHz, CDCl3) 26.0
(CH2), 30.5 (CH2), 47.2 (CH), 99.8 (quaternary ArC), 121.8 (Ar-CH), 125.7 (Ar-CH), 129.3
(Ar-CH), 138.3 (quaternary ArC), 138.7 (Ar-CH) 174.5 (C=O).
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Figure 2. Synthesis schemes for 1 and 2 via intermediates 3 and 4 (see the text for abbreviations). 
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Figure 2. Synthesis schemes for 1 and 2 via intermediates 3 and 4 (see the text for abbreviations).

A solution of 3 (1.00 g, 3.48 mmol) in THF (10 mL) was added dropwise to a suspension
of sodium hydride (502 mg, 4.53 mmol) in dry THF (20 mL) at 0 ◦C. Once hydrogen
evolution had ceased, iodomethane (497 mg, 3.48 mmol) was added to the solution and was
allowed to stir overnight. The reaction was quenched with ammonium chloride solution
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(2 mL) and diluted with diethyl ether (50 mL). The ethereal solution was washed with brine
(2 × 30 mL) and then water (30 mL). The ethereal solution was then dried with MgSO4,
filtered, and solvent was removed at reduced pressure. The crude product was purified by
column chromatography, eluting with hexane/ethyl acetate (4:1), yielding 1 as a colorless
solid (942 mg, 90%); m.p. 97–99 ◦C; HRMS: found MH+, 302.0032 C11H12INO requires MH+

302.0036; ν(KBr/cm−1) 2970, 1667, 1467, 1425, 1388, 1281; δH (250 MHz, CDCl3) 1.57 (2H,
m, CH2), 1.85 (2H, m, CH2), 1.03 (1H, m, CH), 3.06 (3H, s, NCH3), 7.01 (1H, dd (apparent t),
J 7.9, 7.4, ArH-5), 7.22 (1H, d, J 7.7, ArH-3), 7.42 (1H, dd apparent t, J 7.7, 7.4, ArH-4), 7.90
(1H, d, J 7.9, ArH-6); δC (62.5 MHz, CDCl3) 8.2 (CH2), 8.9 (CH2), 12.6 (CH), 36.2 (NCH3),
100.0 (quaternary ArC), 129.4 (Ar-CH), 129.7 (Ar-CH), 129.8 (Ar-CH), 140.1 (Ar-CH), 146.4
(quaternary ArC), 173.4 (C=O). Colorless crystals of 1 were grown by recrystallization from
ethyl acetate solution.

2.2. Synthesis of 2

The 2-iodoaniline (3.00 g, 13.7 mmol) was added to a solution of cycloheptane car-
boxylic acid (2.4 g, 17 mmol) in dichloromethane (DCM) (20 mL). A solution of di-cyclo-
hexylcarbodiimide (DCC) (3.17 g, 15.4 mmol) in DCM (10 mL) was then added dropwise at
0 ◦C and 4-(dimethylamino)pyridine (DMAP) (0.17 g, 0.14 mmol) was added as a catalyst.
The resulting solution was stirred for 30 min at room temperature then cooled in ice, and
the solid was filtered off and washed with DCM. The filtrate was collected and washed
with 2 N HCl solution (3 × 30 mL), and then with saturated NaHCO3 solution (3 × 30 mL)
and water (30 mL). The organic layer was collected and dried over MgSO4, filtered, and the
solvent was removed at reduced pressure. The crude product was then purified by column
chromatography, eluting with hexane/ethyl acetate (3:1), yielding cycloheptane-carboxylic
acid (2-iodo-phenyl)-amide (4) as a white solid (2.97 g, 63%); m.p. 136–138 ◦C; HRMS:
found MH+, 344.0506 C14H19INO requires M+ 344.0506; ν(neat/cm−1) 2965, 2905, 1672,
1481, 1411, 1351; 1H NMR δH (250 MHz, CDCl3) 1.52–1.65 (6H, m, cycloheptane CH2), 1.71–
1.88 (4H, m, cycloheptane CH2), 1.99–2.14 (2H, m, cycloheptane, CH2), 2.39 (1H, m, CH),
6.84 (1H, dd (apparent t), J 6.9, 7.6, ArH-5) 7.33 (1H, dd apparent t, J 7.6, 7.6, Ar-H-4), 7.43
(1H, br s, NH), 7.75 (1H, d, J 6.9, ArH-3), 8.24 (1H, d, J 7.6, ArH-6); 13C NMR δC (62.5 MHz,
CDCl3) 26.5 (2 × CH2), 28.3 (2 × CH2), 31.7 (2 × CH2), 48.6 (CH), 99.8 (quaternary ArC),
121.9 (Ar-CH), 125.7 (Ar-CH), 129.3 (Ar-CH), 138.2 (quaternary ArC), 138.7 (Ar-CH), 175.5
(C=O).

A solution of 4 (500 mg, 1.45 mmol) in dry THF (5 mL) was added dropwise to a
suspension of sodium hydride (45 mg, 1.89 mmol) in dry THF (10 mL) at 0 ◦C. Once
hydrogen evolution had ceased, iodomethane (227 mg, 1.60 mmol) was added and the
solution was allowed to stir overnight. The reaction was quenched with ammonium
chloride solution (2 mL) and taken up in diethyl ether (50 mL). The ethereal solution was
washed with brine (2 × 30 mL) and water (30 mL). The ethereal solution was then dried
over MgSO4, filtered, and then reduced to yield the crude product, which was purified
by column chromatography, eluting with hexane/ethyl acetate (3:1), yielding 2 as a white
solid (454 mg, 88%); m.p. 119–121 ◦C; HRMS: found MH+, 358.0670, C15H21INO requires
M+ 358.0662; ν(KBr/cm−1) 2967, 2884, 1671, 1494, 1408, 1393, 1251; 1H NMR δH (250 MHz,
CDCl3) 0.99–1.08 (1H, m, CH2), 1.21–1.46 (4H, m, CH2), 1.51–1.69 (4H, m, CH2), 1.71–1.80
(2H, m, CH2), 1.81–1.94 (1H, m, CH2), 1.99–2.08 (1H, m, CH), 3.14 (3H, s, NCH3), 7.07 (1H,
dd apparent t, J 7.6, 7.7, ArH-5), 7.24 (1H, d, J 7.3, ArH-3), 7.42 (1H, dd apparent t, J 7.3, 7.6,
ArH-4), 7.94 (1H, d, J 7.7, ArH-6); 13C NMR δC (62.5 MHz, CDCl3) 26.6 (CH2), 26.7 (CH2),
28.0 (CH2), 28.3 (CH2), 31.1, (CH2) 31.7 (CH2), 35.9 (CH), 43.2 (NCH3), 96.1 (quaternary
ArC), 128.9 (Ar-CH), 129.6 (Ar-CH), 129.8 (Ar-CH), 140.2 (Ar-CH), 146.4 (quaternary ArC),
177.5 (C=O). Yellow blocks of 2 were grown from ethyl acetate solution.

2.3. X-ray Data Collection and Refinement

The intensity data for 1 were collected on a Bruker SMART1000 CCD diffractometer
at 293 K, and the corresponding data for 2 were collected on an Enraf-Nonius KappaCCD
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diffractometer at 120 K. Empirical (SADABS multi-scan) absorption corrections were ap-
plied at the data reduction stage and the structures were routinely solved by direct methods
with SHELXS-97, while the atomic models were completed and optimized by refinement
against |F|2 with SHELXL-2018. One of the cyclo-heptyl rings in 2 is disordered over two
orientations for atoms C26, C28, and C29 and their attached H atoms in a 0.60 (3):0.40
(3) ratio. The H atoms were mostly located in difference maps and relocated to idealized
locations (C—H = 0.93–0.97 Å), and they were further refined as riding atoms with the
constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) applied. The methyl groups were
allowed to rotate, but not to tip, to best fit the electron density. Full details are provided in
the deposited cifs.

Crystal data for 1: colorless blade, 0.40 × 0.15 × 0.05 mm, C11H12INO, Mr = 301.12,
monoclinic, P21 (No. 4), a = 9.1609 (5) Å, b = 6.7614 (4) Å, c = 9.8332 (5) Å, β = 109.473 (1)◦,
V = 574.23 (5) Å3, Z = 2, T = 293 K, Mo Kα radiation, λ = 0.71073 Å, ρcalc = 1.742 g cm−3,
µ = 2.757 mm−1, 6836 reflections measured (−13 ≤ h ≤ 13, −8 ≤ k ≤ 10, −14 ≤ l ≤
14; 4.4◦ ≤ 2θ ≤ 65.0◦), RInt = 0.015, 3296 merged reflections, Flack absolute structure
parameter = 0.56 (2), R(F) (2726 reflections with I > 2σ(I)) = 0.026, wR(F2) (all data) = 0.062,
min./max. ∆ρ = −0.32, +0.97 e Å−3. CSD deposition number: 2254542.

Crystal data for 2: yellow cuboid, 0.20 × 0.20 × 0.20 mm, C15H14INO, Mr = 357.22,
orthorhombic, P212121 (No. 19), a = 8.8958 (2) Å, b = 13.8911 (5) Å, c = 24.3439 (7) Å,
V = 3038.67 (16) Å3, Z = 8, T = 120 K, Mo Kα radiation, λ = 0.71073 Å, ρcalc = 1.562 g cm−3,
µ = 2.098 mm−1, Tmin = 0.679, Tmax = 0.679, 21,877 reflections measured (−10 ≤ h ≤ 11,
−18 ≤ k ≤ 15, −31 ≤ l ≤ 31; 6.4◦ ≤ 2θ ≤ 55.0◦), RInt = 0.041, 6845 merged reflections, Flack
absolute structure parameter = 0.09 (3), R(F) (6163 reflections with I > 2σ(I)) = 0.040, wR(F2)
(all data) = 0.103, min./max. ∆ρ = −0.81, +2.55 e Å−3. CSD deposition number: 2254543.

3. Results and Discussion
3.1. Structure of C11H12INO (1)

Compound 1 crystallizes in the monoclinic space group P21 with one molecule in the
asymmetric unit (Figure 3). The dihedral angle between the mean planes of the C1–C6
benzene ring and the C7/C8/N1/O1 methyl-amide grouping is 86.09 (14)◦. The bond-
angle sum at N1 of 360.0◦ implies the expected sp2 hybridization for this atom, and its
un-hybridized 2p orbital is therefore well-aligned to interact with the π system of the
adjacent C=O group, as reflected in the typical amide C8—N1 bond length of 1.357 (4)
Å. However, this 2p orbital lies almost perpendicular to the delocalized π system of the
benzene ring, and therefore, the C6—N1 bond length of 1.435 (4) Å is essentially that of
a single bond. The conformation of the methyl-amide group is syn (C7—N1—C8—O1
torsion angle = 2.5 (5)◦), as is the conformation of the C6—N1—C8—C9 grouping (2.6
(5)◦). The dihedral angle between the C7/C8/N1/O1 grouping and the C9/C10/C11
cyclo-propyl ring is 86.3 (3)◦, and the dihedral angle between the benzene and cyclo-propyl
rings is 58.7 (3)◦. The cyclo-propyl ring is, of course, strictly planar, and the terminal
C10—C11 bond length of 1.471 (6) Å is notably shorter than the other two bonds (1.500
(5) and 1.502 (5) Å), which is normal when an unsaturated substituent is attached to the
methine group [9]. The C10—C9—C11 bond angle of 58.7 (3)◦ is notably smaller than
the C9—C10—C11 and C9—C11—C10 angles (60.7 (3) and 60.6 (3)◦, respectively). The
overall conformation of the molecule of 1 could be described as V-shaped, in which the
C9—H9 bond (i.e., the methine group of the cyclo-propyl ring) faces the C1—I1 bond in
the aromatic ring (H9···C1 = 2.94 Å, C9—H9···C1 = 113◦), in what appears to be a very
favorable orientation for a 1,5-translocation reaction to occur, assuming that the solid-state
conformation is maintained in solution. Key geometrical data for 1 are summarized in
Table 1.
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Figure 3. The molecular structure of 1, showing 50% displacement ellipsoids for the non-hydrogen
atoms. Note that the C9—H9 bond faces atom C1 in a favorable orientation for a translocation
reaction to occur.

Table 1. Selected geometrical data for molecules 1, 2A, and 2B (Å, ◦).

1 2A 2B

C1—I1 2.112 (4) 2.101 (7) 2.096 (7)
C6—N1 1.435 (4) 1.428 (9) 1.431 (10)
C8—N1 1.357 (4) 1.359 (10) 1.370 (9)
C8—O1 1.226 (4) 1.213 (9) 1.236 (8)
C8—C9 1.479 (5) 1.527 (10) 1.533 (10)

O1—C8—N1 121.1 (3) 121.8 (7) 120.6 (7)
C6—N1—C8 124.0 (3) 124.3 (6) 123.5 (6)
C6—N1—C7 117.3 (3) 115.4 (6) 117.0 (6)
C7—N1—C8 118.7 (3) 120.3 (6) 119.5 (6)

C1—C6—N1—C8 (ϕ) −87.2 (4) −89.5 (7) −90.3 (7)
C7—N1—C8—O1 (ξ) 2.5 (5) 0.8 (8) 2.9 (7)
C6—N1—C8—C9 (ψ) 2.6 (5) −0.2 (7) 0.4 (7)

I· · ·O 3.012 (2) 3.024 (4) 3.057 (4)
C—I· · ·O 171.78 (9) 171.71 (17) 175.98 (16)
I· · ·O=C 135.3 (2) 114.3 (3) 113.1 (3)

C—I· · ·O=C −7.8 (4) −118.4 (7) −165.5 (7)
I· · ·O=C—N −87.6 (4) −82.3 (7) −85.2 (7)

For molecule 2B, see Figure 5 for the equivalent atom designations. See the text for further discussion of the torsion
angles ϕ, ξ, and ψ. The acceptor O and C atoms in 1 are generated by the symmetry operation 1–x, y– 1

2 , −z.

In the crystal of 1, a very short C1—I1· · ·O1i (i = 1–x, y–1
2 , −z) contact or ‘halogen

bond’ [10] with an I···O separation of 3.012 (2) Å occurs, which is some 0.49 Å shorter than
the expected Bondi [11] van der Waals’ separation of about 3.50 Å for these two atoms. One
way to interpret this directional contact is in terms of an electrostatic attraction between the
Lewis base (the lone pair bearing an O atom of the carbonyl group) and an ‘σ hole’ [12] on the
Lewis acid (the iodine atom), which has close parallels with the way that hydrogen bonds can
be envisaged [13]. The C—I· · ·O grouping is almost linear (bond angle = 171.78 (9)◦), which
is quite typical for this type of interaction, and the I· · ·O=C bond angle is 135.3 (2)◦.
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This I···O halogen bond leads to C(6) chains [14] of molecules propagating in the [010]
direction in the crystal of 1 (Figure 4), with adjacent molecules related by the operation
of the 21 screw axis. There are no π–π stacking interactions in 1, with the shortest separa-
tion between the benzene-ring-centroids of nearby molecules in the crystal being greater
than 5.6 Å. Thus far, as the H atoms of the cyclo-propyl rings are concerned, the shortest
intermolecular H···H contacts are H9···H5 (2.42 Å), H10a···H11a (2.56 Å), H10b···H10a
(2.60 Å), H11a···H10a (2.56 Å), and H11b···H10a (2.37 Å). Only the last of these is slightly
shorter than the expected van der Waals’ radius sum of 2.40 Å for two H atoms; thus, we
may conclude that van der Waals (dispersion) forces are most important in determining the
packing. This is further quantified by the Hirshfeld surface analysis described below.
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3.2. Structure of C15H14INO (2)

The structure of 2 (Figure 5), which crystallizes in the orthorhombic space group
P212121, reveals the presence of two molecules in the asymmetric unit, viz., 2A (containing
C1) and 2B (containing C16). The cyclo-heptyl ring of molecule 2B is disordered over two
orientations in a 0.60 (4):0.40 (4) ratio. In 2A, the dihedral angle between the C1–C6 benzene
ring and the C7/N1/C8/O2 methyl-amide group is 89.2 (3)◦, and the equivalent angle
between the C16–C21 and C22/N2/C23/O2 groupings in 2B is 89.0 (3)◦. As in 1, both
methyl-amide groupings adopt syn conformations (C7—N1—C8—O1 = 0.8 (11)◦ for the 2A
molecule and C22—N2—C23—O2 = 2.9 (10)◦ for the 2B molecule). The dihedral angles
between the methyl-amide groupings and cyclo-heptyl rings (all atoms, major conformation
for the disordered ring) are 79.8 (3)◦ for 2A and 81.2 (5)◦ for 2B, and the corresponding
angles between the benzene and cyclo-heptyl rings are 85.4 (3) and 64.2 (4)◦, respectively.
As in 1, the H atoms of the methine groups of the cyclo-heptyl rings in both molecules of 2
appear to be well-aligned to participate in a translocation reaction with H9···C1 = 2.79 Å
and C9—H9···C1 = 130◦ for 2A, and H24···C16 = 2.80 Å and C24—H24···C16 = 129◦ for
2B. The conformation of the cyclo-heptyl ring in molecule 2A is well-described as a chair,
with C10/C11/C14/C15 approximately coplanar (r.m.s. deviation = 0.045 Å), and C9, C12,
and C13 displaced by −0.686 (12), 1.188 (15), and 0.954 (18) Å, respectively: the C11—C12—
C13—C14 torsion angle is 27 (1)◦. The interpretation of the geometry of the 2B ring is
complicated by disorder, but the major conformation approximates to at least a chair with



Chemistry 2023, 5 1239

C24/C25/C28/C29 roughly coplanar (r.m.s. deviation = 0.124 Å) and C26, C27, and C30
deviating by 0.74 (3), 1.08 (3), and −0.609 (17) Å, respectively.
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Figure 5. The molecular structure of 2 showing 50% displacement ellipsoids for the non-hydrogen
atoms and the short I···O contacts indicated by double-dashed lines. Only one orientation of the
disordered cyclo-heptyl ring of molecule 2B is shown.

In the crystal of 2, the asymmetric molecules associate into dimers with approximate
local C2 symmetry, linked by pairs of C—I· · ·O interactions with a slight asymmetry
between the I· · ·O separations (3.024 (4) and 3.057 (4) Å) and C—I· · ·O angles (171.71 (17)
and 175.98 (16)◦), which could possibly be ascribed to packing effects (see Table 1 for the
full geometrical details). Otherwise, no directional intermolecular interactions beyond
normal van der Waals contacts could be identified: the shortest contact between hydrogen
atoms is H15···H28b at 2.38 Å.

3.3. Hirshfeld Surface Analyses

In order to further quantify the intermolecular interactions in these crystals, their
Hirshfeld surfaces were generated using CrystalExplorer [15] following the methodology
described by Tan et al. [16]. The Hirshfeld surface of 1 (Figure 6) shows intense red spots in
the vicinity of atoms O1 and I1, which clearly correlate the halogen bond described above.
Otherwise, the surface is blue, indicating contacts at the expected van der Waals’ distance
or greater.

The percentage contributions of the different types of interactions identified in two-
dimensional fingerprint plots [17] are listed in Table 2.

Table 2. Contributions of the different intermolecular interactions to the Hirshfeld surfaces (percentages).

Contact Type 1 2A 2B *

H···H 58.6 67.5 67.2

H···O/O···H 15.3 6.5 5.5

H···I/I···H 14.7 12.0 12.3

H···C/C···H 6.8 10.3 11.5

O···I/I···O 4.1 2.6 2.6

Others 0.5 1.1 0.9
* Major conformation.
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Figure 6. The Hirshfeld surface of 1 plotted as dnorm between −0.29 and 1.22 (arbitrary units).

These data indicate that the H···H contacts are the most important in both structures,
with a significantly higher percentage for 2 than 1, although this is not consistent with
the atom percentages of hydrogen in the structures (44% H in 2 versus 46% H in 1). The
O···H/H···O contacts in 1 contribute almost three times as much to the surface as in 2,
whereas the H···C/C···H contacts in 2 are almost double those in 1. Despite their presumed
importance in establishing the packing, the I···O interactions only contribute a very modest
percentage to the surfaces. The fingerprint plot for the I···O contacts for 1 (Figure 7) shows
distinctive ‘crescent’ shapes with the tips at di + de ≈ 3.0 Å, obviously corresponding to the
I···O separation established in the crystal structure.
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3.4. Comparison with Related Structures

The syn orientation of the methyl-amide group is common to all three molecules
(1, 2A, and 2B) and is by far the most common geometry for this grouping: a survey of
the Cambridge Structural Database [18] yielded the scatterplot shown in Figure 8, which
compares the C1—C6—N1—C8 (ϕ) and C7—N1—C8—O1 (ξ) torsion angles (using the
atom numbering in this paper) for some 120 different structures. The methyl-amide torsion
angles are heavily clustered in the range −10◦ < ξ < 10◦, with one or two outliers with
|ξ| > 160◦ (i.e., corresponding to an anti-conformation for the C—N—C—O grouping),
which might be attributable to severe steric strain. The φ angle (equivalent to the torsion
angle between the benzene ring and the methyl-amide group) shows clustering around
ϕ = ±90◦, i.e., a near-perpendicular arrangement in all cases.
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4. Conclusions

We have prepared and structurally characterized the related compounds C11H12INO
(1) and C15H14INO (2) as possible precursors for radical cyclization translocation reactions:
the donor H atom and the pre-radical C—I bond appeared to be well-aligned in the solid
state for this to occur. The crystals of both compounds featured short C—I···O halogen
bonds, which generated chains in 1 and dimers in 2. A survey of the Cambridge Structural
Database showed that almost all methyl-amide groups adopted a syn confirmation, and
when this grouping was bonded to a benzene ring, the moieties were orientated approxi-
mately normal to each other. The Hirshfeld surfaces indicated that the I···O contacts made
a modest percentage contribution.
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