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Abstract: Objectives: With the development of new technologies capable of detecting low concen-
trations of Alzheimer’s disease (AD) relevant biomarkers, the idea of a blood-based diagnosis of
AD is nearing reality. This study aims to consider the evidence of total and phosphorylated tau as
blood-based biomarkers for mild cognitive impairment (MCI) and AD when compared to healthy con-
trols. Methods: Studies published between 1 January 2012 and 1 May 2021 (Embase and MEDLINE
databases) measuring plasma/serum levels of tau in AD, MCI, and control cohorts were screened
for eligibility, including quality and bias assessment via a modified QUADAS. The meta-analyses
comprised 48 studies assessing total tau (t-tau), tau phosphorylated at threonine 181 (p-tau181), and
tau phosphorylated at threonine 217 (p-tau217), comparing the ratio of biomarker concentrations in
MCI, AD, and cognitively unimpaired (CU) controls. Results: Plasma/serum p-tau181 (mean effect
size, 95% CI, 2.02 (1.76–2.27)) and t-tau (mean effect size, 95% CI, 1.77 (1.49–2.04)) were elevated
in AD study participants compared to controls. Plasma/serum p-tau181 (mean effect size, 95% CI,
1.34 (1.20–1.49)) and t-tau (mean effect size, 95% CI, 1.47 (1.26–1.67)) were also elevated with moderate
effect size in MCI study participants compared to controls. p-tau217 was also assessed, albeit in a
small number of eligible studies, for AD vs. CU (mean effect size, 95% CI, 1.89 (1.86–1.92)) and for
MCI vs. CU groups (mean effect size, 95% CI, 4.16 (3.61–4.71)). Conclusions: This paper highlights
the growing evidence that blood-based tau biomarkers have early diagnostic utility for Alzheimer’s
disease. Registration: PROSPERO No. CRD42020209482.
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1. Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative disease associated with
progressive cognitive decline. AD is the most common type of dementia and a major global
burden. Approximately 50 million people were reported to be suffering from dementia in
2018, and this number is expected to triple by 2050 [1]. Due to an ever-increasing elderly
population, dementia now kills more people in the U.S. than prostate cancer and breast
cancer combined and is the leading cause of death in both England and Wales [1].

Quantification of the amounts of total tau (t-tau) and phosphorylated tau (p-tau) have
been found to correlate with loss of cognition and with neurodegeneration in autopsied AD
patients [2,3] and in antemortem CSF [4]. For clarity, t-tau is quantified using antibodies
to an epitope in the mid region of tau that recognizes all six isoforms of tau in the human
brain. Several studies have demonstrated that some mid-domain and C-terminal p-tau
residues are elevated in AD [5]. However, the most investigated to date has been tau
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phosphorylated at threonine 181 (p-tau181) [6]. A previous systematic review showed that
t-tau and p-tau were elevated by 2.54 and 1.88-fold, respectively, when comparing AD
CSF to control CSF [7]. In addition to positron emission tomography (PET) imaging, t-tau
and p-tau CSF biomarkers are currently being utilized to support the clinical diagnosis of
patients on the AD continuum and to identify individuals in the preclinical stages of the
disease [8–10].

Given that the presymptomatic and prodromal stages of the AD continuum are exten-
sive, it is important to diagnose AD as early as possible in order to identify the extent of
disease progression and increase the chance of treating patients with stratified medicines
before the advanced progression of the disease renders preventative treatment ineffec-
tive [10]. Thus, biomarker-based diagnosis at the earliest opportunity is an important goal
for AD. The first detectable changes in CSF biomarkers of t-tau and p-tau arise 17 and
21 years before the symptomatic onset of AD, respectively, truly highlighting their utility
as early AD diagnostics [11].

However, CSF sampling involves potentially dangerous and certainly unpleasant lum-
bar punctures, while PET imaging is limited to only the best-equipped medical facilities.
Considering the global burden of AD, CSF sampling and PET imaging are not ideal appli-
cations to deploy in population-wide screening for early AD diagnostics. For example, it
was estimated in 2015 that around 480 million people worldwide were at either Braak stage
2 (early stages of AD/tau pathology) or at more advanced stages [12]. Recent advances
in ultrasensitive technologies and novel approaches now allow tau-based biomarkers to
be assessed in the peripheral matrix of blood. These approaches include single molecule
array (SIMOA) immunomagnetic reduction (IMR) and Meso Scale Discovery (MSD) plat-
forms, as well as next-generation mass spectrometry [13–16]. There has been a plethora of
studies on blood-based tau biomarkers over the last decade. This timely systematic review
aims to assess the ratio of biomarker concentrations for t-tau and p-tau in MCI and AD in
comparison to cognitively unimpaired (CU) controls.

2. Methods
2.1. Search Strategy

Embase and MEDLINE were searched for primary studies published from 1 January
2012 to 1 May 2021 assessing tau plasma/serum biomarkers in AD patients with a control
cohort. This primary search included (Alzheimer) AND (plasma OR serum OR blood)
AND (biomarker OR biological marker) AND (tau OR t-tau OR p-tau OR ttau OR ptau)
keywords in the title or abstract. Studies were limited to human subjects, publications
in the English language, and ‘article’ as publication type to limit conference proceedings,
systematic reviews, or reviews. To reduce the number of studies for screening, titles
containing words indicating a review or systematic review were excluded (Table 1). Studies
conducted in Down syndrome populations were excluded. This systematic review was
registered on the International Prospective Register of Systematic Reviews (PROSPERO)
on 13 October 2020 (PROSPERO Registration No. CRD42020209482). Additionally, further
studies were identified through cross-referencing by identifying citations in eligible studies.
Study identification and reduction were conducted and independently verified by the
lead authors.

Studies were excluded if they did not present plasma or serum tau (t-tau or p-tau)
concentrations, in mean ± standard deviation (SD) or standard error mean (SEM), or if
there was no data for either AD or MCI compared to a control group. Furthermore, studies
were required to specify the diagnostic criteria used to group study participants into CU,
AD, and/or MCI and follow published criteria.
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Table 1. Keywords used to search for relevant results. *: wildcard operator; ab: terms found in
abstract or title; ti: terms found in title; af: terms found in all fields; yr: year of publication.

Ovid: Embase 1996 to 2021 Week 17, Ovid MEDLINE(R) and Epub Ahead of Print, In-Process
and Other Non-Indexed Citations, Daily and Versions(R) 1946 to 1 May 2021

String Number Term

1 (Alzheimer* AND (plasma OR serum OR blood) AND (biomarker* OR
“biological marker”) AND (tau* OR t-tau OR -p-tau* OR ttau OR ptau)).ab.

2 1 NOT (“systematic review” OR review OR summary).ti.

3 Limit 2 to English language

4 Limit 3 to humans

5 Limit 4 to article (Embase only)

6 Limit 5 to yr = “2012 -Current”

7 Remove duplicates from 6

2.2. Data Extraction

Data were extracted for the CU cohort from those closest in age to the MCI and AD
groups if more than one CU cohort was reported. Additionally, if study participants were
grouped by Aβ status, CU participants were those who were Aβ-, and MCI participants
were Aβ + (in accordance with NIA-AA diagnostic guidelines) [17]. If the same cohort was
studied in more than one study and the inclusion criteria were met, the study with the
lower number of participants was excluded as a duplicate.

If all criteria were met but there was no plasma/serum tau concentration reported in
mean ± SD or mean ± SEM, authors were contacted and asked to supply this information.
Data for t-tau and p-tau plasma or serum concentrations were extracted from cross-sectional
studies or at baseline in longitudinal studies. A quality assessment was carried out using a
checklist that has been used in a previous systematic review for AD diagnostic biomark-
ers [7] (Supplementary Materials Table S3), with elements from the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS) tool, Standards for Reporting Diagnostic Accuracy
(STARD), and A Measurement Tool to Assess Systematic Reviews (AMSTAR) [18–20].

2.3. Data Analysis

Plasma and serum analyses for each biomarker were meta-analyzed together. Meta-
analyses were carried out based on the ratio of the means (RoM) of the disease cohort
divided by the control cohort (i.e., AD/CU or MCI/CU) in order to determine the effect
size. This method is useful for comparing biomarker concentrations obtained from different
assays, which can vary substantially between laboratories and assays [21]. If the resulting
ratio is above 1, the biomarker concentrations are greater in the disease cohort than in the
control cohort, and if the ratio is below 1, the levels in the control cohort are higher. This
method has been used in a previous AD biomarker systematic review [7] and was carried
out as described by [22]. The 95% confidence interval (CI) was calculated for each ratio
following the delta method. The overall effect and its 95% CI followed random-effects meta-
analysis methods, as described previously [22,23] (Supplementary Figure S1B). Finally, the
weight of each study was determined by the inverse of the variance to help identify studies
with stronger results, i.e., larger sample size and/or smaller variance (Supplementary
Figure S1B).

Meta-analysis forest plots were created using Excel 16.0. For studies with more than
one study arm (e.g., derivation and validation cohorts), each arm was treated as a separate
study but labeled accordingly. Tests for heterogeneity between studies involved the chi-
squared statistic, Q [22], which was used to calculate I2 (where I2 = 100% × (Q − df)/Q;
where df is degrees of freedom), a measure of inconsistency which represents the percentage
of the chi-squared statistic not explained by the variance within the studies [24]. Due to
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high heterogeneity and in an attempt to limit this, sub-group analysis was also performed
as per above for each technology.

3. Results
3.1. Study Inclusion

The database search returned 1933 results, and a further 10 studies were identified
through cross-referencing. After excluding studies that did not match the study type (i.e.,
systematic reviews, conference proceedings, etc.), did not involve human subjects, were not
published in English, or were published prior to 2012, 488 studies remained. The abstracts
for these 488 studies were screened against the criteria described in Methods. From this,
312 studies were excluded, and 176 remained for full-text assessment for eligibility. A
further 128 studies were excluded for various reasons, as indicated in the flow diagram
(Figure 1). This left 48 studies eligible for inclusion in data synthesis for this meta-analysis.
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Of the 48 included studies, there were data on both plasma/serum t-tau and p-tau181
in 11 studies, a total of 21 cohorts from which p-tau181 concentrations were collected, and
a total of 42 cohorts collecting t-tau concentrations. A total of 41 studies reported data for
t-tau in AD patients vs. CU, 25 studies reported data on t-tau in MCI vs. CU, 20 studies
included data on p-tau181 in AD vs. CU, 12 studies included data on p-tau181 in MCI vs.
CU, 3 studies included p-tau217 data in AD vs. CU, 2 included p-tau217 in MCI vs. CU,
and 1 included p-tau231 in AD vs. CU as well as MCI vs. CU.

3.2. Systematic Review and Quality Assessment

Data from a total of 15,713 study participants: CU = 10,340, MCI = 2363, AD = 2880
were collected from the 48 included studies. The studies included in the data synthesis
were mainly longitudinal, where blood samples were taken at baseline, and cross-sectional
studies, where patient groups were compared at an individual time point.
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Data were reported in mean (SD) pg/mL for all the cohorts except for 6 cohorts
from 3 different studies, where data were reported in median (IQR) pg/mL or arbitrary
units (AU). For t-tau, the concentrations reported in all studies ranged from a mean (SD)
of 0.32 (0.32) pg/mL to 530 (193.6) pg/mL in the AD group, from 0.31 (0.16) pg/mL to
729.8 (225.6) pg/mL in the MCI group, and from 1.6 (0.9) pg/mL to 819.5 (294.4) pg/mL
in the CU group. For p-tau181, the concentrations reported ranged from a mean of
0.17 (0.17) pg/mL to 150 (57.7) pg/mL in the AD group, from 2.9 (1) to 22.8 (9.9) in the MCI
group, and from 0.04 (0.08) pg/mL to 107 (57.8) pg/mL in the CU group. For p-tau217, the
concentrations reported ranged from a mean of 0.32 (0.17) pg/mL to 7.75 (5.34) pg/mL in
the AD group, from 0.31 (0.16) to 4.56 (3.11) in the MCI group, and from 0.07 (0.03) pg/mL
to 1.79 (1.95) pg/mL in the CU group. In the only eligible study for ptau231, reported
concentrations were 29.22 (8.20) pg/mL in the AD group, 19.45 (7.10) pg/mL in the MCI
group, and 14.94 (4.10) pg/mL in the CU group. The biomarker data extracted from the
studies, as well as the assays used in each study, have been summarised in the Supplemen-
tary Materials (Table S1). The studies used a variety of assay formats, but the type of assay
could be broadly divided into 5 categories: Single Molecule Array (SIMOA: 14 studies t-tau,
14 studies p-tau181, 2 studies p-tau217, 1 study p-tau231), immunomagnetic reduction
(IMR: 15 studies t-tau, 4 studies p-tau181), electrochemiluminescence (ECL: inclusive of
Elecsys-ECL and MSD-ECL: 3 studies t-tau, 2 studies p-tau217), enzyme-linked immunosor-
bent assay (ELISA: 9 studies t-tau, 2 studies p-tau181), and liquid chromatography–mass
spectrometry (LC–MS: 1 study t-tau, 1 study p-tau181, 1 study p-tau217). There was a total
of 30 distinct assays from all cohorts. Data for all cohorts were obtained using commercial
assays except in 9 studies, 6 of which employed ELISA and 3 which employed “homebrew”
SIMOA. Despite using commercial assays, several studies implemented variations to the
quantification of plasma/serum biomarkers, such as using antibodies outside the commer-
cial kit or calibrating a commercial assay with antibodies from a different commercial assay.
A table summarising details for all included studies is presented in the supplementary
Appendix (Table S2).

The most common diagnostic criteria used in studies were those developed by the
NIA-AA [25]. Others included the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-IV) [26], the International Classification of Diseases (ICD10), Petersen criteria
for MCI [27], and the National Institute of Neurological and Communicative Diseases
and Stroke/Alzheimer’s Disease and Related Disorders Association criteria (NINCDS-
ADRDA) [28]. The quality of all studies was assessed as high with low bias using the
modified QUADAS, and this is presented in the Supplementary Materials (Table S4).

3.3. Meta-Analysis

The included studies were split into groups to carry out the meta-analyses: t-tau in
AD vs. CU (n = 39), p-tau181 in AD vs. CU (n = 20), p-tau217 in AD vs. CU (n = 3), t-tau
in MCI vs. CU (n = 24), p-tau181 in MCI vs. CU (n = 13), p-tau217 in MCI vs. CU (n = 2).
Summary statistics presented as median and interquartile range prevented pooling of the
data, and subsequently, 5 cohorts [29–31] were not included in these meta-analyses.

3.3.1. p-tau181

From the studies eligible for meta-analysis that presented data on plasma/serum
p-tau181 concentrations, a total of 1233 AD and 2017 CU study participants were included
in the meta-analysis for assessing the ratio of p-tau181 in AD and control participants
(Figure 2A). Of these studies, 8 did not include an MCI cohort, making a total of 1169 MCI
and 1459 CU participants involved in determining the ratio of p-tau181 in MCI to CU partic-
ipants (Figure 2B). Except for one study reporting an effect size of 0.72, all cohorts in these
comparisons had an effect size greater than 1, indicating higher p-tau181 concentrations
in AD and MCI than in CU participants. The average ratio (effect size) of AD to CU was
2.02 (95% CI 1.76–2.27), and 1.34 (95% CI 1.20–1.49) for MCI to CU.
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Figure 2. Forest plots for studies presenting plasma/serum p-tau181. (A). Alzheimer’s disease
(AD) versus cognitively unimpaired (CU) participants. (B). Mild cognitive impairment (MCI) versus
cognitively unimpaired (CU) participants. Ratio (effect size) and 95% CI for individual studies are
presented by a circle, color-coded by assay type; the overall ratio is presented by a diamond and
a grey vertical line. Studies are arranged in descending weight order. Data are presented on a log
scale. An effect size of 1 indicates equal biomarker concentrations in AD and CU. Percentage weight,
number of AD participants, and number of CU participants are displayed on the right side of the
forest plot for each study and the combination of all studies. AD: Alzheimer’s disease; CU: cognitively
unimpaired; CI: confidence interval.
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From these 34 studies, data were obtained using 5 different assay formats (IMR,
SIMOA, ELISA, ECL, and LC-MS). In the meta-analysis for AD versus CU, the greatest
weighting contribution to the overall effect was SIMOA (72.1%), followed by IMR (25.56%)
and ELISA (2.34%). In the meta-analysis for MCI versus CU, the greatest weighting contri-
bution was again from SIMOA (67.45%), followed by IMR (24.74%), LC-MS (4.37%), and
ELISA (3.44%). The spread of results across studies was large, with confidence intervals
from several studies not overlapping. Individual study variance was different across stud-
ies, as indicated by their weight (i.e., inverse of variance). The between-study heterogeneity
was considerable for both AD versus CU (I2 = 98.23%) and for MCI versus CU (I2 = 92.17%).

3.3.2. t-tau

A larger number of studies were available for t-tau biomarkers than for p-tau181,
with 42 studies being eligible for inclusion in the meta-analysis. The total number of
study participants in these cohorts was 2359 AD patients, 1373 MCI patients, and 8994 CU
individuals. As one study did not investigate t-tau in AD patients, 8970 CU individuals
were pooled into the meta-analysis assessing plasma/serum t-tau ratio in AD to CU
(Figure 3A), and as 17 studies were not eligible for the meta-analysis assessing the ratio
in MCI to CU participants, 1974 CU study participants were included in this analysis
(Figure 3B).

The average ratio (effect size) was 1.77 (95% CI 1.49–2.04) in AD to CU and 1.47 (95%
CI 1.26–1.67) in MCI to CU. Of the 41 studies assessing t-tau in AD versus CU, 9 had a ratio
of 1 or below, with a minimum effect size of 0.68 and a maximum of 4.52. The spread of
results was wide, with an I2 value of 99.36%. Similarly, the MCI to CU ratio was 1 or below
in 4 of the 24 studies, and the I2 value was 98.6%.

These results were obtained using 5 different assay formats, where studies in the AD
versus CU meta-analysis that used ECL and IMR carried less weight overall (8.54% and
25.84%) than those using SIMOA and ELISA (28.10% and 37.52%). For MCI versus CU, stud-
ies using ELISA carried the most weight (33.58%), followed by electrochemiluminescence
(33.43%), IMR (23.37%), SIMOA (7.74%), and lastly, LC-MS (1.87%).

3.3.3. p-tau217

As p-tau217 is a more recently identified AD biomarker in plasma [29,32], very few
p-tau217 studies were available for inclusion in the meta-analysis. Three studies were
included for assessing the ratio of p-tau217 in AD vs. CU (Figure 4B), and two were
included for assessing the ratio of p-tau217 in MCI vs. CU (Figure 4B). A total of 198 AD
and 296 CU study participants were included in the AD vs. CU analysis, and a total of
73 MCI and 119 CU study participants were included in the MCI vs. CU analysis. All
cohorts in these comparisons had an effect size greater than 1, indicating higher p-tau217
concentrations in AD and MCI groups than in CU participants. The average ratio (effect
size) of AD to CU was 1.89 (95% CI 1.86–1.92), and 4.16 (95% CI 3.61–4.71) for MCI to CU,
with I2 of 99.986% and 84.77%, respectively. For these studies, data were obtained using
2 different assay types (SIMOA and LC-MS).

3.4. Comparison of Ultrasensitive Technologies

Sub-analysis by technology platforms was performed for t-tau and ptau181, suggest-
ing that immunomagnetic reduction (IMR) and single molecule array (SIMOA) approaches
show a greater difference in these biomarkers between CU control individuals and par-
ticipants within the AD continuum. When comparing AD patients to CU individuals,
studies using SIMOA to assess p-tau181 had an overall effect size of 2.09 (95% CI 2.13–2.05),
which was superior to IMR 1.38 (95% CI 1.46–1.30) and ELISA 1.35 (95% CI 1.45–1.25). In
studies assessing t-tau, IMR had an average effect size of 2.29 (95% CI 2.33–2.25), which
was superior to SIMOA 1.24 (95% CI 1.56–0.92), ELISA 1.16 (95% CI 1.53–0.8), and ECL
1.05 (95% CI 1.12–0.97).
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Figure 3. Forest plot for studies presenting plasma/serum t-tau. (A). Alzheimer’s disease (AD) versus
cognitively unimpaired (CU) participants. (B). Mild cognitive impairment (MCI) versus cognitively
unimpaired (CU) participants. Ratio (effect size) and 95% CI for individual studies are presented by a
circle, color-coded by assay type, and the overall ratio is presented by a diamond and a grey vertical
line. Studies are arranged in descending weight order. Data are presented on a log scale. An effect
size of 1 indicates equal biomarker concentrations in AD and CU. Percentage weight, number of AD
participants, and number of CU participants are displayed on the right side of the forest plot for
each study and the combination of all studies. AD: Alzheimer’s disease; CU: cognitively unimpaired;
CI: confidence interval.
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When comparing MCI patients to CU individuals, included studies only used SIMOA
and IMR to assess p-tau181 with an average effect size of 1.46 (95% CI 1.84–1.08) and
1.28 (95% CI 1.79–0.78), respectively. In studies assessing t-tau, IMR had an overall effect
size of 1.95 (95% CI 2.25–1.65), which was superior to SIMOA 1.11 (95% CI 1.19–1.03),
ECL 1.09 (95% CI 1.79–0.39), and ELISA 0.99 (95% CI 1.02–0.95) (Supplementary Materials
Table S3A,B).

This sub-analysis was also performed in an attempt to further combat the high hetero-
geneity seen in these overall meta-analyses; however, this proved unsuccessful, and the
heterogeneity remained high (91–99%) even within the same technology used.

3.5. Overall Effects

The overall effect sizes from the meta-analyses presented here are summarised in
Figure 5. p-tau181 (average effect size: 2.02, 95% CI, 1.76–2.27, no. of studies = 20) and
t-tau (average effect size: 1.77, 95% CI, 1.49–2.04, no. of studies = 39) were elevated when
comparing the AD group to the CU group. p-tau181 (average effect size: 1.34, 95% CI,
1.20–1.49, no. of studies = 13) and t-tau (average effect size: 1.47, 95% CI, 1.26–1.67, no. of
studies = 24) were also both elevated in the MCI group compared to the CU group, albeit
the effect sizes were slightly lower than the AD vs. CU comparison. The limited studies on
p-tau217 also suggest that this biomarker is discriminatory and higher to a similar degree
when comparing AD to CU (average effect size: 1.89, 95% CI 2.05–2.13, no. of studies = 3).
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The highest effect size was noted with p-tau217 levels when comparing MCI to CU (average
effect size: 4.16, 95% CI 3.61–4.71, no. of studies = 2).
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4. Discussion

This systematic review set out to analyze current evidence on plasma/serum tau
biomarkers and their ability to discriminate MCI and AD populations from CU. Through a
systematic search of two databases, 48 appropriate studies were identified, which encom-
passed a total of 51 cohorts and 15,646 participants. Plasma/serum p-tau181, p-tau217, and
t-tau were determined to be elevated in AD and MCI groups compared to the CU group,
with positive effect sizes of AD to CU ratio for p-tau181 (2.02, 95% CI 1.76–2.27), p-tau217
(1.89, 95% CI 1.86–1.92), and t-tau (1.77, 95% CI 1.49–2.04), and positive effect sizes for ratio
in MCI to CU for p-tau181 (1.34, 95% CI, 1.20–1.49), p-tau217 (4.16, 95% CI 3.61–4.71), and
t-tau (1.47, 95% CI 1.26–1.67). These results provide evidence that p-tau181, p-tau217, and
t-tau have potential diagnostic utility as plasma/serum biomarkers for the early stages of
the AD continuum.

A previous systematic review, incorporating studies up to 2014, employed the same
ratio-of-means method to analyze data from CSF samples [7]. The authors reported asso-
ciations between AD and increased t-tau (average effect size: 2.54, 95% CI 2.44–2.64) and
p-tau181 (average effect size: 1.88, 95% CI 1.79–1.97) when compared to controls. Despite
only having limited studies available at the time (6 studies with 271 AD patients and
394 CU controls), the plasma/serum t-tau ratio was also obtained (average effect size: 1.95,
95% CI 1.12–3.38). p-tau181 was not assessed as there was not enough published literature
at the time to carry out a meta-analysis. The results from this up-to-date systematic review
are in line with those previously presented [7], with the addition that the findings are also
evident in the prodromal stages of AD, as an MCI group was taken into consideration in the
present study. Plasma p-tau181 has been shown to gradually increase along the AD contin-
uum, with the lowest levels detected in amyloid β-negative young adults and cognitively
unimpaired older adults, higher levels in amyloid β-positive cognitively unimpaired older
adults and MCI patients, and highest levels in amyloid β-positive MCI and AD patients.
p-tau181 has also been proven to be valuable in distinguishing AD patients from patients
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suffering from other tauopathies, dementias, or co-morbidities [33,34], which is not the
case for t-tau [35].

The findings of this meta-analysis need to be considered alongside the heterogeneity
noted between each study (I2 values of up to 99.36% [24]). Contributory factors for this are
extensive and include but are not limited to different and evolving diagnostic criteria [8–10],
subjective clinical assessment and diagnosis [36], clinical and pathological heterogeneity of
AD itself [37], the inclusion of familial and sporadic cases, sample handling, processing,
and pre-analytical variables [38], as well as different assays and technologies used to derive
the data. The variability in quantification and measurement of potential AD biomarkers for
CSF samples has been noted previously to arise in assays performed between and within
laboratories and between commercial-research-use-only assays and assays developed in-
house [21]. In an attempt to reduce heterogeneity, meta-analyses were carried out based
on the ratio of the means (RoM) of the disease cohort divided by the control cohort (i.e.,
AD/CU or MCI/CU) rather than using traditional and quantifiable cut-off levels. The
former method is useful to compare biomarker concentrations obtained using different
assays, which vary substantially between laboratories and assays.

To further combat heterogeneity, a subsequent meta-analysis was performed for both
t-tau and p-tau181 for each individual technology; however, this proved that heterogeneity
remains high (91–99%) even where the same technology platform has been used. Through
the harmonization of sample-to-analysis procedures, heterogeneity between future studies
could be reduced. To this end, the Alzheimer’s Association has established the Global
Biomarker Standardization Consortium (GBSC) to achieve consensus on best practices
to validate and standardize biomarker tests for use in clinical practice. The GBSC has
further set up several initiatives with the aim of reducing heterogeneity between studies
and validating diagnostic tests on a global scale. These include a reference materials pro-
gram established to develop universal reference material for fluid biomarkers, a reference
methods program to develop ideal protocols, and the standardization of Alzheimer’s blood
biomarkers (SABB) program, which was launched in 2018, with the aim of standardizing
pre-analytical factors in blood sample collection, handling, and processing [39].

Tau protein is fascinatingly complex in its physiology and capacity to cause disease,
transitioning from a natively unfolded form to insoluble aggregates and paired helical
filaments in AD. It is associated with a multitude of post-translational phosphorylation
and truncation events (Figure 6A–C) [40]. With various truncated fragments in mind
and the variation of antibodies used throughout tau biomarker studies, it is unlikely that
most of these antibodies or antibody pairings are detecting ‘total’ full-length tau, but
rather, each assay is detecting a different pool from a milieu of tau fragments. It may,
therefore, be of great benefit if we move away from considering tau as a single biomarker
but rather look deeper into the composition of different tau fragments within biological
fluids. A measurement, therefore, based on the ratio of different tau fragments may also
prove beneficial in reducing false negative/false positive results and overcoming inter-
individual variation, as is the case when the Aβ42/40 ratio is measured in CSF [41,42]. It
has also been shown that an antibody pairing that recognizes an N-terminal fragment was
able to distinguish patients on the AD continuum from healthy control patients, whereas
an antibody pairing detecting the full-length tau protein could not [43]. One common
component that links all of the assays considered here, despite the different technology
platforms and regions of tau protein detected, is a reliance on antibody-based recognition.
It seems justified to speculate, therefore, that this antibody variation is likely to be a
significant component of the heterogeneity revealed by this meta-analysis, and further
studies are needed to explore antibody pairings and epitopes with improved diagnostic
potential. It should be noted that this exploration of tau protein epitopes also applies to
phospho-tau-based assays. It was recently shown that the detection of tau in CSF, using a
combination of an N-terminal antibody paired with a p-tau181 capture antibody, improved
diagnostic accuracy for the detection of prodromal AD when compared to antibodies
directed toward the mid-region domain of tau [33]. Of course, p-tau181 is not the only
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phospho-tau biomarker. Tau can be phosphorylated at multiple sites (Figure 6C), and
while there are surprisingly similar phosphorylation patterns between physiological and
pathological tau, some of these sites are thought to be involved in the progression of
AD [44]. This opens an opportunity to investigate other tau phosphorylation sites as
potential AD diagnostic biomarkers. p-tau217 and p-tau231 have recently emerged as
promising biomarker candidates [28,32,44]. Our meta-analysis on the limited number
of eligible studies on p-tau217 suggests that it performs similarly to p-tau181 in the AD
group vs. the CU group but outperforms p-tau181 in the MCI group vs. the CU group.
A meta-analysis was not performed for p-tau231 as there was only one study eligible for
inclusion. This study showed that p-tau231 could differentiate AD and MCI groups from a
CU group with high accuracy in plasma samples [45].
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Figure 6. Sites for truncation and phosphorylation of human tau (2N4R): Proteolytic cleavage sites
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(B). Putative tau phosphorylation sites (C). Those below each of the 2N4R tau schematics are sites that
have been identified in the AD brain. Information derived from [46]. Reprinted from [47]. Copyright
(2018) IOS Press and authors under terms of CC BY-NC 4.0.

5. Conclusions

Diagnosing Alzheimer’s disease at an early stage, and in particular, from a convenient
blood sample, has been the focus of many studies over the past decade. Such a valuable
test would provide significant benefits for patients and healthcare systems. These benefits
would include: meeting the demands of the increasing numbers of people seeking a diagno-
sis; allowing precious time for patients to make lifestyle changes and manage their affairs;
improving patient stratification into clinical trials; and permitting potential therapeutic
intervention upon early diagnosis. Furthermore, identifying dynamic AD-specific blood
biomarkers can serve as an important screening tool for clinical observation of patient
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response to treatment. The results, summarised in this systematic review, provide evidence
for the utility of plasma/serum t-tau, p-tau181, and p-tau217 as diagnostic biomarkers for
AD. It also suggests that these biomarkers may be able to predict the future development of
AD because sensitive assays allow them to distinguish between CU individuals and MCI
patients on the AD continuum. Such evidence signifies a promising future for AD blood-
based diagnostics, and with the increasing number of studies currently being performed,
as well as the encouraging rate at which the field is advancing, we are hopeful that reliable
prognostic tau biomarkers that are associated with disease status and progression will be
identified and brought into routine clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12081184/s1, Table S1: Plasma biomarker data extracted
from studies included in the data synthesis Table S2: Details of assay and methods employed to
measure tau in each study; Table S3: Meta-analysis based on individual technology; Table S4: Quality
assessment form; Table S5: Modified QUADAS questions; Figure S1: Equations used to carry out
each meta-analysis.
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