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Abstract

The coexistence of attractors is a characteristic of a range of nonlin-
ear systems that results in systems exhibiting different dynamics for
varying initial conditions with invariant system parameters. This char-
acteristic often provides an effective means to jump between different
behaviours by employing control methods. However, control signals are
influenced by delay and constraint, which affect controllers’ performance.
In this paper, we investigate the effects of actuator and memory delay,
start time and actuator constraints on the performance of the time-
delayed feedback (TDF) control scheme enabling the switching between
coexisting attractors of the impact oscillator. Looking at two potential
applications, we focused on two case studies with two desired stable
orbits: Case 1: Non-impacting attractor and Case 2: High amplitude at-
tractor. In both case studies, the effects of the actuator and memory
delay in the control signal are investigated. Then, within a meaningful
range of delay, their effects on the controller performance are predicted
and compared. One notable observation is that by increasing the delay,
settling time follows similar patterns in two case studies, experiencing
a decrease followed by an increase and then failure of the controller
to jump between the targeted coexisting attractors. Furthermore, the
effects of the start time and the actuator constraints (force limit) on
the controllers’ performances in these case studies are also investigated.

Keywords: Time delay, Constraint control, Time-delayed feedback control,
Impact oscillator
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1 Introduction

One of the main characteristics of nonlinear systems is the coexisting attract-
ors (or multistability), which refers to the coexistence of several attractors (or
equilibrium states) for a fixed set of parameters in a system [1, 2]. Multista-
bility makes switching between two coexisting attractors possible to get the
desired response suitable for the chosen application. For example, chaotic and
non-chaotic responses might coexist in a system [3]. For some applications,
chaotic behaviour might be desired as an intermediate dynamical regime [4].
On the contrary, chaotic behaviour might be undesired in some applications,
and multistability might be used to drive the system out of chaos [5]. Exploit-
ing multistability can also be used to drive the system to the desired response
with only small perturbations [5, 6].

Exchanging the impacting and non-impacting coexisting attractors can be
performed depending on the application. It might be desired to avoid impact
to exchange to a non-impacting attractor to avoid imperfections during the
machining process [7, 8]. In Jeffcott rotors, the impact of the rotor and the
snubber ring results in the degradation of the system, and it is desired to be
avoided. To this purpose, the exchange between impacting to non-impacting
attractor jumps the system from the impacting to the non-impacting at-
tractor [9, 10]. Similarly, the impact should be avoided in the railway wheelset
to increase the system’s lifetime. This can be done by the exchange to a
non-impacting attractor in double grazing bifurcation [11]. To the same pur-
pose, impacting and non-impacting multistability can be exploited to avoid
impact and impact-caused damages in elastic beams [12, 13]. The impact of
ships with icebergs due to the roll motion can also be controlled in grazing
point [14–16]. Jumping from impacting as one stability status to a coexisting
non-impacting one with different actuation behaviour [17, 18] is another ex-
ample of such an attractor exchange.

On the contrary, impacting attractors might be desired for some nonlinear
systems. For example, for energy generation, the impacts might increase the
domain of oscillations and consequently the energy output [19]. Impacting
can also be used in vibro-impacting energy harvesters where this nonlinear
phenomenon can be used to increase the amplitudes of higher-order vibration
modes, hence, more energy output [20–22]. Bistability in low-energy interwell
vibrations and high-energy snap-through in some energy harvesters provides
a means by which energy harvesting performance could be improved [23].
Resonance Enhanced Drilling (RED) is another application at which the
impacting attractors are desired[24–26]. In this method, the high frequency,
low amplitude impacts create a controllable propagating fracture zone at the
rock face.

Active control methods should be applied to achieve the exchange between
coexisting attractors, utilising actuators [27, 28]. However, actuators such
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as electrical motors, hydraulic and pneumatic valves do not typically have
instantaneous responses in real-world engineering systems. Hence, their dy-
namics usually involve two key limitations: (i) delay and (ii) input/output
constraints (actuator saturation) [29, 30]. Recent attempts to overcome actu-
ator delay have shown limited success [31, 32]. It has also emerged that the
effect of the simultaneous existence of both limitations (delay and constraint)
cannot be ignored, as they would make the control systems inefficient and
occasionally unstable [33, 34].

The main idea of this work is to examine the effects of delay and ac-
tuator constraints while exchanging between coexisting attractors. In this
regard, two case studies with two desired stable orbits are considered; Case 1:
Non-impacting attractor and Case 2: High amplitude attractor. The impact
oscillator can exhibit many different attractors, which is a suitable platform
for such an analysis. The mass-excited impact oscillator developed in the
Centre for Applied Dynamics Research (CADR) [35, 36] is then selected so
the experimentally validated model [28] can be employed for this analysis.

The paper is organized as follows. Section 2 presents the mathematical
modelling and dynamics of the open loop system. The first case study (Case
1) and relevant control method to achieve the non-impacting attractor in the
presence of the delay and actuator constraints are presented in Section 3. The
second case study (Case 2) and the additional intermediate control strategy
to achieve a higher amplitude attractor are introduced in Section 4. Section 5
concludes this paper.

2 Mathematical modelling and system
dynamics

The mass-excited impact oscillator is composed of a mass hung by two leaf
springs excited by a coil, as shown in Fig. 1. The system is linear to the
point that the oscillation amplitude becomes greater than the initial gap, g.
Hereafter, the impact between the mass and the impacting beam makes the
system nonlinear. The equation of motion governing the system is as follows:

Ẍ = −k1
m

X − k2
m

(X − g)H(X − g)− c

m
Ẋ +

Fcoil

m
, (1)

where X is the displacement, H(.) is the Heaviside’s step function, the dot
represents the time derivative, and Fcoil is the force provided by the coil. Fcoil

is a sum of the harmonic excitation applied to the system Fexc = aI0sin(ωt),
where I0 is the excitation current amplitude, and actuation force Fact = aIact
which is dictated by the control method. Note that in the open loop system,
Iact is zero. The system parameters are fully reported in Table 1. Note that
the model is based on the experiments done in CADR and reported in [35].
In section 3.3 of the mentioned paper, the coefficient of damping and stiffness
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Table 1: System parameters.

Symbol Value Unit
m 1.325 kg
k1 4331 N/m
k2 87125 N/m
c 0.27 kg/s2

g 0.74 mm
a 0.799 N/A
I0 1.45 A
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Figure 1: Schematic of mass-excited
impact oscillator.

have been obtained through free vibration tests.

Since nonlinear systems dynamics are determined by their initial condi-
tions, the basin of attraction is obtained for the excitation frequency of 6.8 Hz,
Fig. 2, (c). This basin of attraction is calculated in a range displacement of [-2
2] mm and velocity of [-2 2] mm/s which illustrates the coexistence of p1 and
p2 attractors. Note that the basin of attraction is obtained coarsely by steps of
0.1 mm and 0.1 mm/s for displacement and velocity, respectively. These step
sizes were accurate enough to capture the coexistence of p1 and p2 along with
their corresponding initial conditions. However, this basin of attraction is not
detailed to cover all possible responses and patterns in the given frequency.

To gain more insight into the system, using the information from the basin
of attraction at 6.8 Hz, the bifurcation diagram is obtained, which illustrates
the behaviour of the system in a range of 6.6 Hz to 8.6 Hz, Fig. 2, (d).
Note this frequency range is chosen following the experimentally obtained
diagram in [28]. As shown in Fig. 2, (d), The system responses include period
one (p1), period two (p2), period three (p3), period four (p4), and higher
period and chaotic responses (else). Since the maximum amplitude contrast
(maximum-minimum) of system response is desired in some applications,
another bifurcation diagram illustrating amplitude contrast versus excitation
frequency is also obtained, Fig. 2, (b). Note that as shown in Fig. 2, (b), the
amplitude in 6.8 Hz indicates a difference of around 0.7 mm between p1 and
p2 responses.

As discussed earlier, switching from an undesired attractor to the desired
one is required for many applications. In the following sections, we present
two case studies and discuss the effect of the delay and actuator constraints
on the settling time of the two desired attractors; (i) non-impacting attractor
and (ii) high amplitude attractor.
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(b)
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Figure 2: Dynamics analysis of the system. (a) Ten periods of the time history
of the coexisting p1 and p2 responses at the excitation frequency of 6.8 Hz. (b)
Non-standard bifurcation diagram; the amplitude contrast of system response
versus excitation frequency. (c) Basin of attraction at 6.8 Hz. (d) Standard
bifurcation diagram.

3 First case study: Switching to non-impacting
attractor

Impacts might result in damage or degradation in mechanical systems. As a
result, it is largely desired to avoid impact. This can be done by exchanging
attractors when an impacting attractor coexists with a non-impacting one. In
the first case study, we investigate this goal in the impact oscillator. As the
only source of nonlinearity in the impact oscillator is the impact, the only non-
impacting orbit must be p1 (linear response). Therefore the goal of this case
study is to switch other attractors to p1. Time-delayed feedback (TDF) control
is employed for this purpose. TDF is a simple-design controller which does not
require an external reference signal, hence, does not require substantial prior
knowledge of the system and is suitable for experimental applications [37]. As
shown in the block diagram of the system, Fig. 3, to form the control signal,
a weighted comparison of the current Y (t) and delayed Y (t− τs) states of the
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Figure 3: Generalised form of the externally excited system with the TDF
control scheme.

system is used. Note in the impact oscillator Y (t) = [x(t), ẋ(t)]′. Following the
work presented in [28], we can calculate the control signal as follows:

aIact =
[
Kp Kv

] [x(t− τ)− x(t)
ẋ(t− τ)− ẋ(t)

]
, (2)

where Kp and Kv are the control gains and τ is the controller time delay.

By setting τ = T , the TDF controller successfully performs the exchange
from p2 to p1 in about 3 S (Fig. 4), and the control signal converges to zero
when the system fully settles in p1. In an ideal system, there are not any
delay or actuator constraints. However, a delay exists in real-world systems.
Also, due to the physical limits, actuators are imperfect and are subject to
constraint [29]. Actuator delay is caused by latency in the actuation parts of
the system. In contrast, memory delay causes by the latency in the data storage
and reading process while obtaining the delayed states. These two types of
delay can be added to the TDF signal and formulated as follows:

aIact1(t+ τs) =
[
Kp Kv

] [x(t− τ)− x(t)
ẋ(t− τ)− ẋ(t)

]
, (3)

aIact2(t) =
[
Kp Kv

] [x(t− τ − τs)− x(t)
ẋ(t− τ − τs)− ẋ(t)

]
, (4)

where Iact1 and Iact2 are actuation currents in the presence of the actuator
and memory delay, respectively and τs is the system’s delay.

To assess the effect of delay on the controller’s performance, a delay up to
0.2 of the period (0.2T where T = 0.1471s) is applied to the system in two
different forms, actuator delay and memory delay, Fig. 5, (e). By increasing
the delay, settling time undergoes a decrease to about 8T and 6T for actuator
and memory delay, respectively. After these minimums, settling time increases
to around 22T for both cases, after which the controller fails to stabilize the
system in p1. Time histories and control signals of the middle range and
maximum range of delay are presented in Fig. 5,(a), (c), (h) and (j).
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(a)

transient response

(b) (c)

Figure 4: Exchange of p2 to p1 in the system without any delay or actuator
constraints. 3D (a) and 2D (b) time histories of the system response illustrated
ten periods of excitation before and after the exchange and the transient time.
Note that the control signal is plotted in green. (c) Phase plane, which indicates
a successful transition from p2 to p1.

The system could be at any phase of its response period when the control-
ler takes effect. This phase can be represented by the time that has passed
since the start of the period. Here we call it the start time of the controller.
The effect of the start time on the settling time, then, is investigated in the
range of zero (beginning of the period) to two periods of response, 2T (the
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end of the period of response, p2). As seen in Fig. 5, (f), by increasing the
start time, settling time starts decreasing; however, it undergoes intermittent
jumps, which results in the maximum difference of about eight periods of
excitation, 8T . Time histories and control signals of two cases are presented
in Fig. 5,(i) and (k).

To evaluate the effects of actuator constraints on the TDF’s performance, a
force limit, ranging from 0.2 N down to 0.06 N, is applied to the absolute value
of the control signal. Owing to the fact that the effect of constraint increases
when the absolute value of the force limit decreases, the constraint limit is
applied to the system decreasingly. As shown in Fig. 5, (g), by increasing
the effect of constraint (decreasing the limit), the settling time of the system
increases to the point that the controller fails to perform the exchange. Time
histories and control signals of two cases are presented in Fig. 5, (b) and (d).

Fig. 5 demonstrates that when the controller performs the switch between
p2 to p1, the settling time of the system can increase by about five times
with the presence of a delay. Also, it shows that settling time can increase by
about two and half times depending on the start time of the controller and
finally, it shows that the settling time can increase by about two times when
the limitations on the control signal (force) decrease by 30 times.

4 Second case study: Switching to high
amplitude attractor

As shown in the system dynamics Fig. 2, (a) and (b), p2 has a higher
amplitude than p1. Hence, when the higher amplitude of oscillation is favour-
able [20–22] or impacting response is desired [24], switching from p1 to p2 is
required. Therefore the aim of the second case study is to switch p1 to p2 in
the impact oscillator. However, this exchange is more complex than a p2 to
p1 exchange using the TDF controller. The reason is that the controller time
delay in p1 is the factor of higher periods. In other words, delay in periods
higher than p1 is an integer multiplier of the period of oscillation which is
equal to the period of p1. So as long as the system is in p1, the control signal
remains zero (even when τ = 2T ). To resolve this issue, a two-staged TDF is
applied to the system [28]. During the first stage, the controller takes the sys-
tem out of the basing of attraction of p1 with a non-integer delay (τ = 0.5T
in this case). When the system is out of p1, the controller takes the system to
p2 with τ = 2T in the second stage, Fig. 6.

Since the first stage of the controller only takes the system out of p1, the
control time delay can be any non-integer number that produces a control
signal to take the system out of p1. Note any integer number of delay results
in zero control signal. Hence, it can be something other than, necessarily or
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Figure 5: Effects of actuator delay (Eq. 3), memory delay (Eq. 4), the start
time of the controller and constraint on the controller’s performance in Case 1.
(e) Settling time versus delay. (f) Settling time versus start time of the con-
troller. (g) Settling time versus the constraint (limit on the output force). Note
that other panels are time histories and control signals of selective cases.

precisely 0.5T . Therefore the delay and constraint are applied only to the
second stage of the control process. Nevertheless, in this case, the system
illustrates more sensitivity to delay and constraint. As shown in Fig. 7, (e),
by increasing the memory delay, settling time follows more or less the same
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pattern as the Case 1, however, in a much smaller range. At around 0.07T ,
the settling time is around 390T , and by increasing the delay more, the
controller fails to perform the exchange. Similarly, by increasing the actuator
delay, settling time experiences a U-typed graph up to around 0.011T , after
which the controller fails to stabilize the system. It is worth noting that the
settling time is obtained by making a comparison of the average of Poincaré
sections of the last 200 periods of the response with the corresponding delayed
states, taking into account a comparison error of 10−6 mm and 10−6 mm/s
for displacement and velocity, respectively. As shown in Fig. 7,(c), although
the controller takes the system nearly to p2 in around 30s, it takes around
67s for the controller to achieve the defined accuracy.

As shown in Fig. 7,(f), by increasing the start time of the controller, the
settling time decreases. However, similar to Case 1, it undergoes a few inter-
mittent jumps, which results in the maximum settling time difference equal
to around 2T , which is lower than the Case 1. Hence, the system, in this case,
is less sensitive to the time when the controller kicks in.

By increasing the effect of constraint or decreasing the norm of the
constraint cap from 0.2 N, the system illustrates an unexpected behaviour,
Fig. 7,(g). By decreasing the norm of the force limit up to 0.03 N, the settling
time remains constant. However, by a further decrease in the norm up to
0.25 N, settling time experiences a decrease to around 25T , after which the
controller fails to stabilize the system and perform the exchange to p2.

Fig. 7 demonstrates that when the controller performs the switch between
p1 to p2, the settling time of the system can increase by about 15% with the
presence of a delay. Also, it shows the limitations of the control signal, and
the start time of the controller has a minimum influence on the settling time.
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14.7059
13.2353

Figure 6: Exchange of p1 to p2 in the system without any delay or actuator
constraints. 3D (a) and 2D (b) time histories of the system response illustrated
ten periods of excitation before and after the exchange and the transient time.
Note that the control signal is plotted in green. (c) Phase plane, which indicates
a successful transition from p1 to p2.
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Figure 7: Effects of actuator delay, memory delay, the start time of the con-
troller and constraint on the controller’s performance in Case 2. (e) Settling
time versus delay. (f) Settling time versus start time of the controller. (g) Set-
tling time versus the constraint. Note that other panels are time histories and
control signals of selective cases.
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5 Conclusions

The effects of delay, start time, and actuator constraints have been investigated
by considering two case studies of desired attractors: Case 1: Non-impacting at-
tractor, and Case 2: High amplitude attractor. The chosen controller is initially
employed in the nominal system (without delay) to demonstrate its efficiency.
In both case studies, it is seen that an increase in delay results in a decrease
in settling time and then an increase, gradually leading to the controller’s fail-
ure. However, the delay range in which the controller is successful in Case 2
is much less than its corresponding Case 1 (about 19 times). By delaying the
start time, settling time in both cases undergoes some falling intervals with
intermittent jumps. The maximum difference in the settling time in Case 1 is
about four times the one in Case 2, which makes this case more sensitive to
when the controller is engaged. Finally, the system indicates two opposing be-
haviours by increasing the constraint effects (decreasing the force limit). By
decreasing the limit in Case 1, the settling time increases to the point that the
controller fails to stabilize the system. At odds, in the other case, by decreas-
ing the limit, settling time remains constant, followed by a decrease to a point
after which the controller fails to perform the exchange.

In this paper, only the settling time has been used to assess the controller’s
performance in the presence of the delay and actuator constraints. Employ-
ing another criterion will help in investigating the controller’s performance.
The current criterion indicates the speed at which the controller drives the
system to the desired response. However, it does not investigate or illustrate
how stable the response is. In other words, it does not indicate how much
disturbance the system can tolerate in the settled response before it becomes
unstable. Moreover, the underlying physics behind the illustrated patterns re-
quires further investigation. Hence, as future work, stability analysis using
Floquet theory [38] is advisable to investigate the underlying dynamics of the
delayed system in terms of the leading Floquet branches and its effect on the
stability and performance of the controller.
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