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Abstract

Ecological conditions shape (adaptive) responses at the molecular, anatomical, and behavioral levels. Understanding these
responses is key to predict the outcomes of intra- and inter-specific competitions and the evolutionary trajectory of popula-
tions. Recent technological advances have enabled large-scale molecular (e.g., RNAseq) and behavioral (e.g., computer
vision) studies, but the study of anatomical responses to ecological conditions has lagged behind. Here, we highlight the role
of X-ray micro-computed tomography (micro-CT) in generating in vivo and ex vivo 3D imaging of anatomical structures,
which can enable insights into adaptive anatomical responses to ecological environments. To demonstrate the application of
this method, we manipulated the larval density of Drosophila melanogaster Meigen flies and applied micro-CT to investigate
the anatomical responses of the male reproductive organs to varying intraspecific competition levels during development.
Our data is suggestive of two classes of anatomical responses which broadly agree with sexual selection theory: increasing
larval density led to testes and ejaculatory duct to be overall larger (in volume), while the volume of accessory glands and,
to a lesser extent, ejaculatory duct decreased. These two distinct classes of anatomical responses might reflect shared devel-
opmental regulation of the structures of the male reproductive system. Overall, we show that micro-CT can be an important
tool to advance the study of anatomical (adaptive) responses to ecological environments.
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Introduction advances have enabled large-scale studies of molecular and
behavioral responses to ecological conditions. For instance,
Animals respond to their environment across all levels of  the advent of the RNAseq technique has provided insights
biological organization, from gene expression through ana- into how organisms respond to key ecological conditions,
tomical changes to complex behaviors. Recent technological including temperature (Smith et al. 2013; Kumar et al.
2020), pesticides (Christen et al. 2018; Colgan et al. 2019),
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social status (Veiner et al. 2022), and diet (Xu et al. 2018).
Likewise, the advent of computer visions and automated
tracking algorithms has enabled studies that identify key
behavioral responses in controlled and natural conditions
of individuals and groups (Jover et al. 2009; Weinstein
2018; Shreesha et al. 2020; Liirig et al. 2021), allowing for
a deeper understanding of behavioral responses across eco-
logical environments. To date, however, it remains challeng-
ing to conduct anatomical studies of internal organs in vivo
and ex vivo, and to some extent, our understanding of ana-
tomical responses to ecological environments has lagged
behind. Yet, understanding anatomical responses to ecologi-
cal conditions can aid our understanding and predictions of
functional responses that shape the evolution of populations
(Minelli 2003). It is therefore essential that new technologies
are used in the field of ecology and evolution which enables
the study of anatomical responses to ecological conditions.

Micro-computed tomography (micro-CT) is an X-ray-
based imaging technique that allows for nondestructive,
three dimensional reconstructions of small objects (microns
to millimeters) in their native states (Lin et al. 2019). This is
largely due to the relatively high power of X-rays and their
ability to penetrate objects of much higher densities than
visible or infrared light waves that are used in traditional
imaging methods, such as light microscopy. A 3D image
is obtained by rotating the object and acquiring a series of
two dimensional projection images, which are then recon-
structed into tomograms containing 3D information that is
isotropic in its resolution using specialized algorithms (Feld-
kamp et al. 1984). As a result, this technique has proven
useful in a number of different scientific disciplines, includ-
ing biology, engineering, physics, materials science, geol-
ogy. and anthropology, where dissections or destruction of
an object that would be required for light imaging is not
feasible (Carlson 2006; Metscher 2009a; Schambach et al.
2010; Abel et al. 2011; Rawson et al. 2020). In the biologi-
cal sciences, micro-CT has proven especially useful for the
nondestructuve imaging of insects, given their size and the
inability of light waves to penetrate through the often thick
and pigmented cuticle. Importantly, the information derived
from micro-CT tomograms has proven especially useful for
answering a diverse range of questions across the insect
biological spectrum, from biomedical-related applications
utilizing highly characterized model insects such as (but not
limited to) Drosophila (Mattei et al. 2015; Chen et al. 2018;
Schoborg et al. 2019; Schoborg 2020; Khezri et al. 2021)
to anatomical, physiological, and developmental applica-
tions across the wider taxonomy of insects (Westneat et al.
2003; Smith et al. 2016, 2020; Taylor et al. 2016; Chaturvedi
etal. 2019; Rix et al. 2021; Wyber et al. 2021). For instance,
micro-CT analysis has shown for the first time the changes
in female reproductive tract following mating in Drosophila
melanogaster (Mattei et al. 2015). Moreover, micro-CT has

also been key to unravel the mechanisms of localized tissue
damage in traumatic insemination in beetles (Dougherty and
Simmons 2017), sperm transfer mechanism in spiders (Rix
et al. 2021), and to gain insights into the evolution of geni-
talia morphology in lepidopterans (McNamara et al. 2019).
Micro-CT has also provided the fundamental technique to
assemble brain atlases of model and non-model organisms
such as for example flies, bees, and moths (see Adden et al.
2020; Rother et al. 2021 and references therein). Moreo-
ver, micro-CT has been used to reveal the anatomical and
subsequent functional damage caused by pesticide exposure
at different life stages in bumblebees, whereby exposure to
pesticides not only reduced mushroom body calycal growth
but also lower condition-learning and response to reward-
ing stimuli (Smith et al. 2020). Therefore, micro-CT has
incredible potential to assist the morphological analysis of
adaptation to changing ecological conditions (Dougherty
and Simmons 2018). However, despite micro-CT’s use-
fulness across a range of biological disciplines, ecological
applications have remained underutilized despite the wealth
of ecological knowledge that could be derived from these
studies (Gutiérrez et al. 2018).

In this study, we add to the growing use of micro-CT in
entomology and demonstrate how 3D micro-CT imaging can
be applied to the study of anatomical responses to ecologi-
cal conditions in male Drosophila melanogaster Meigen as
a model. We demonstrate the application of micro-CT in a
study case, where we investigated the anatomical responses
of the male reproductive system in the D. melanogaster
model to increasing levels of intraspecific competition at
the developmental stage (i.e., number of larvae per gram of
food, henceforth referred to as “larval density”). In holo-
metabolous insects such as D. melanogsater, larval density
is an important ecological factor shaping individual fitness
and can be an important ecological cue of intraspecific
competition levels which individuals — particularly males
— are likely to encounter in the adult stage (Johnson et al.
2017). In Drosophila, males from high larval densities are
known to have smaller body sizes and lower mating and
reproductive success (Amitin and Pitnick 2007; Morimoto
et al. 2016, 2017) but to have disproportionately higher
ejaculate investment relative to body size in each mating
opportunity (Wigby et al. 2016), potentially as a mitiga-
tory (adaptive) response to the morphological constraints
imposed by nutrient limitation and competition at the larval
stage (Klepsatel et al. 2018). This effect appears to be above
and beyond changes in sperm length or transcriptional levels
of nine major seminal fluid proteins (Amitin and Pitnick
2007; McGraw et al. 2007). Therefore, it is possible that
male reproductive responses to larval intraspecific competi-
tion originate in changes in male’s morphology (rather than
physiology) that enables males to invest relatively more
ejaculate per mating opportunity.
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In other insects, anatomical changes such as increased
testes sizes are known responses to increased larval den-
sity [e.g., (Gage 1995; Stockley and Seal 2001)], but lit-
tle is known about other aspects of the male reproductive
system. Moreover, non-sperm components of the ejaculate
(e.g., seminal fluid proteins) which are produced in tis-
sues other than testes can be as important for male fertility
(Perry et al. 2013), but for which little is known as to how
these organs respond to males’ developmental environ-
ment. In this study, we manipulated larval density within
the range observed in our previous ecological assessment
of D. melanogaster larvae in a natural population (Mori-
moto and Pietras 2020) and included densities ranging from
low, natural range, and high larval densities relative to the
densities observed in nature. This approach allowed us to
apply our 3D micro-CT technique to an ecologically rel-
evant experimental design for the species. Overall, sexual
selection theory generates the implicit theoretical prediction
that as larval density increases, males should allocate more
(of the fewer) resources per capita to traits related to either
migration (e.g., longer wings) or (post-copulatory) reproduc-
tive success (e.g., better ejaculates), or both (Katsuki et al.
2013). Thus, we predicted that male reproductive organs’
volume — particularly accessory glands and testes — should
be positively associated with larval density assuming that
(1) relatively larger reproductive organs are correlated with
higher ejaculate investment, (2) larval density is an ecologi-
cal cue for the level of (post-mating) competition in the adult
stage, and (3) males respond adaptively to this ecological
cue as to enhance their reproductive success. Empirical work
suggests that many insect species conform at least partly to
this expectation (reviewed in Than et al. 2020). These pre-
dictions emerged from the rationale that, as larval density
increased, the perceived level of post-copulatory competi-
tion would likewise increase, resulting in high demand for
high-quality ejaculates that, in turn, require larger reproduc-
tive organs to produce it (Parker 2016). Overall, this study
highlights the potential benefits of using micro-CT imaging
as a tool to study anatomical responses to ecological condi-
tions, helping shed light of how organisms respond to their
environment and thereby evolve the myriad of forms and
functions observed in the animal kingdom.

Material and methods

Fly stock and larval density manipulation

We used an outbred D. melanogaster population collected
in September 2015 in Brittany (France) and kindly provided
to us by Herve Colinet (Henry et al. 2018). Flies were main-

tained in large population cages (> 1,000 individuals) with
overlapping generations, at 20 °C and ca. 50% humidity, with
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12 h light: 12 h dark cycles. Fly stocks were maintained —
and all experiments conducted with a standard yeast-sucrose
diet (Brewer’s yeast MP Biomedicals 0,290,331,205, com-
mercial sucrose, agar Sigma-Aldrich A1296, Sigma-Aldrich,
and 0.5% Nipagin Sigma-Aldrich). Eggs were collected for
6 h using an oviposition device (Petri dish (90 mm) covered
with a solution of commercial blackcurrant juice and 1%
agar and coated with a thin layer of yeast paste). Oviposi-
tion devices were incubated overnight until eggs hatched at
25 °C, after which, first instar larvae were counted and allo-
cated to larval density treatments using a soft brush under a
Leica M9i stereoscope. Larval density treatments were based
on our survey of larval densities in a natural population of D.
melanogaster (Morimoto and Pietras 2020). We had 5 larval
densities: 0.5, 5, 15, 30, and 50 larvae/g of diet in vials with
between 3 (highest density) and 6 g (lowest density) of diet.
This larval density gradient corresponds to a range from
low (i.e., 0.5 larvae/g, lower than the natural range), natural
range (5 and 15 larvae/g), and high (30 and 50 larvae/g,
higher than natural range) larval densities (Morimoto and
Pietras 2020). Vials were incubated at 25 °C with 12 h light:
12 h dark cycles until adult emergence. Within 8 h of emer-
gence, females were discarded, and males were transferred
to fresh vials with the standard diet and incubated for 5 days
before being killed at — 20 °C. This ensured that even in the
unlikely case that males mated, males had enough time to
replenish their reproductive organs prior to imaging. Males
were transferred to an increasing gradient of ethanol (from
40 to 100%, 2 h in each solution) for fixation before imaging.

Imaging and data analysis

Individual males were submerged in the iodine-ethanol (I12E)
1% in 100% ethanol (EtOH) solution and stored overnight,
after which individuals were rinsed in 100% EtOH three
times for 10 min to wash off excess iodine. The specimens
were then placed in heat-sealed pipette tips with 100% EtOH
and scanned using a SkyScan 2211 (Multiscale X-ray Nano-
CT System, Bruker micro-CT, Kontich, Belgium) at Oral
Research Laboratory, University of Oslo. Scanning param-
eters were as follows: 55 kV, 260 pA, and 650 ms exposure
time per projection and without the use of a physical filter.
Males were scanned over 360° with rotation steps of 0.31°,
resulting in 1162 projections. Each projection was averaged
by 3 frames, leading to a total scan duration of about 40 min
for each sample and a final voxel size of 1.40 pm. The recon-
struction process for each sample was performed using the
system-provided software NRecon (version 1.7.4.6). Image
segmentation was done using Dragonfly software ORS
(Object Research Systems Inc, Montreal, Canada, 2019;
software available at http://www.theobjects.com/drago
nfly). Each male reproductive organ, namely, accessory
glands, testis, ejaculatory duct, and bulb, was segmented
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individually employing semiautomatic processes and cor-
recting for inconsistencies in the three axes to achieve opti-
mal and accurate segmentation.

Statistical analyses

All statistical analyses were conducted in R (Core Team
2013). We imaged 24 randomly selected males (0.5 larvae/g:
N=2, 5 larvae/g: N=35, 15 larvae/g: N=35, 30 larvae/g:
N=7,50larvae/g: N=35). Accessory glands and testes were
measured individually. We compared the volumes (in p m?)
of each organ with a linear mixed model using the “Ime4”
and “ImerTest” packages (Bates et al. 2007; Kuznetsova
et al. 2017) with models that included individual ID or in the
case of accessory glands and testes, side (left or right) nested
within individual ID as a random effect and the fixed effect
larval density (fitted as a factor with 5 levels) (Table S1).
p-values were obtained from the “anova” function of the

Fig. 1 p CT imaging of male
reproductive system in Dros-
ophila. a A slice generated
after image reconstruction;

b the same slice as in a with
segmented organs colored. ¢ 3D
image reconstruction generated
after segmentation

AGs

Ej. bulb

“ImerTest” package. Post hoc tests in linear mixed mod-
els were performed using the “emmeans” package (Lenth
and Lenth 2018). In Drosophila, larval density influences
male body size (Amitin and Pitnick 2007). We therefore also
included normalized abdominal volume as a fixed effect in
all models to control the allometric relationship between lar-
val density, body size, and reproductive organs, even though
abdominal volume was not statistically different between
larval densities (density: F, ;;=2.955, p=0.051; Table
S1). All data plots were made using the “ggplot2” package
(Wickham 2016).

Results
We first identified the target organs for segmentation.

Figure la shows an example of an image slice of a speci-
men used for segmentation and Fig. 1b shows a 3D model

100um

Testis
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reconstruction of the segmented abdomen highlighting
the male reproductive system. A video with an example
of the segmentation slice per slice is presented in the sup-
plementary material (Video S1). This approach allowed
to then test the effect of larval density on male reproduc-
tive organs. After controlling for abdominal volume, testes
volume was statistically significantly influenced by larval
density (density: F 4,=10.085, p <0.001). For instance,
males from the 30 larvae/g treatment had the testes with
the highest volume while males from the 15 larvae/g treat-
ment had the testes with the smallest volume. Males from
the 5 larvae/g treatment had testes with intermediate volume
which was not different from males from the lowest (0.5
larvae/g) or highest (50 larvae/g) larval densities (Table S1,
Fig. 2a). Accessory gland volume progressively decreased
with increasing larval densities, although this effect was not
statistically significant (density: F, 3=2.4247, p=0.064).
Nevertheless, this trend suggested that larger accessory
glands (by volume) were observed in males that emerged
from the lowest and natural larval densities of 0.5, 5, and 15
larvae/g, whereas relatively smaller accessory glands were
observed from males that emerged from high larval densi-
ties of 30 and 50 larvae/g (Fig. 2b, Table S1). Ejaculatory
bulb displayed similar trend as that of accessory glands but
without reaching statistical significance (ejaculatory bulb:

Fig.2 p CT reveals the effect a
of larval density on male repro-

Testes

Fy1493=1.584, p=0.130). Ejaculatory duct volumes were
statistically influenced by larval density (ejaculatory duct:
F,3=8.462, p= <0.001). Interestingly, the ejaculatory
duct followed a similar (although less accentuated) trend to
that observed for the testes (Table S1, Fig. 2¢). Conversely,
the ejaculatory bulb followed a similar trend observed in the
accessory glands, whereby males emerging from high larval
densities of 30 and 50 larvae/g had smaller ejaculatory bulbs
by volume compared with males from other larval density
treatments (Fig. 2d).

Discussion

In this paper, we discuss the potential to use micro-CT imag-
ing to empirical studies in evolutionary ecology with a focus
on reproductive biology. Micro-CT has proven tremendously
useful to studies of insect anatomy, physiology, develop-
ment, taxonomy, and phylogeny (Carlson 2006; Metscher
2009; Schambach et al. 2010; Abel et al. 2011; Rawson et al.
2020). However, its use in ecological applications has lagged
significantly behind other biological disciplines such as bio-
medicine, likely due to micro-CT’s relationship to computed
tomography (CAT Scans), which were originally designed
specifically for medical imaging applications in clinical
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16.8 1

®
16.5-
16.2-%

15.9+

ductive system. Comparisons
across larval density treatments
(larvae/g) between the volumes
of a testes, b accessory gland, ¢
ejaculatory duct, and d ejacula-
tory bulb. Volume was log-
transformed for model fitting.
Volume units are given in log(p
m?). Shaded region indicates

Log(Volume)

16.5

16.01

N éﬁ

15.5+

the corresponding larval density
observed in natural populations,
whereby blue=low density,
purple =natural range, and

red =high density according to

05 5

Ej. duct

(@]

15 30 50

05 5 15 30 50

d Ej. bulb

Morimoto and Pietras (2020)
[ ]

1591
15.6-[_La3

15.3

Log(Volume)

16.21 | |
16.01 -

15.8 . 0ol )

R

05 5

15 30 50

Larval density

1561 . 1
05 5 15 30 50

Larval density

{ Low density

Natural range High density}

@ Springer



Assessing Anatomical Changes in Male Reproductive Organs in Response to Larval Crowding Using... 531

settings (Gutiérrez et al. 2018). Nonetheless, the technical
capabilities of micro-CT allow insects to be imaged in an
intact state, preserving the overall spatial architecture of
organs in their native orientation. Combined with the iso-
tropic resolution of the technique and powerful segmen-
tation tools, which allow for highly accurate quantitative
measures of morphometry (Schoborg et al. 2019; Schoborg
2020), we suggest that micro-CT can be a useful tool for
answering ecological questions related to understanding an
insect’s response to its environment. In fact, 3D imaging is
changing the way in which we understand the anatomy of
organs across orders of insects, particularly through recent
studies of brain atlases (see Adden et al. 2020; Rother et al.
2021 and references therein). Thus, micro-CT is a power-
ful technique that, combined with ecological experiments,
can reveal important responses to changing environments.
Recent studies harnessing the power of micro-CT imaging
have been transformative to understand plastic and evolu-
tionary morphological adaptations, particularly in repro-
ductive traits. In D. melanogaster, for instance, micro-CT
revealed the dynamics of the male-female reproductive
structures during mating, showing for example that males’
pierce females’ vagina upon intromission and that mating
induces changes in the uterine volume and shape (Mattei
et al. 2015). Likewise, in beetles, micro-CT also helped
unravel the links between traumatic insemination and female
kicking, revealing a temporal offset between the former
and the latter behaviors (Dougherty and Simmons 2017),
and that females do not respond plastically by thickening
their reproductive track in response to high sexual conflict
environments (Wyber et al. 2021). Lastly, in lepidopterans,
micro-CT has provided important empirical data to support
theoretical predictions that female genital teeth morphology,
which is associated with a counter-response by females to
male reproductive manipulation, evolves in response to the
intensity of sexual conflict (McNamara et al. 2019).

From a technical point, it is important to mention that
special care during sample preparation is essential to obtain
good micro-CT scans (Metscher 2009b). The use of fixa-
tion and staining protocols are requisites to study the mor-
phology of soft tissues in the biological samples since the
choice of appropriate chemical agents is a simple and effec-
tive way to increase the contrast of low-absorbing tissues. It
is recommended, depending on the composition and size of
the sample, to study the concentration of the staining agent
and the time of the process. Recent studies have provided
guidelines for the use of different stainings in soft biologi-
cal matter (see, e.g., Keklikoglou et al. 2019). In the ento-
mological context, it is important to know that the insect
exoskeleton poses a difficult barrier for penetration by phos-
photungstic acid (PTA). On the other hand, iodine presents a
faster and well-distributed penetration into the sample con-
taining exoskeleton, although resulting in lower resolution

of microstructures. When samples are separated from the
entire body such that zones of soft tissues are exposed,
then PTA can become a more attractive staining solution
for high-resolution micro-CT because of the good penetra-
tion and high resolution. For instance, a study has optimized
the use of PTA for imaging of bumblebee brain structures,
whereby PTA outperformed iodine and other staining solu-
tion in terms of resolution of microstructures, although
iodine was faster to perfuse through the samples (Smith et al.
2016). Comparing the advantage and disadvantages of dif-
ferent protocols present in the specialized literature, iodine
makes it more suitable for studying whole insect specimens
(Metscher 2009b; Du Plessis et al. 2017; Sena et al. 2019).
Thus, it is important to balance the pros and cons of each
staining method according to the type of sample, costs, time,
and the resolution needed for the images.

It is important to mention that, although our sample size
was relatively small, it is well within — and in the upper
range of — sample sizes in the past literature. Previous
studies with more than two treatment groups have used
sample sizes ranging from N=2 to N=35 (see, e.g., Mattei
et al. 2015; Dougherty and Simmons 2017). Other studies
had larger sample size per treatment but similar final sam-
ple size as the one presented in this study (e.g., McNamara
et al. 2019). Few studies have used larger total sample sizes,
which are still smaller than twofold the sample size of our
study (Dougherty et al. 2017; Wyber et al. 2021). In this
study, our sample size ranged from N=2 to 7, and thus,
within the range used in the published literature. While pow-
erful, micro-CT can still be expensive to run particularly for
acquiring high-definition images as the one collected here,
which limits not only the authors but also the field to col-
lect large amounts of data comparable to behavioral assays
using insects. Nevertheless, our findings provide important
insights into the morphological responses to the intraspe-
cific competition levels in the developmental environment
in Drosophila and will stimulate further studies using this
technique on the topic.

In this study, to further demonstrate the potential for
micro-CT to advance our understanding of evolutionary
ecology, we manipulated D. melanogaster larval density,
based on larval population levels observed in a natural
population, and showed a tissue-specific response to larval
density in adult males. Previous studies in D. melanogaster
have found that larval density does not affect sperm size
(Amitin and Pitnick 2007) nor the transcription activity of
seminal fluid proteins in the accessory gland (McGraw et al.
2007), suggesting that changes in ejaculate quality caused by
larval density can be based upon anatomical differences that
can affect overall ejaculate composition (e.g., total sperm
number and total seminal fluid concentration). However,
contrary to our expectations, reproductive organ volume
was not always positively associated with larval density,
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suggesting that, if our assumptions are correct, responses to
larval density are more nuanced than previously expected.
For instance, while testes volume tended to increase with
larval density, accessory glands and ejaculatory bulb vol-
umes tended to decrease with increasing larval density.
These differences could underpin a trade-off in ejaculate
composition, whereby the ejaculate composition is sperm-
biased for males from higher larval densities but balanced
and seminal fluid-biased for males from natural range and
larval densities, respectively [assuming reproductive organ
size or volume reflects ejaculate composition (Gage 1995;
Stockley et al. 1997; Stockley and Seal 2001; Lemaitre et al.
2011; Ramm et al. 2015)]. Whether or not the ratio of ejacu-
late components is dependent upon larval density remains to
be investigated. The specific functions of the male ejacula-
tory bulb and duct have not yet been fully uncovered and
thus it is challenging to relate our findings to functional
aspects of these organs. Nonetheless, both ejaculatory duct
and tract produce important components of the male ejacu-
late (Heinstra and Thorig 1982; Lung et al. 2001; Bretman
et al. 2010a, 2010b) and respond dynamically to mating (and
potentially to ecological cues) (Cohen and Wolfner 2018).
As discussed above, our study had limited sample size, with
sample size per treatment ranging from two to seven. There-
fore, it is possible that a larger sample size could result in
statistical significance for some of the trends observed in
the data.

Drosophila males are known to modulate ejaculate
composition and expenditure based on ecological cues
of intraspecific competition in adults (e.g., Bretman et al.
2010a, 2010b; Hopkins et al. 2019) in ways that can favor
male’s exploitation of rivals’ ejaculate (particularly of
costly seminal fluids) under competitive scenarios (Hodg-
son and Hosken 2006; Sirot et al. 2011). This is in agree-
ment with sexual selection theory which predicts that male
ejaculate expenditure should increase with the risk of post-
copulatory sexual selection, but decrease with increasing
intensity of post-copulatory sexual selection (Parker and
Pizzari 2010; Parker et al. 2013). Thus, if males exploit
rivals’ seminal fluid, then it is possible that males from
high-density environments (where competition is more
intense but there is more opportunity for exploitation) (i)
have lower cost per ejaculate due to the lower produc-
tion of seminal fluid proteins and (ii) have higher sperm
production to enhance efficiency of ejaculate exploitation.
Our results suggest testes volume is higher (and accessory
glands volume lower) for males from high larval density,
which corroborates the idea that under high intraspecific
competition levels, male ejaculate should be sperm-biased
to enhance ejaculate exploitation. This contradicts the
findings that males from high larval density invest rela-
tively more per mating opportunity (Wigby et al. 2016).
Our data do not allow us to investigate the causes of this
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contradiction, but it is worth mentioning that the larval
densities used in Wigby et al. (2016) are at least four times
higher than the highest density used in this study and that
of observed a natural population (Morimoto and Pietras
2020). Such a high larval density could result in higher
non-adaptive responses to ejaculate investment per mating
opportunity as a response to extreme intraspecific competi-
tion levels. Nevertheless, our results are broadly consist-
ent with the wider holometabolous insect literature (Than
et al. 2020). For example, males from high larval density
developed larger testes in the yellow dung fly Scatophaga
stercoraria (Stockley and Seal 2001) and the moth Plodia
interpuctella (Gage 1995).

Conclusion

Micro-CT can be an important tool to understand how
organisms adapt morphologically to ecological and evo-
lutionary conditions (Dougherty and Simmons 2018).
Using micro-CT, we show that larval density leads to a
tissue-specific effect on male reproductive organs, which
agrees with predictions from sexual selection theory and
contributes to our understanding of the anticipatory mor-
phological responses across larval intraspecific competi-
tion levels. Future studies across species using micro-CT
will reveal whether the responses found in Drosophila are
consistent across insects, and can help elucidate why some
groups [e.g., Coleoptera (Gay et al. 2009)] appear to differ
in their response to larval density compared to others (e.g.,
Lepidoptera and Diptera) (Than et al. 2020).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s13744-022-00976-5.
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