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ABSTRACT
Weexamine the diversification benefits of cryptocurrency asset categories. Tomitigate
the effects of estimation risk, we employ the Bayes-Stein model with no short-selling
andvariance-based constraints.Weestimate the inputs using lasso regression andelas-
tic net regression, employing the shrunk Wishart stochastic volatility model and Gaus-
sian random projection. We consider nine cryptocurrency asset categories, and find
that all but two provide significant out-of-sample diversification benefits. The lower
is investor risk aversion, the more beneficial are cryptocurrencies as portfolio diver-
sifiers. During uncertain economic environments, such as the post-Covid-19 period,
cryptocurrencies provide the same diversification benefits as in more stable environ-
ments. Our results are robust to different portfolio benchmarks, regression technique,
transaction cost, portfolio constraints, higher moments and Black–Litterman models.
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1. Introduction

Since the first decentralized digital currency (Bitcoin) was first introduced by Nakamoto (2008), cryptocurren-
cies have attracted a lot of attention from investors, regulators, and the media. By the first quarter of 2021 there
were almost 2500 cryptocurrencies with a global market capitalization of $1.6 trillion.1 Cryptocurrencies are
based on blockchain technology, and unlike most financial assets, they are not issued by a government or recog-
nized financial institution, are not based on any tangible asset, have no physical representation, and are infinitely
divisible. In addition, their prices are highly volatile, which imposes a challenge for investors.

Ownership of cryptocurrencies by retail investors is increasing; and rather than holding them for speculative
purposes, there is growing interest in holding them as part of a portfolio. By 2021 Karim and Tomova (2021)
found that 5.7% of UK adults (about 3 million people) had traded a cryptocurrency, and their second most
importantmotive for owning a cryptocurrency (30%)was as part of an investment portfolio. Using a 2019 survey
ofUS adults, Bonaparte (2021) concluded that cryptocurrencies are held by young, college educated, whitemales
who invest directly in the stock market, and that ‘investors view crypto assets as a possible diversification asset
class’. There is also an expanding number of funds offering investment in cryptocurrencies to both institutional
and retail investors. In 2019 PwC estimated therewere 150 cryptocurrency investment funds (PwC2019; Bianchi
and Babiak 2020). In October 2021 the New York Stock Exchange listed an exchange traded fund based on
Bitcoin (ProShares Bitcoin Strategy ETF), opening up cryptocurrency investment to a wide range of institutional
and retail investors.

Due to their short track record and highly volatile history, estimating the inputs for portfolio models which
involve cryptocurrencies is a greater challenge thanwhen only conventional assets are considered. This challenge
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is amplified by the need to choose between themany different types or categories of cryptocurrency. In addition,
forecasting the portfolio inputs is even more demanding during periods of high economic uncertainly, such as
during the Covid-19 pandemic. The main objective of this study is to examine the diversification benefits of
cryptocurrencies using estimation and portfolio techniques which allow for input estimation errors. Since the
diversification benefits are particularly important for investors during stressful market conditions, we extend
the analysis and consider the effects of the increased economic uncertainty during the post-Covid-19 period.

We examine nine of the most popular cryptocurrency asset categories (CCACs) and compare the out-
of-sample performance of equity and bond portfolios which also include these nine CCACs with that of a
benchmark portfolio. Cryptocurrencies are placed in different categories (classes) based on consensus algo-
rithms, characteristics, and specific functionalities of the underlying blockchains. For example, proof of work
(PoW) coins are mineable coins using the PoW consensus algorithm, while proof of stake (PoS) coins generate
new blocks via PoS, where the number of coins a person keeps determines the rate of validation of transactions
in this case. The PoW algorithm is the most popular blockchain technology, and is used by both Bitcoin and
Ether. There is an ongoing debate between PoW versus PoS, since the underlying protocol of Ether (Ethereum)
plans a transition to the PoS algorithm. Irresberger et al. (2021) show that PoW and PoS are the two most
widely employed consensus protocols. Other types of cryptocurrencies include smart contracts, decentralized
exchanges (DEX), interoperability, privacy, Delegated Proof of Stake (dPoS), andMasternode coins, among oth-
ers. Given the different underlying mechanisms and algorithms used in each cryptocurrency category, investors
may wish to treat them as separate asset categories and choose to construct cryptocurrency portfolios embedded
in the cryptocurrency categories that provide the highest diversification benefits when added to portfolios. The
advantage of forming portfolios using categories (classes) of cryptocurrencies is that returns for aggregations of
similar cryptocurrencies should tend to have more normal distributions than individual cryptocurrencies due
to the central limit theorem. Aggregating cryptocurrencies into nine categories also enables us to consider 553
cryptocurrencies, albeit indirectly. In addition, many studies consider various asset categories (e.g. equities and
bonds, etc.), not individual assets.

The purpose of this study is to investigate the diversification benefits of CCACs, taking into account the
estimation risk of the input parameters. We examine whether the out-of-sample performance of crypto-asset
portfolios (equities, bonds and one of the nine CCACs) improves the performance of the benchmark portfo-
lio. We also do this for the pre and post-Covid-19 periods as the economic uncertainly would be of a particular
interest for investors.We apply the Bayes-Stein portfolio strategy (Jorion 1985, 1986), which has been developed
explicitly to deal with estimation error, with two sets of constraints – no short selling constraints, and variance
bounds constraints (VBCs). Bayes-Stein estimation has beenwidely applied in the portfolio choice literature (e.g.
Bessler, Opfer, and Wolff 2017; DeMiguel, Garlappi, and Uppal 2009; Platanakis and Sutcliffe 2017; Platanakis,
Sutcliffe, and Ye 2021). To estimate the expected returns vector, we consider two popular machine learning tech-
niques, lasso regression (Tibshirani 1996), and elastic net regression (Zou and Hastie 2005; Zou 2006). Lasso
and elastic net regression address overfitting, and allow us to obtain a better bias-variance trade-off.We also use
a shrunk Wishart stochastic volatility (SWSV) model for forecasting the covariance matrix. The SWSV model,
which allows the covariances to be driven by a Wishart process, was originally developed by Uhlig (1997), and
then exploited in portfolio applications by Moura, Santos, and Ruiz (2020) and others. We further exploit the
benefits of shrinkage by using Gaussian random projection (GRP), in which the dimension of the initial covari-
ances is reduced. SWSV offers a more flexible approach than multivariate GARCH to forecasting our dynamic
covariance matrix, and GRP addresses estimation errors in the initial covariance matrix. Estimates of the asset
moments are used to maximize the expected utility of a mean-variance investor, subject to two alternative sets
of constraints: no-short-sales, and no-short-sales plus VBCs.

Our results suggest, first, there is evidence that all but two CCACs (dPoS coins and Tokens) provide diver-
sification benefits to investors, and four (Smart Contracts, PoW coins, PoS coins, and Masternode coins) are
significantly beneficial, regardless of the level of investor risk aversion. The remaining three CCACs (DEX coins,
Interoperability, and Privacy coins) are beneficial only to risk averse investors. Second, we find that CCACs pro-
vide more diversification benefit to aggressive investors than to conservative investors. Third, during uncertain
economic environments (e.g. the post-Covid-19 period), CCACs continue to provide diversification benefits to
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investors. Our results are robust to different portfolio benchmarks, the pre or post-Covid-19 periods, regres-
sion technique, no short-sales and VBCs, portfolio selection with higher moments, transaction costs, and the
Black–Litterman model.

Our main contribution to the literature on cryptocurrency portfolios as diversifiers is that we are the first,
to our knowledge, to use CCACs. They have different characteristics from conventional assets, and individual
cryptocurrencies. Previous studies do not provide a systematic examination of cryptocurrency diversification
benefits out-of-sample, while considering estimation risk. We deal with the problem of the estimation errors
in forecasting portfolio inputs, and are the first to apply the Bayes-Stein estimator using lasso and elastic net
regression.We also employ the SWSVmodel, coupledwithGaussian randomprojection, which allows the return
covariance matrix to be driven by a Wishart process, addressing the problem of significant estimation errors in
forecasting inputs. We also consider the impact of an uncertain economic environment, specifically the post-
Covid-19 pandemic period. Our analysis will assist investors and practitioners in using CCACs to construct
diversified portfolios, including during uncertain economic environments.

The rest of the paper is as follows: Section 2 presents the literature review, and Section 3 presents ourmethod-
ology andperformancemetrics. Section 4 contains a description of our data set, empirical results, and discussion.
Section 5 has our robustness checks. Finally, Section 6 summarizes and concludes the paper.

2. Literature review

One strand of the literature examines the price dynamics of Bitcoin, and the relationship between Bitcoin and
other financial assets. In terms of prices, Makarov and Schoar (2020) examine the arbitrage opportunities in
cryptocurrency markets and price co-movements across and within countries. Urquhart (2016) finds that Bit-
coin returns are inefficient, which agrees with Nadarajah and Chu (2017) and Bariviera (2017). Zhang et al.
(2021) find a positive cross-sectional relation between downside risk and future returns in the cryptocurrency
market. Foley, Karlsen, and Putninš (2019) document the illegal activity conducted via Bitcoin, and Gandal
et al. (2018) examine price manipulation. The literature also examines the price clustering at round numbers of
Bitcoin prices (Urquhart 2017); bubbles in Bitcoins (Cheah and Fry 2015; Corbet, Lucey, and Yarovaya 2017);
Bitcoin susceptibility to speculative bubbles, particularly for the period 2010–2014, and Bitcoin market effi-
ciency (Urquhart 2016; Nadarajah and Chu 2017; Tiwari et al. 2018; Khuntia and Pattanayak 2018). Koutmos
(2018) examines the relationship between Bitcoin returns and transaction activity, and Shen, Urquhart, and
Wang (2019) find that the number of Bitcoin tweets is a significant driver of cryptocurrency volatility and trad-
ing volume. Whether Bitcoin volume predicts returns in bull and bear regimes has been examined by Balcilar
et al. (2017), while Grobys and Sapkota (2019) find no evidence of significant momentum in cryptocurrency
profits. Dwyer (2015) shows that the average monthly volatility of Bitcoin is higher than for a set of foreign
currencies and gold.

A number of researchers have examined the hedging abilities of Bitcoin. Dyhrberg (2016) finds that, similar to
gold, Bitcoin provides a hedge for the US dollar and the UK stockmarket; and Urquhart and Zhang (2019) show
that Bitcoin can hedge sterling, euros and Swiss francs.However, Klein, Thu, andWalther (2018) find that Bitcoin
and the cryptocurrency index CRIX do not have the same hedging capabilities as gold, which is in alignment
with Pho et al. (2021). Employing quantile coherency analysis, Jiang et al. (2021) find that cryptocurrencies
hedge against the economic policy uncertainty index (EPU), but not during periods of moderate or low EPU
values. Using quantile regression, Bouri et al. (2017a) find that, for short investment periods, Bitcoin provides a
hedge against global uncertainty in bull regimes.

Another strand of the literature directly examines the diversification benefits of cryptocurrencies. As the cor-
relation between Bitcoin and other financial assets is very low, the inclusion of Bitcoin significantly improves the
risk-adjusted returns of portfolios (Brière, Oosterlinck, and Szafarz 2015). Guesmi et al. (2018) show that Bit-
coin provides diversification benefits by offering a good hedge against many different assets. Wu and Pandey
(2014) also demonstrate that Bitcoin improves the performance of an investor’s portfolio, and Bouri et al.
(2017b) use a dynamic conditional correlation (DCC) model to show that Bitcoin can be an effective diversi-
fier. Cryptocurrency diversification benefits have also been examined in an international context. For instance,
Kajtazi andMoro (2019) examine the inclusion of Bitcoin in portfolios of European, US, and Chinese assets, and
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find there is an improvement in performance.Most previous studies, especially those examining the direct diver-
sification benefits of a particular cryptocurrency, examine in-sample performance for relatively short periods,
using only one portfolio optimization technique. Previous studies have focussed on individual cryptocurrencies,
while CCACs have different characteristics, e.g. more normal distributions.

The Markowitz (1952) mean-variance portfolio optimization framework is highly sensitive to estimation
errors in the input parameters, and this has been extensively documented in the academic literature, e.g. Kan
and Zhou (2007), Levy and Levy (2014). Therefore, studies have examined whether naïve strategies (e.g. 1/N)
outperform mean-variance optimal portfolio diversification out-of-sample. For instance, Board and Sutcliffe
(1994) suggest there is little difference between 1/N and more advanced estimated methods for portfolio selec-
tion. However, DeMiguel, Garlappi, and Uppal (2009) find that 1/N is superior to various portfolio optimization
models in an out-of-sample setting across several markets. As cryptocurrencies are highly volatile (Chaim and
Laurini 2018), there is a greater potential for estimation errors in their parameters, making the use of portfo-
lio theory problematic for portfolios including cryptocurrencies. This issue has been examined by Platanakis,
Sutcliffe, andUrquhart (2018, 2019a)with the application ofmore advanced optimization techniques using alter-
native estimates for the input parameters; and imposing tighter constraints on those asset weights with higher
prospective estimation errors. Sincemany cryptocurrency traders are retail investors (Dyhrberg, Foley, and Svec
2018), they are more likely to use heuristics to construct their portfolios. A heuristic approach has been used
by Kawas and Thiele (2017) when dealing with portfolio management estimation risk, and by Platanakis, Sut-
cliffe, and Urquhart (2018) who show there is no difference in performance between the seven heuristics they
examine. The impact of noisy input parameters on the accuracy of estimated portfolio risk, and the hedging of
parameter risk have been examined by Loffler (2003) and Clauben, Rosch, and Schmelzle (2019), respectively.
We address the estimation risk of the input parameters, which is more intense during periods of great economic
uncertainty, such as the Covid-19 global pandemic.

The global pandemic of Covid-19 has severely affected financial markets worldwide (Sharif, Aloui, and
Yarovaya 2020; Caferra and Vidal-Tomas 2021; Izzeldin et al. 2021; Umar et al. 2021; He, Nagel, and Song 2022).
Cryptocurrencies have suffered from instability to an even greater extent than international stockmarkets (Lah-
miri and Bekiros 2020; Salisu and Ogbonna 2021). While the correlation between cryptocurrencies and equity
indices has gradually increased as Covid-19 progressed, this increase has been either minimal or modest, sug-
gesting that diversification benefits continue to be derived from cryptocurrencies (Goodwell and Goutte 2021).
Luo et al. (2021) find an inverse relation between estimation risk and abnormal returns from investment in
Bitcoin; particularly during periods of economic uncertainly like the post-Covid-19 period. Mnif, Jarboui, and
Mouakhar (2020) find that Covid-19 has had a positive impact on cryptocurrency market efficiency; which is
in alignment with Iqbal et al. (2021), who find that most cryptocurrencies have had positive returns in response
to small increase in the number of Covid-19 cases. Nevertheless, overall, the relationship between cryptocur-
rency returns and Covid-19 is asymmetric, and varies in direction and magnitude at different quantiles of both
variables. Conlon andMcgee (2020) andMelki andNefzi (2021) find that, like gold, cryptocurrencies act as safe-
haven assets, although such behavior differs acrossmarkets. Sarkodie, Ahmed, andOwusu (2022) document that
the pandemic containment measures act as market signals for cryptocurrencies, and Yarovaya, Matkovskyy, and
Jalan (2021) find that cryptocurrency herding remains contingent on up and down days, but has not got stronger
during Covid-19. Previous studies have examined the effects of Covid-19 on particular cryptocurrencies, while
we consider the effects of Covid-19 on CCACs, along with the problem of estimation risk.

3. Methodology

We investigate the diversification benefits of nine CCACs by examining whether the out-of-sample performance
of portfolios formed with equities, bonds and a CCAC is superior to the performance of a benchmark portfo-
lio of equities and bonds. We make various attempts to mitigate the effects of estimation risk. (1) We use the
Bayes-Stein model, subject to no short sales constraints; (2) no short sales and VBCs; (3) using lasso regression
to estimate the expected returns (before shrinking towards the global mean); (4) using elastic net regression to
estimate the expected returns (before shrinking towards the global mean); (5) We shrink the initial covariance
using dimension reduction – GRP as a form of regularization; and (6) We use covariance matrices based on the
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SWV estimator. We let the covariance matrix be driven by a stochastic Wishart process, so that the volatility
dynamics are simply captured by an initial covariance matrix and a time-decaying factor. We divide our sam-
ple into the pre-Covid-19 and post-Covid-19 periods, which enables us to assess the impact of Covid-19 on
diversification in such an uncertain economic environment.

3.1. Bayes-Steinmodel

The Bayes-Stein portfolio model is designed to address estimation risk. It has been applied by many portfolio
selection researchers (e.g. Garlappi, Uppal, andWang 2007; DeMiguel, Garlappi, andUppal 2009; Bessler, Opfer,
and Wolff 2017; Platanakis, Sutcliffe, and Ye 2021), and has been shown to produce superior out-of-sample
portfolio performance (Jorion 1985; Chopra, Hensel, and Turner 1993, among others).

The idea behind the Bayes-Stein model is that, given the sensitivity of the asset allocation to the input
parameters, particularly the expected return, the expected returns of the assets are shrunk towards their global
mean. This effectively ‘pulls’ extreme values towards the center, reducing the influence of outliers. The adjusted
(shrunken) Bayes-Stein vector of mean returns μBS is computed as the weighted sum of the original vector of
mean returns μml (estimated using maximum likelihood) and the global mean return μg , while gmv represents
the shrinkage factor:

μBS = (1 − gmv)μml + gmvμg1 . (1)

Jorion (1985) shows that gmv can be computed from a suitable prior:

gmv = N + 2
(N + 2)+ M(μml − μg1)TH−1

t (μml − μg1)
, (2)

where N is the number of assets, M is the in-sample size, 1 is a column vector of 1s, H−1
t denotes the inverse

of the shrunk Wishart stochastic covariance matrix and 0 ≤ gmv ≤ 1. The adjusted Bayes-Stein conditional
covariance matrix has the following general form:

HBS
t = Ht

(
N + υ + 1
N + υ

)
+ υ

N(N + υ + 1)
11T

1TH−1
t 1

, (3)

where υ represents the prior precision, which is calculated as follows:

υ = M + 2
(μml − μg1)TH−1

t (μml − μg1)
. (4)

3.2. Expected returns vector

Weconsider twomachine learning techniques, lasso and elastic net regression, for estimating the expected return
vector (μml), which are also used as part of the computation of μg in the Bayes-Stein model.

3.2.1. Least absolute shrinkage and selection operator (Lasso)
It is well-documented that ordinary least squares (OLS) is inefficient and inconsistent when the number of
observations approaches the number of predictors. It is prone to overfitting which reduces the unexplained
in-sample variation, and also reduces out-of-sample forecasting performance. For this reason, what becomes
important is to decrease the number of estimated model parameters to obtain a better bias-variance trade-off.
Tibshirani (1996) proposed lasso regression, which regularizes large values of the estimated parameters towards
or to exactly zero, giving a sparse, parsimonious model (see Bianchi and Babiak 2020). Lasso is well-suited to
performing sparse estimation and variable selection simultaneously, and possesses the key advantage that it
avoids the risk of non-convergence to the global optimum, which affects stepwise regression.
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The general idea of lasso regression is to minimize the sum of squared residuals subject to a l1-norm of
penalty. The functional form of lasso regression can be defined as in Equation (5) for d regression coefficients
(βj):

L(β ,�) =
M∑
t=1

(yt − β0 −
d∑

j=1
βjxjt)2 +�

d∑
j=1

|βj| . (5)

where xjt is the jth regressor at period t, and � denotes the non-negative penalizing parameter. When � = 0,
the regression reduces to standard OLS, for 0 < � < ∞, weights of the trivial regressors are shrunk towards or
exactly to zero, depending on the strength of the shrinkage.

3.2.2. Elastic net
Elastic net is another popular regression technique that uses machine learning, and was originally developed
by Zou and Hastie (2005) to deal with several issues with lasso regression. For example, randomly selecting
one predictor (x) from a set of highly correlated predictors, and underperformance in comparison to alterna-
tive methods when the number of predictors exceeds the number of observations. Elastic net uses a convex
combination of lasso and another penalty function – ridge regression, with the following functional form:

L(β ;�,ϑ) =
M∑
t=1

(yi − β0 −
d∑

j=1
βjxjt)2 +�(1 − ϑ)

d∑
j=1

|βj| + 1
2
�ϑ

d∑
j=1

β2j . (6)

In contrast to lasso regression, ridge regression minimizes the sum of the squared residuals with a l2-norm
penalty, which implies that it shrinks the size of the coefficients, but not to precisely zero. The model finds a
compromise between ridge and lasso regression by using two non-negative hyperparameters, the penalizing
parameter� and the weight in the ridge specification, ϑ , which are adaptively optimized during each training.
For ϑ = 0, the model reduces to lasso, and for 0 < ϑ < 1, elastic net has the characteristics of both lasso and
ridge. Instead of randomly selecting one predictor from a highly correlated group, it includes them all in the
estimated equation with similar coefficients.

3.3. ShrunkWishart stochastic volatility (SWSV)

Suppose we have an n-dimensional time-series return, rt ∈ R
N generated by:

rt = H−1/2
t εt , (7)

where εt follows amultivariateGaussian distributionwith a zeromean and anN × N identity covariancematrix,
i.e. εt ∼ iid(0, IN). Here Ht is the N × N covariance matrix of rt with its inverse (H−1

t , also known as the
precision matrix) driven by a singular Dirichlet distribution shock:

H−1
t = κ + 1

κ
U(H−1

t−1)
TϕtU(H−1

t−1), with ϕt ∼ BN

(
κ

2
,
1
2

)
, (8)

where U(HT
t ) is the upper triangular matrix from the Cholesky decomposition of H−1

t , ϕt is the unobserved
random shocks drawn from the singular Dirichlet distribution BN , κ is a scalar of degrees of freedom. The key
advantage of using the singular Dirichlet distribution is to get an analytical expression of the matrix-variate
random walk as presented by Uhlig (1997), whereby the nonlinear filtering of the precision matrix is derived
in closed-form by exploiting conjugacy between the singular Dirichlet andWishart distributions. SupposeH−1

t
starts with a prior that follows aWishart distribution: H−1

t−1|rt ∼ WN(κ , [κSt−1]−1) and E(H−1
t ) = St−1, then
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the smoothing formula can be derived as:

St = ψ tS0 + (1 − δ)

t−1∑
i=1

δi−1rt−irTt−i, (9)

where ψ = κ
κ+1 operates as the discount factor, and 0 < ψ < 1 will always hold true for κ > 0. The model

has a close relationship to the exponential weighted moving average (EWMA) model, and the major difference
between them is that the discount factor of EWMA is fixed by the data frequency, while for the SWSV it can be
estimated using maximum likelihood, conditional on the initial covariance matrix, S0 (see Kim 2014; Moura,
Santos, and Ruiz 2020). Thus, the choice of S0 becomes crucial because it governs the dynamics of SWSV not
just through itself, but also through two important aspects: (1) the discount factor in the EWMA specification,
and (2) the shrinkage intensity between the discounted S0 and EWMA.

Moura, Santos, and Ruiz (2020) show that, while using a diagonal matrix where the principal diagonal con-
tains the in-sample variance of each individual asset yields successful out-of-sample results, it is flawed due to
the amount of information discarded. We avoid this pitfall by regularizing the conditional correlations using
GRP. GRP is a very popular dimension reduction technique that has been largely employed in the areas of data
processing and numerical linear algebra, and is normally applied when the application of the classical dimen-
sion reduction techniques is too difficult in a high dimensional setting. The underlying idea is to construct
a mapping which projects the original input space H ∈ RN into a lower-dimensional space Rq based on the
statistical properties of some random distribution, so that pairwise distances between points are nearly pre-
served. The intuition of transforming H ∈ RN onto Rq is given by the Johnson Lindenstrauss Lemma, that for
any 0 < ω < 1: (1 − ω)

√
N
∣∣vi − vj| ≤ |�vi − �vj

∣∣≤ (1 + ω)
√
N
∣∣ vi + vj

∣∣holdswith a high probability, where
|vi − vj| refers to the pairwise distance between pairs of points, and ω denotes the factor which preserves the
distance. The randommatrix� is created by sampling random variables from a Gaussian distribution for its ith
and jth entries, and pre-multiplying by a constant

√
N to account for reduced pairwise distances when projecting

to lower dimensions. In this sense the information is preserved as far as possible.

3.4. Portfolio optimization

Markowitz mean-variance portfolio selection has been the mainstay of portfolio allocation over the past half
century, and remains the most influential tool in the portfolio literature. This model selects risky assets that
maximize the investor’s expected utility by optimizing the trade-off between the expected return and variance
of portfolio returns:

max U = xTμBS − λ
2x

THBS
t x

st.
∑N

i=1 xi = 1, xi ≥ 0 ∀ i ∈ {1, 2, . . . ,N}, (10)

where λ is the risk aversion coefficient, x is the N × 1 vector of asset weights, subject to the constraints that
portfolio weights sum up to 1 and a non-negativity constraint. Fan, Zhang, and Yu (2012) show that imposing
a no short sales constraint is equivalent to an l1-norm, and encourages a sparse solution. The absence of such
a constraint can lead to the sale or purchase of every asset in the model, with unrealistically large short sales of
some assets.

As explained by Jagannathan andMa (2003), no-short sales constraints can be regarded as a formof shrinkage
of the covariance matrix in order to handle estimation risk. We follow Levy and Levy (2014), and for some of
our results we also impose VBCs to further regularize the portfolio weights in line with the asset volatility:

max U = xTμBS − λ
2x

THBS
t x

st.
∣∣xi− 1

N
∣∣ σi
σ̄

≤ α,
∑N

i=1 xi = 1, xi ≥ 0 ∀ i ∈ {1, 2, . . . ,N}, (11)

VBCs are heterogenous constraints that reduce the weights assigned to highly volatile assets. σi/σ̄ is the standard
deviation of asset i (σi), over the average standard deviation of all assets (σ̄ ). The scalar α controls the intensity
of the constraint, and is set to 0.1.
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To produce smoothed and more stable portfolios we follow Board and Sutcliffe (1994) and Tu (2010) and
estimate the covariancematrix using an expandingwindow. Becausewe use lasso and elastic net, for the expected
returns we use a 52-week rolling window, where we estimate the portfolio weights xt using data for the previous
52weeks.We use a rolling (expanding) window for expected returns (covariances) becausewe expect that rolling
windows are more responsive to structural breaks for the estimation of returns. At the same time, correlations
are oftenmore stable over time; see Bessler, Opfer, andWolff (2017) and Platanakis andUrquhart (2020), among
many others. We then compute the out-of-sample portfolio return for the current period, i.e. rp,t = xTt rt , where
rt is the vector of asset returns for the current period. This procedure is repeated until the available data is
exhausted.

3.5. Performancemeasures

The Sharpe ratio, is defined as the ratio of the average excess return, divided by the portfolio standard deviation
σp:

Sharpe = rp − rf
σp

, (12)

To test whether the Sharpe ratios of each crypto-asset portfolio are statistically better than the benchmark
portfolio, we follow Jobson and Korkie (1981) and compute the Z-statistic, assuming that asset returns are
independently, identically and normally distributed:

Z = (σ�μτ − στμ�)/
√
ς , (13)

where μτ , μ� are the mean returns of the crypto-asset portfolio τ and the benchmark portfolio �. στ , σ�, στ ,�
are the corresponding portfolio standard deviations and covariances of the excess returns, where ϕ is given by:

ς =
(
2σ 2
τ σ

2
� − 2στσ�στ ,� + μ2

τ σ
2
�

2
− μτμ�σ

2
τ ,�

στ σ�

)
/(T − M). (14)

Let T denote the length of the data series, and M denote the length of the period for which asset moments
are estimated. A statistically significant Z-statistic rejects the null hypothesis of equal risk-adjusted perfor-
manceH0 : μτστ = μ�

σ�
, and provides evidence of out-performance. Although thismeasure uses the assumption of

normally distributed data, DeMiguel, Garlappi, and Uppal (2009) demonstrate its usefulness in the face of non-
normal returns when assessing portfolio performance based on sample estimates of the parameters. DeMiguel,
Garlappi, and Uppal (2009) show that, for a portfolio with 25 assets, until the estimation window has 3,000
months their findings with non-normal returns are consistent with the results for simulated data that has a
normal distribution.

The second performance measurement we consider is the certainty equivalent return (CER), i.e. the
guaranteed return that an investor is willing to accept, rather than undertaking an alternative risky strategy:

CER = rp−
λ

2
σ 2
p , (15)

where rp and σp are the portfolio expected return and standard deviation, respectively, and λ is the risk-aversion
of the investor. The significance of the difference in CER performance between the crypto-asset portfolio τ and
the benchmark � can also be tested using the Z-statistic, assuming the asymptotic distribution properties of the
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functional form of the first and second asset moments hold (DeMiguel, Garlappi, and Uppal 2009):

Z = [(μ� − κ

2
σ 2
� )−

(
μτ − κ

2
σ 2
τ

)
]/θ ,

where θ =

⎛
⎜⎜⎝
σ 2
� στ ,� 0 0

στ ,� σ 2
τ 0 0

0 0 2σ 4
� 2στ ,�

0 0 2στ ,� 2σ 4
τ

⎞
⎟⎟⎠ (16)

Our third performance measure is the Sortino ratio, which is similar to the Sharpe ratio. However, instead of
the standard deviation of all excess returns, it considers only the standard deviation of downside excess returns:

Sortino = r̄p − r̄f
drp

, (17)

where drp denotes the standard deviation of downside excess returns.

4. Data and empirical results

4.1. Data description

We use cryptocurrency data formwww.coinmarketcap.comwhich is a leading source for price and volume data.
Coinmarketcap.com incudes both defunct and active cryptocurrencies, thus, mitigating survivorship bias. We
consider cryptocurrencies with a minimum market capitalization of $10 million. We calculate weekly returns
from cryptocurrency prices (Fridays) covering the period 14th November to 25th of December 2020.2 Our
analysis uses 320 weekly returns for nine of the most popular CCACs. We select data for these nine CCACs
from https://cryptoslate.com/coins/ – Smart Contracts, DEX coins, Interoperability, Privacy coins, PoW coins,
PoS coins, dPoS coins, Masternode coins, and Tokens.3 The risk-free rate is from Kenneth French’s website, and
both the S&P500 total return index, and the Barclays US Government Bond aggregate return index are from
Bloomberg. Table 1, Panel A, presents the correlation matrix for the CCACs. The highest (lowest) correlation
is between PoW coins and Smart contracts (Tokens and dPoS coins) at 0.793 (0.0003). All the cryptocurrency
correlations are statistically significant at the 1% level, except for those with Tokens.

Table 1, Panel B, presents weekly summary statistics for each CCAC. DEX coins have the lowest average
return (0.025) and a relatively low standard deviation (0.185), and so have the greatest appeal tomore risk averse
investors, while Tokens have the highest average return (0.295) and the highest standard deviation (3.701), mak-
ing them attractive to less risk averse investors. Jarque-Bera normality tests for our nine CCACs are presented,
where the null hypothesis of the normality of returns is strongly rejected. For example, Tokens and dPoS coins
have Jarque-Bera values of over 40,000. Mean prices and sector dominance (percentage share of the overall
crypto market) are presented in Table 1, revealing large differences between CCACs. Panel C of Table 1 presents
statistics for the cryptocurrency coins along with their unique (443) and non-unique (79) totals. Following the
cryptoslate website, 46, 15, and 1 cryptocurrency coins are grouped into 2 (double), 3 (triple), and 4 (quadruple)
CCACs, respectively. We keep this process to avoid both selection bias and to exclude cryptocurrencies with
short data series.

Finally, we use the S&P 500 and ten-year T-bonds as proxies for the stock and the bond markets, as they are
widely used in the literature. Our data is on weekly basis, and the data for S&P 500 and 10-year T-bonds are
collected from CRSP. The data for the risk-free rate is from the Kenneth French website.

4.2. Empirical results and discussion

In this section, we present our empirical results.We compare the out-of-sample performance of the nine crypto-
asset portfolios (i.e. portfolios of equities, bonds and one of the nine CCACs) relative to a benchmark of equity
and bonds. We use the Bayes-Stein model with three levels of investor risk aversion (λ = 1, 3 and 5), and three
performance measures to assess the out-of-sample risk-adjusted performance of our crypto-asset portfolios.

http://www.coinmarketcap.com
https://cryptoslate.com/coins/
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Table 1. Summary statistics.

Num of
cryptos

Smart
Contracts DEX Coins

Interopera-
bility

Privacy
Coins

PoW
Coins

PoS
Coins

dPoS
Coins

Masternode
Coins Tokens

Panel A: CorrelationMatrix
Smart Contracts 48 1.000
DEX Coins 25 0.720∗ 1.000
Interoperability 26 0.475∗ 0.439∗ 1.000
Privacy Coins 25 0.549∗ 0.471∗ 0.361∗ 1.000
PoW Coins 46 0.793∗ 0.649∗ 0.462∗ 0.764∗ 1.000
PoS Coins 54 0.762∗ 0.654∗ 0.432∗ 0.674∗ 0.769∗ 1.000
dPoS Coins 16 0.574∗ 0.653∗ 0.309∗ 0.355∗ 0.547∗ 0.531∗ 1.000
Masternode Coins 21 0.551∗ 0.357∗ 0.581∗ 0.574∗ 0.607∗ 0.532∗ 0.278∗ 1.000
Tokens 261 −0.003 −0.018 −0.010 −0.011 −0.002 −0.000 −0.000 −0.000 1.000

Panel B: Summary Statistics
Mean return 0.038 0.025 0.046 0.051 0.038 0.043 0.032 0.052 0.295
Median 0.014 −0.003 0.015 0.027 0.029 0.024 −0.009 0.029 0.023
SD of returns 0.157 0.185 0.268 0.203 0.133 0.155 0.266 0.176 3.701
Skewness 0.889 1.762 4.427 2.742 0.668 0.925 5.949 1.556 17.364
Kurtosis 4.837 9.117 42.456 17.944 5.261 5.512 61.298 7.442 307.182
Jarque-Bera 87.158 664.503 21802.5 3378.89 91.890 129.735 47203.3 392.246 124977.1
Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Price 253.61 4.79 1,117.67 13.77 1,292.00 6.70 0.98 25.88 253.61
Sector dominance 15.74% 0.59% 2.31% 0.80% 85.93% 4.20% 0.96% 0.26% 5.17%

Panel C: Crypto coins
Mean Median SD Skewness Kurtosis

Unique 443 0.195 −0.004 3.291 3.598 38.576
Non-unique 79 Double: 46 Triple: 15 Quadruple: 1

Note: In this table, Panel A, presents the correlation matrix of the cryptocurrency returns. An ‘∗’ denotes statistical significance at the 1% level. Panel B presents the weekly return statistics (in decimals)
of the mean, median, maximum, minimum, standard deviation (SD), skewness, and kurtosis, along with their Jarque-Bera tests for normality for each CCAC. Mean prices and sector dominance
percentages are presented for each CCAC. Panel C present statistics on crypto coins, the number of (non-)unique coins, and the number of crypto multiple categories.
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4.2.1. Bayes-Stein results
Tables 2–4 present the results for the whole sample period for the Bayes-Stein model using lasso and elastic
net regression with λ = 1, 3 and 5 levels of risk aversion, representing aggressive, moderate, and conservative
investors, respectively. In Table 2 for λ = 1 most crypto-asset portfolios have higher Sharpe ratios than the
corresponding benchmark portfolio. All the crypto-asset portfolios provide higher CER ratios than their corre-
sponding benchmark portfolio except for Tokens, and in most cases are statistically significant at the 1% level.
In every case, except for dPoS coins, the inclusion of a CCAC also leads to an improvement in the Sortino ratio.
When considering all the results, out of the 108 comparisons in Table 2, only 14% of the benchmark values are
higher than those of the portfolios which include a CCAC, and this is mainly due to dPos coins and Tokens.

Table 3 presents the results for λ = 3. Most crypto-asset portfolios have higher Sharpe ratios and CER than
the corresponding benchmark portfolios; and for VBCs with no short sales, 72% of the crypto-asset portfolios
are statistically superior. Of the 108 performance measures in Table 3, only 18% of the benchmark values are
higher than those of the corresponding crypto-asset portfolio, and the exceptions are not statistically significant.

Table 4 presents the results for λ = 5. Most Sharpe ratios for crypto-asset portfolios with VBCs with no short
sales are higher and statistically significant at the 1% level. The exceptions are dPos coins and Tokens. Similar
results apply for CERs, but with the exception of Interoperability and Privacy in addition to dPos coins and
Tokens. For no short sales, the Sharpe ratio and CER results are mixed, and few of the differences are significant.
In only 20% of the 108 comparisons in Table 4 does the benchmark have a superior performance measure than
the corresponding crypto-asset portfolio; and half of them are due to dPos coins and Tokens.

Overall, Smart Contracts, PoWcoins, PoS coins, andMasternode coins provide consistently significant diver-
sification benefits to investors, regardless of investor risk aversion. DEX, Interoperability, and Privacy coins
provide strong diversification benefits, especially for aggressive (λ = 1) investors. dPoS coins and Tokens do
not provide a strong improvement in performance. The main use of Tokens is to raise funds for crowd sales.
They reside on blockchains, and are created via initial coin offerings. The category of Tokens is the riskiest cryp-
tocurrency class among the nine categories we study as measured by the standard deviation of returns; and
hence is more exposed to estimation risk. Tokens also have the largest skewness and kurtosis of our nine cat-
egories. Hence, any diversification benefits for Tokens disappear out-of-sample due to the larger errors in the
input parameters, even when using sophisticated portfolio models. This is probably attributed to their primary
functionality, e.g. raising funds for crowd sales. Token coins perform differently than crypto coins. Unlike crypto
coins, Tokens can represent exchangeable and tangible assets or utilities (commodities, cash, electricity, and dig-
ital assets, among others) that reside on their own blockchains. Hence, Tokens can represent units of value, and
are often created and traded via the initial coin offerings (ICOs) process. Consequently, a higher level of risk for
Token coins, in comparison to other CCACs, should not be surprising to investors. dPoS is a new category in
which the participants vote for a group of delegates to validate blocks for all the nodes in the network, making it
substantially different to both the PoW and PoS categories. Due to the limited number of delegates who secure
the network, dPoS coins require less computing power and energy consumption. The dPoS category contains
less popular coins such as TRON, Terra, EOS, and Tezos; and has a long way to go to reach the popularity of the
PoS and PoW categories. Hence, it is not surprising that, like Tokens, the dPoS category has higher risk, with the
third highest standard deviation of returns among the nine cryptocurrency categories we study, and the second
largest skewness and kurtosis of returns. This is mainly attributed to the unique characteristics of dPoS and its
developing nature in comparison to the other CCACs as described above.

There is also evidence that crypto-asset portfolios provide more diversification benefits for aggressive
investors than for conservative investors. For instance, in 20%of the 108 comparisons in Table 4 (λ = 5) does the
benchmark have a superior performance whereas in Table 2 (λ = 1) this figure drops to 14%. Including CCACs
in their portfolio is generally more beneficial for investors who are willing to tolerate risk. Our results are in
alignment with Platanakis and Urquhart (2020) in terms of the superiority of the risk-adjusted performance of
crypto-asset portfolios for different levels of investor risk aversion, and Guesmi et al. (2018) in terms of crypto-
asset portfolio risk, compared to more ‘traditional’ portfolios. We also agree with Kajtazi andMoro (2019), who
found that the addition of Bitcoin improved the performance of portfolios of US, European, and Chinese assets.
Wu and Pandey (2014) and Guesmi et al. (2018) also conclude that Bitcoin improves the performance of an
investors’ portfolios.
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Table 2. Bayes-Stein Shrinkage, for λ = 1 – whole sample period.

Whole period Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 1 (no-short sales)
Lasso SR 2.5731 2.9853 2.3358 1.8898 2.4514 3.2377 3.1148 1.3064 2.6786 0.5696

CER 0.2934 2.4624∗∗∗ 1.9810∗∗∗ 1.7681∗∗ 2.2209∗∗∗ 2.3200∗∗∗ 2.4860∗∗∗ 0.6900 2.4561∗∗∗ −407.1897
SOR 1.0337 1.4504 1.2367 1.2713 1.3769 1.4851 1.6743 0.8179 1.3237 4.9857

Elastic Net SR 1.7994 2.7615∗∗ 2.0825 1.9371 2.4631 3.1093∗∗ 2.9592∗∗ 1.3365 2.5678∗ 0.7856
CER 0.2280 2.2769∗∗∗ 1.7400∗∗∗ 1.8491∗∗ 2.2532∗∗∗ 2.2616∗∗∗ 2.3809∗∗∗ 0.7351 2.3186∗∗∗ −54.0258
SOR 0.3896 1.2086 1.0482 1.3026 1.2798 1.3105 1.4370 0.7925 1.2222 3.0935

λ = 1 (VBC & no-short)
Lasso SR 1.6994 3.2743∗∗∗ 2.5203∗ 2.2056 2.8179∗∗ 3.4938∗∗∗ 3.3894∗∗∗ 1.5809 2.9677∗∗∗ 0.5886

CER 0.1312 1.1829∗∗∗ 1.0303∗∗∗ 1.2456∗∗∗ 1.2032∗∗∗ 1.0955∗∗∗ 1.1960∗∗∗ 0.8662∗∗∗ 1.2522∗∗∗ −51.3943
SOR 0.4532 1.5557 1.2946 1.3731 1.4975 1.5509 1.6309 0.9474 1.4268 5.0580

Elastic Net SR 1.3499 2.846∗∗∗ 2.3503∗∗ 2.1454∗ 2.6585∗∗∗ 3.1678∗∗∗ 3.2085∗∗∗ 1.5389 2.8825∗∗∗ 0.5952
CER 0.1113 1.0737∗∗∗ 0.9726∗∗∗ 1.2097∗∗∗ 1.1518∗∗∗ 1.0240∗∗∗ 1.1611∗∗∗ 0.8420∗∗∗ 1.2346∗∗∗ −50.9591
SOR 0.2865 1.0038 1.0164 1.2281 1.2053 1.1849 1.3445 0.8246 1.2224 4.9138

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 1, for the benchmark portfolio
(equity and bonds) and the corresponding cryptocurrencies, within the whole sample period. We use Lasso and Elastic Net regression techniques with no-short sales, and variance-based constraints
(VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available upon
request.

Table 3. Bayes-Stein Shrinkage, for λ = 3 – whole sample period.

Whole period Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 3 (no-short sales)
Lasso SR 2.5456 2.9655 2.3454 1.6357 2.4604 3.3248 3.0564 1.2728 2.6162 0.6009

CER 0.2711 1.4487∗∗∗ 0.8605∗ −1.1033 0.8857 1.6683∗∗∗ 1.5277∗∗∗ −2.1772 1.0980∗∗ −706.5490
SOR 1.0355 1.7486 1.5178 1.2152 1.8244 1.8768 2.0138 1.0753 1.4818 4.0411

Elastic Net SR 1.8672 2.8005∗ 2.1018 1.6698 2.3572 3.2658∗∗∗ 2.9281∗∗ 1.2637 2.4285 1.0969
CER 0.2140 1.3050∗∗∗ 0.5899 −1.1084 0.7413 1.6454∗∗∗ 1.4205∗∗∗ −2.3216 0.8595∗ −20.4345
SOR 0.4151 1.4614 1.2055 1.1658 1.3725 1.6552 1.5672 0.9232 1.3122 2.2718

λ = 3 (VBC & no-short)
Lasso SR 1.6611 3.315∗∗ 2.6538∗∗ 2.1374 2.7987∗∗ 3.5422∗∗∗ 3.4853∗∗∗ 1.6009 2.9988∗∗∗ 0.5865

CER 0.1214 1.0350∗∗∗ 0.8464∗∗∗ 0.7530∗∗ 0.9609∗∗∗ 0.9761∗∗∗ 1.0569∗∗∗ 0.3894 1.0450∗∗∗ −166.8324
SOR 0.4404 1.6775 1.5090 1.4353 1.6055 1.6725 1.9361 1.0434 1.5167 5.1726

Elastic Net SR 1.4225 3.0436∗∗∗ 2.4048∗∗ 2.1593 2.6827∗∗ 3.3183∗∗∗ 3.2855∗∗∗ 1.5603 2.8157∗∗∗ 0.8569
CER 0.1079 0.9583∗∗∗ 0.7646∗∗∗ 0.7667∗∗∗ 0.9205∗∗∗ 0.9291∗∗∗ 1.0063∗∗∗ 0.3565 0.9677∗∗∗ −18.0027
SOR 0.3089 1.3042 1.2020 1.4148 1.3369 1.3612 1.5549 0.8936 1.2861 2.9364

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 3, for the benchmark portfolio
(equity and bonds) and the corresponding cryptocurrencies, within the whole sample period. We use LASSO and Elastic Net regression techniques with no-short sales, and variance-based constraints
(VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available upon
request.
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Table 4. Bayes-Stein Shrinkage, for λ = 5 – whole sample period.

Whole period Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 5 (no-short sales)
Lasso SR 2.5389 2.8773 2.3672 1.3839 2.3280 3.2818 2.9750 1.1628 2.5884 0.6927

CER 0.2518 0.7364∗ 0.3134 −3.1457 −0.1741 1.0706∗∗∗ 0.8157∗ −4.6526 0.3141 −439.1450
SOR 1.0671 1.7717 1.7237 1.0834 1.7915 1.9139 1.8628 1.1985 1.8233 2.9384

Elastic Net SR 2.0623 2.7167 2.0885 1.4227 2.2500 3.2457∗∗ 2.8287∗ 1.1422 2.3859 1.1766
CER 0.2084 0.5543 −0.0398 −3.3324 −0.3417 1.0380∗∗∗ 0.6283 −4.8721 0.0259 −15.7716
SOR 0.4289 1.4019 1.2281 1.0250 1.3695 1.7083 1.4577 0.9808 1.2623 2.1800

λ = 5 (VBC & no-short)
Lasso SR 1.6424 3.3369∗∗∗ 2.6611∗∗ 2.0543 2.8292∗∗ 3.5774∗∗∗ 3.511∗∗∗ 1.5803 2.9932∗∗∗ 0.5832

CER 0.1135 0.8836∗∗∗ 0.6636∗∗∗ 0.3244 0.7623∗∗∗ 0.8716∗∗∗ 0.9197∗∗∗ −0.0594 0.8276∗∗∗ −282.2781
SOR 0.4345 1.8398 1.6713 1.4364 1.8111 1.8443 2.2210 1.1400 1.6114 5.1760

Elastic Net SR 1.4468 3.0917∗∗∗ 2.4221∗∗ 2.0674 2.6814∗∗ 3.4112∗∗∗ 3.3094∗∗∗ 1.5624 2.7603∗∗∗ 1.0268
CER 0.1026 0.8158∗∗∗ 0.5747∗∗∗ 0.3308 0.7021∗∗∗ 0.8379∗∗∗ 0.8701∗∗∗ −0.0935 0.7322∗∗∗ −11.0256
SOR 0.3164 1.4444 1.2526 1.3852 1.4248 1.5011 1.6662 0.9803 1.3422 2.4810

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 5, for the benchmark portfolio
(equity and bonds) and the corresponding cryptocurrencies, within the whole sample period. We use Lasso and Elastic Net regression techniques with no-short sales, and variance-based constraints
(VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available upon
request.
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4.2.2. Covid-19
We consider the impact of Covid-19 on the diversification benefits of crypto-asset portfolios. It is expected that
during stressful economic environments estimation risk increases, and becomes a greater problem for investors.
We divide our sample into the pre-Covid-19 and post-Covid-19 periods to analyze the performance of crypto-
asset portfolios in these different economic environments. We choose the end of the pre-Covid-19 period to be
March 11, 2020, the date when Covid-19 was declared a world pandemic by the World Health Organization.
We follow the same methodology as previously, using the Bayes-Stein model with three levels of risk aversion
(λ = 1, 3 & 5), and lasso and elastic net regressions with no short-selling and with no short sales plus VBCs.

Tables 5 and 6 present the results forλ = 1when considering the pre and post-Covid-19 periods, respectively.
In the pre-Covid-19 period (Table 5), all the crypto-asset portfolios have higher CER values compared to the
corresponding benchmark portfolios, and in almost all cases the differences are statistically significant at the
1% level. The crypto-asset portfolios also have higher Sortino ratios. Out of the 108 comparisons, only 12% (all
Sharpe ratios) have a higher value for the benchmark portfolio, and none are statistically significant. During
the post-Covid-19 period (Table 6), in most cases the crypto-asset portfolios have higher Sharpe ratios, CERs,
and Sortino ratios compared to the corresponding benchmark portfolios. An exception is the Sortino ratios for
lasso with no short sales. Across the 108 comparisons, the benchmark portfolios outperform the crypto-asset
portfolios in only 18% of cases, and none of the differences are statistically significant. This is very similar to
the results for the pre-Covid-19 period, suggesting that during uncertain economic environments crypto-asset
portfolios continue to provide diversification benefits to more aggressive investors at a similar level to those in
a ‘normal’ economic environment.

Table 7 presents the results when λ = 3 for the pre-Covid-19 period. When using the no short-sales con-
straint most crypto-asset portfolios have a superior performance, except for dPos coins and Tokens. Of the
108 comparisons, only 19% of the benchmark values are higher than those of the corresponding crypto-asset
portfolio, and none are statistically significant. Table 8 provides similar results for the post-Covid-19 period. In
most cases, the crypto-asset portfolios have higher Sharpe ratios and CERs than the corresponding benchmark
portfolios, especially when considering no short sales with VBCs. The benchmark portfolio outperforms the
crypto-asset portfolio in 24% of the 108 cases, mainly due to dPos coins and Masternode, although none of the
differences are statistically significant. This again suggests that the diversification benefits were higher for less
aggressive investors during pre-Covid-19 period.

Table 9 presents the results for more conservative investors (λ = 5). During the pre-Covid-19 period 28%
of the benchmark portfolios outperform the corresponding 108 crypto-asset portfolios. Compared to the other
cryptocurrencies, dPoS coins and Tokens are, again, less efficient as portfolio diversifiers. Table 10 shows that
during the post-Covid-19 period, the rate at which the benchmark portfolios outperform the corresponding
crypto-asset portfolios underlying rate is 23%, mainly due to the no short sales results.

Overall, the diversification benefits of cryptocurrencies are smaller for conservative investors compared to
more aggressive investors in both the pre-Covid-19 and post-Covid-19 periods. This relationship appears to be
monotonic. For the pre-Covid-19 period, 12% of the benchmark values are higher than those of the correspond-
ing cryptocurrency asset categories for aggressive investors (λ = 1). This rate rises to 19% formoderate investors
(λ = 3), and to 28% for conservative investors (λ = 5). The corresponding figures for the post-Covid-19 period
are 18% when λ = 1, 24% when λ = 3, and 23% when λ = 5.4

5. Robustness checks

5.1. Alternative benchmark portfolios

To validate the robustness of our findings we repeat the analysis using use two alternative benchmark portfo-
lios; a multi-asset portfolio and a five-industry portfolio. In addition to the traditional asset classes (equities
and bonds), the multi-asset benchmark portfolio includes commodities (the GSCI index from Datastream) and
real estate (the Ziman REIT index from CRSP). The five-industry portfolios come from the Kenneth French’s
web site. Using a 52-week rolling window for the expected returns, and an expanding window for the covari-
ance matrix, we computed a total of 36 benchmark portfolios for the three sample periods (total, pre and post
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Table 5. Bayes-Stein Shrinkage, for λ = 1 – pre-Covid period.

Pre-cov Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 1 (no-short sales)
Lasso SR 2.3934 2.9919 2.1047 1.8771 2.4463 3.2050 3.0625 1.3547 2.7600 1.3469

CER 0.2066 2.6003∗∗∗ 1.7712∗∗∗ 1.7570∗∗ 2.3238∗∗∗ 2.4296∗∗∗ 2.5672∗∗∗ 0.6952 2.6610∗∗∗ 0.6640
SOR 0.6937 1.4836 1.1029 1.3031 1.3801 1.4739 1.6698 0.9447 1.5709 0.8179

Elastic Net SR 2.6492 2.9493 1.9444 1.9308 2.5073 3.1681 3.0239 1.4047 2.7851 1.5308
CER 0.2312 2.5637∗∗∗ 1.6167∗∗∗ 1.8561∗∗ 2.4174∗∗∗ 2.4331∗∗∗ 2.5608∗∗∗ 0.7841 2.6793∗∗∗ 1.0585
SOR 0.7574 1.4454 1.0001 1.3422 1.3395 1.3785 1.5345 0.9257 1.5375 1.0976

λ = 1 (VBC & no-short)
Lasso SR 1.7215 3.1749∗∗ 2.2373 2.1124 2.6849∗ 3.3341∗∗∗ 3.2217∗∗ 1.5489 2.9132∗∗ 1.4949

CER 0.1014 1.2124∗∗∗ 0.9362∗∗∗ 1.2521∗∗∗ 1.2101∗∗∗ 1.1050∗∗∗ 1.1989∗∗∗ 0.8857∗∗ 1.2840∗∗∗ 0.8505∗∗
SOR 0.4265 1.5277 1.1321 1.3446 1.4207 1.4705 1.5538 1.0306 1.5893 0.9147

Elastic Net SR 1.7328 3.1068∗∗ 2.2126 2.1325 2.6869∗ 3.2122∗∗∗ 3.2443∗∗∗ 1.5898 3.0652∗∗ 1.6616
CER 0.1056 1.1984∗∗∗ 0.9321∗∗∗ 1.2677∗∗∗ 1.2287∗∗∗ 1.0878∗∗∗ 1.2262∗∗∗ 0.9172∗∗ 1.3603∗∗∗ 0.9778∗∗∗
SOR 0.4090 1.3968 1.0081 1.2893 1.3083 1.2702 1.4647 1.0311 1.6105 1.0287

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SR) for the mean-variance portfolios for risk aversion λ = 1, for the benchmark portfolio
(equity andbonds) and the corresponding cryptocurrencies,within thepre-Covid sampleperiod.Weuse Lasso and ElasticNet regression techniqueswithno-short sales, and variance-based constraints
(VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available upon
request.

Table 6. Bayes-Stein Shrinkage, for λ = 1 – post-Covid period.

Post-cov Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 1 (no-short sell)
Lasso SR 3.9348 3.9699 4.3492 3.1379 4.1202 5.0537 4.6379 1.3217 2.4938 1.2551

CER 0.7632 1.7304∗∗ 3.1091∗∗∗ 1.8337∗ 1.6777∗∗ 1.7363∗∗∗ 2.0515∗∗∗ 0.6756 1.3746 −2592.7424
SOR 3.7643 1.2877 2.6126 1.0989 1.8359 2.0359 1.8809 0.2655 0.4924 29.0918

Elastic Net SR 0.9450 1.5666 3.2478∗∗ 3.1186∗ 3.2096∗∗ 3.4037∗∗ 3.0231∗∗ 1.0408 1.0329 1.4426
CER 0.2101 0.7661 2.3946∗∗∗ 1.8198∗∗ 1.3898∗∗∗ 1.3507∗∗∗ 1.4267∗∗∗ 0.4926 0.4361 −347.3377
SOR 0.1803 0.3236 1.3538 1.0692 0.8931 0.8807 0.8625 0.2096 0.1829 12.6576

λ = 1 (VBC & no-short)
Lasso SR 2.1617 5.0552∗∗∗ 4.8759∗∗ 4.3001∗∗ 5.0755∗∗∗ 5.8645∗∗∗ 5.7366∗∗∗ 2.6804 3.7365∗∗ 1.2790

CER 0.2917 1.0240∗∗∗ 1.5379∗∗∗ 1.2090∗∗∗ 1.1653∗∗∗ 1.0441∗∗∗ 1.1791∗∗∗ 0.7599∗∗ 1.0800∗∗∗ −331.0139
SOR 0.6091 1.9353 2.9915 1.7285 3.0367 3.0329 2.6526 0.5889 0.8914 27.3426

Elastic Net SR 0.9844 1.3369 3.3151∗∗ 3.041∗∗ 2.9484∗∗∗ 3.1749∗∗∗ 3.2339∗∗∗ 1.3742 1.7689 1.2688
CER 0.1418 0.4063 1.1891∗∗∗ 0.8986∗∗∗ 0.7400∗∗∗ 0.6814∗∗∗ 0.8119∗∗∗ 0.4388 0.5621∗∗ −329.1450
SOR 0.1911 0.2371 1.0634 0.8736 0.6940 0.7461 0.8083 0.2572 0.3511 21.3299

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 1, for the benchmark portfolio
(equity and bonds) and the corresponding cryptocurrencies, within the post-Covid sample period. We use Lasso and Elastic Net regression techniques with no-short sales, and variance-based con-
straints (VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available
upon request.
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Table 7. Bayes-Stein Shrinkage, for λ = 3 – pre-Covid.

Pre-cov Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 3 (no-short sell)
Lasso SR 2.4354 2.9939 2.1161 1.5853 2.4460 3.3113∗ 3.0026 1.2916 2.6807 1.2601

CER 0.1958 1.4868∗∗∗ 0.6069 −1.5858 0.7841 1.7063∗∗∗ 1.4944∗∗∗ −2.6933 1.1330∗∗ −3.4963
SOR 0.7069 1.8606 1.3785 1.2129 1.8161 1.8988 2.0533 1.2018 1.9163 0.7699

Elastic Net SR 2.6513 2.9697 1.9691 1.6626 2.3960 3.3619 2.9989 1.3373 2.6308 1.4034
CER 0.2193 1.4665∗∗∗ 0.4089 −1.5276 0.6899 1.7652∗∗∗ 1.4940∗∗∗ −2.7283 1.0338∗ −2.5673
SOR 0.7741 1.7329 1.1977 1.2032 1.4448 1.8092 1.7125 1.1584 1.8423 1.5675

λ = 3 (VBC & no-short)
Lasso SR 1.6992 2.9939∗∗ 2.3620 2.0326 2.6922∗ 3.4015∗∗∗ 3.3225∗∗∗ 1.5803 2.9653∗∗ 1.4985

CER 0.0959 1.4868∗∗∗ 0.7400∗∗∗ 0.6887∗∗ 0.9540∗∗∗ 0.9798∗∗∗ 1.0460∗∗∗ 0.3461 1.0652∗∗∗ 0.2724
SOR 0.4182 1.8606 1.3303 1.4022 1.5450 1.6020 1.8653 1.1782 1.7492 0.9426

Elastic Net SR 1.7773 3.2316∗∗ 2.2630 2.1440 2.7431∗ 3.4059∗∗∗ 3.3689∗∗∗ 1.6206 3.0071∗∗ 1.7111
CER 0.1023 1.0625∗∗∗ 0.7141∗∗∗ 0.7643∗∗ 0.9854∗∗∗ 0.9965∗∗∗ 1.0744∗∗∗ 0.3725 1.0826∗∗∗ 0.4447
SOR 0.4297 1.6222 1.2226 1.4960 1.5100 1.5198 1.8019 1.1148 1.7585 1.2668

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 3, for the benchmark portfolio
(equity andbonds) and the corresponding cryptocurrencies,within thepre-Covid sampleperiod.Weuse Lasso and ElasticNet regression techniqueswithno-short sales, and variance-based constraints
(VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available upon
request.

Table 8. Bayes-Stein Shrinkage, for λ = 3 – post-Covid.

Post-cov Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 3 (no-short sales)
Lasso SR 3.7415 3.5455 4.1258 3.5690 4.3855 4.8274 4.4624 1.9731 2.4917 1.2929

CER 0.6821 1.2708 2.2238∗∗ 1.4815∗ 1.4567∗∗ 1.4837∗∗ 1.7111∗∗ 0.6150 0.9422 −4469.0639
SOR 3.5627 1.1070 2.4860 1.3261 2.8577 1.8843 1.7888 0.4738 0.5067 22.5052

Elastic Net SR 1.1181 1.7929 3.207∗ 3.0118 3.0669∗∗ 3.2328∗∗ 2.8806∗ 0.8738 1.0013 1.5721
CER 0.1834 0.5179 1.5431∗∗ 1.1604∗ 1.0619∗∗ 1.0494∗∗∗ 1.0625∗∗ −0.0748 0.0478 −115.7797
SOR 0.2186 0.4168 1.2492 0.9421 0.9039 0.8272 0.8220 0.1699 0.1775 4.6255

λ = 3 (VBC & no-short)
Lasso SR 2.0760 3.5455 4.8692∗∗ 4.2388∗∗ 5.1914∗∗∗ 5.7581∗∗∗ 5.6618∗∗∗ 2.5189 3.5796∗ 1.2736

CER 0.2588 1.2708∗∗ 1.4219∗∗∗ 1.0948∗∗∗ 0.9966∗∗∗ 0.9547∗∗∗ 1.1132∗∗∗ 0.6210∗ 0.9345∗∗∗ −1061.7208
SOR 0.5824 1.1070 2.9873 1.7743 2.9289 2.8648 2.6856 0.5560 0.8484 27.2468

Elastic Net SR 1.1342 1.9020 3.3917∗∗ 3.1416∗∗ 2.7073∗∗ 3.0178∗∗∗ 2.9556∗∗ 1.3304 1.6202 1.4928
CER 0.1374 0.4093 1.0322∗∗∗ 0.7816∗∗∗ 0.5791∗∗∗ 0.5715∗∗∗ 0.6450∗∗∗ 0.2771 0.3644 −116.0998
SOR 0.2250 0.3955 1.1487 0.9643 0.6101 0.6811 0.7152 0.2572 0.3149 9.0904

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 3, for the benchmark portfolio
(equity and bonds) and the corresponding cryptocurrencies, within the post-Covid sample period. We use Lasso and Elastic Net regression techniques with no-short sales, and variance-based con-
straints (VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available
upon request.
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Table 9. Bayes-Stein Shrinkage, for λ = 5 – pre-Covid.

Pre-cov Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 5 (no-short sell)
Lasso SR 2.5000 2.9011 2.1205 1.3284 2.2929 3.2624 2.9001 1.1625 2.6086 1.2385

CER 0.1873 0.7066 0.0698 −3.9364 −0.4313 1.0398∗∗ 0.7109 −5.6227 0.2240 −7.4369
SOR 0.7430 1.9431 1.5486 1.0756 1.7664 1.9470 1.8776 1.3046 2.3089 0.7797

Elastic Net SR 2.6338 2.8842 1.9775 1.3908 2.2655 3.3262 2.8829 1.1928 2.5893 1.2204
CER 0.2081 0.6356 −0.2286 −4.1244 −0.5573 1.0781∗∗ 0.6087 −5.7531 0.1145 −5.8147
SOR 0.7736 1.6975 1.2611 1.0327 1.4313 1.8760 1.5866 1.1774 1.9876 1.8461

λ = 5 (VBC & no-short)
Lasso SR 1.6954 3.2778∗∗∗ 2.3788 1.9354 2.7323∗ 3.4678∗∗∗ 3.3618∗∗∗ 1.5577 2.9757∗∗ 1.4646

CER 0.0918 0.8935∗∗∗ 0.5561∗∗∗ 0.1991 0.7336∗∗∗ 0.8746∗∗∗ 0.8996∗∗∗ −0.1681 0.8358∗∗∗ −0.3174
SOR 0.4168 1.8617 1.5003 1.3916 1.7465 1.7946 2.1768 1.3074 1.9691 0.9206

Elastic Net SR 1.7884 3.2588∗∗∗ 2.2846 2.0481 2.736∗ 3.5136∗∗∗ 3.3922∗∗∗ 1.6219 2.9461∗∗ 1.6897
CER 0.0989 0.9009∗∗∗ 0.5199∗∗ 0.2702 0.7379∗∗∗ 0.9002∗∗∗ 0.9258∗∗∗ −0.1386 0.8267∗∗∗ −0.0841
SOR 0.4343 1.7698 1.2986 1.4548 1.6212 1.7082 1.9504 1.2874 1.8739 1.4258

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 5, for the benchmark portfolio
(equity andbonds) and the corresponding cryptocurrencies,within thepre-Covid sampleperiod.Weuse Lasso and ElasticNet regression techniqueswithno-short sales, and variance-based constraints
(VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available upon
request.

Table 10. Bayes-Stein Shrinkage, for λ = 5 – post-Covid.

Post-cov Benchmark Smart Contracts DEX Coins Interope-rability Privacy Coins PoW Coins PoS Coins dPoS Coins Masternode Coins Tokens

λ = 5 (no-short sell)
Lasso SR 3.5867 3.2325 4.2186 3.5940 4.2455 4.5568 4.3148 2.4215 2.9157 1.3900

CER 0.6067 0.9185 1.6299∗ 1.0857 1.2243∗ 1.2570∗∗ 1.3743∗ 0.5689 0.8188 −2741.7244
SOR 3.4173 0.9936 2.9503 1.2169 3.0013 1.7652 1.7968 0.6489 0.7226 14.6856

Elastic Net SR 1.5099 1.6795 3.1204∗ 3.1684 3.0871∗ 3.2509∗ 2.8196 1.1532 0.9853 1.6210
CER 0.2078 0.2061 0.9509 0.9173∗ 0.8537∗ 0.8764∗∗ 0.7668 −0.0793 −0.3204 −69.0884
SOR 0.3390 0.3911 1.1014 1.0457 0.9791 0.8683 0.8125 0.2414 0.1744 3.4838

λ = 5 (VBC & no-short)
Lasso SR 2.0187 4.6551∗∗∗ 4.764∗∗ 4.2739∗∗ 5.245∗∗∗ 5.591∗∗∗ 5.4574∗∗∗ 2.5732 3.4195∗ 1.2721

CER 0.2307 0.8314∗∗∗ 1.2463∗∗∗ 0.9910∗∗∗ 0.9162∗∗∗ 0.8550∗∗∗ 1.0253∗∗∗ 0.5230 0.7822∗∗ −1792.3520
SOR 0.5647 1.7348 2.8335 1.8543 3.4844 2.6480 2.5990 0.5844 0.7929 27.2093

Elastic Net SR 1.1867 2.1108 3.323∗∗ 3.1383∗∗ 2.7934∗∗ 3.0217∗∗ 3.0026∗∗ 1.3373 1.5913 1.5569
CER 0.1210 0.3756 0.8633∗∗ 0.6595∗∗ 0.5214∗∗ 0.5123∗∗∗ 0.5783∗∗∗ 0.1598 0.2477 −69.2693
SOR 0.2372 0.4689 1.1369 0.9860 0.6393 0.6871 0.7438 0.2610 0.3134 6.2281

Note: This table presents the annualized Sharpe ratio (SR), certainty equivalent return (CER), and Sortino ratio (SOR) for the mean-variance portfolios for risk aversion λ = 5, for the benchmark portfolio
(equity and bonds) and the corresponding cryptocurrencies, within the post-Covid sample period. We use Lasso and Elastic Net regression techniques with no-short sales, and variance-based con-
straints (VBCs). ∗ denotes significance at p < 0.1, ∗∗ denotes significance at p < 0.05 and ∗∗∗ denotes significance at p < 0.01. The t-statistics are not presented for brevity, but they are available
upon request.
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Table 11. For λ = 1, 3, 5 – whole period, pre-Covid period, and post-Covid period using the multi-assets benchmark.

Whole period Pre-Covid period Post-Covid period

Multi-assets benchmark Lasso & elastic net/no-short sales & VBC plus no-short sales

λ (risk tolerance) 1 3 5 1 3 5 1 3 5 Totals Totals∗ Totals∗∗
Smart Contracts 8 8 5 5 6 4 6 5 5 52 0 72
DEX Coins 5 3 3 4 2 2 8 8 7 42 0 72
Interoperability 4 2 0 4 2 0 6 6 6 30 0 72
Privacy Coins 6 4 4 5 3 3 8 8 7 48 0 72
PoW Coins 8 8 8 7 7 7 8 8 8 69 0 72
PoS Coins 8 8 6 6 6 4 8 8 8 62 0 72
dPoS Coins 2 0 0 2 0 0 1 1 1 7 0 72
Masternode Coins 8 6 4 5 4 3 5 3 3 41 0 72
Tokens 0 0 0 2 0 0 1 1 1 5 0 72
Totals 49 39 30 40 30 23 51 48 46 356 – –
Totals∗ 0 0 0 0 0 0 0 0 0 – 0 –
Totals∗∗ 72 72 72 72 72 72 72 72 72 – – 648

Note: This tablepresents thenumbers of significant SharpeRatios, and certaintyequivalent returns for 36portfolios of each cryptocurrency category,
whenconsidering themulti-assets benchmarkportfolio.Where Totals represents all the significant comparisons.Where totals∗ is the countof the
cases when the benchmark portfolio is significant superior to the crypto-asset portfolios. Where Totals∗∗ is the total number of tests performed
for the Sharpe Ratio and the certainty equivalent return.

Covid-19), the three risk levels (λ = 1, 3 and 5), lasso and elastic net regression, no short sales and no short
sales with VBCs constraints for both the multi asset and five-industry benchmarks. We then compared these
new benchmarks with our previous results.

Table 11 shows the number of significant Sharpe ratios and CERs for each CCAC, relative to the corre-
sponding multi-asset portfolio benchmark. In the 11th column (Totals) we present the number of times the
Sharpe ratios and CERs for the crypto-asset portfolios were significantly superior to those for the correspond-
ing benchmark portfolios. The number of significant Sharpe ratios and CERs represents 55% of the 216 tests
for the whole period, 43% for the pre-Covid-19 period, and 67% for the post-Covid-19 period. This implies
that the diversification benefits of CCACs for investors in a multi-asset portfolio increased during the pan-
demic. Over all three periods the crypto-asset portfolios were significantly superior for aggressive investors
65% of the time, which drops to 46% for conservative investors, indicating the diversification benefits are more
valuable for aggressive investors. In the 12th column (Totals∗), we present the cases where the benchmark port-
folio is significant superior to the CCACs; and the last column (Totals∗∗) presents the total number of tests
performed.

Table 12 presents the number of significant Sharpe ratios and CERs using the five-industry portfolios as the
benchmark. The number of significant Sharpe ratios and CERs represents 66% of the 216 tests for the whole
period, 65% for the pre-Covid-19 period, and 46% for the post-Covid-19 period. In contrast to the results for
the multi-asset portfolio, this implies that the diversification benefits of CCACs for investors decreased dur-
ing the pandemic. Over all three periods the crypto-asset portfolios were significantly superior for aggressive
investors 69%of the time, which drops to 50% for conservative investors. These results are similar to those for the
multi-asset benchmark, and indicate that the diversification benefits of CCACs are more valuable for aggressive
investors. As can be seen from column 12 (Totals∗), there is no case where the benchmark portfolio outperforms
the CCACs.

Overall, our robustness checks find support for the view that the diversification benefits of CCACs are less
important for conservative investors than for aggressive investors. In addition, we find that all but two CCACs
(dPoS coins, and Tokens) provide substantial diversification benefits to investors.5 Support for the finding that
the diversification benefits of CCACs remained unchanged during the pandemic is mixed.

5.2. Portfolio selectionwith highermoments

Portfolio techniques based only on themean and variance often underperform othermore sophisticated portfo-
lio constructionmodels (see for instanceXiong and Idzorek (2011) andCumming,Hass, and Schweitzer (2014)).



818 X. HUANG ET AL.

Table 12. For λ = 1, 3, 5 – whole period, pre-Covid period, and post-Covid period using the five-industry benchmark.

Whole period Pre-Covid period Post-Covid period

Multi-assets benchmark Lasso & elastic net/no-short sales & VBC plus no-short sales

λ (risk tolerance) 1 3 5 1 3 5 1 3 5 Totals Totals∗ Totals∗∗
Smart Contracts 8 8 7 8 8 7 4 2 2 54 0 72
DEX Coins 7 6 5 6 4 4 7 6 5 50 0 72
Interoperability 6 4 2 6 4 2 5 4 3 36 0 72
Privacy Coins 8 6 5 8 6 5 6 6 6 56 0 72
PoW Coins 8 8 8 8 8 8 7 6 6 67 0 72
PoS Coins 8 8 7 8 8 7 7 7 6 66 0 72
dPoS Coins 2 0 0 2 0 0 0 0 0 4 0 72
Masternode Coins 8 7 6 8 8 6 2 2 0 47 0 72
Tokens 0 0 0 2 0 0 0 0 0 2 0 72
Totals 55 47 40 56 46 39 38 33 28 382 – –
Totals∗ 0 0 0 0 0 0 0 0 0 – 0 –
Totals∗∗ 72 72 72 72 72 72 72 72 72 – – 648

Note: This tablepresents thenumbers of significant SharpeRatios, and certaintyequivalent returns for 36portfolios of each cryptocurrency category,
when considering the five-industry benchmark portfolio. Where Totals represents all the significant comparisons. Where totals∗ is the count
of the cases when the benchmark portfolio is significant superior to the crypto-asset portfolios. Where Totals∗∗ is the total number of tests
performed for the Sharpe Ratio and the certainty equivalent return.

Table 13. Forλ = 1, 3, 5 –whole period, pre-Covid period, andpost-Covid period using highermoments and the benchmark (equity andbonds).

Whole period Pre-Covid period Post-Covid period

Benchmark (equity and bonds) Lasso & elastic net/no-short sales & VBC plus no-short sales

λ (risk tolerance) 1 3 5 1 3 5 1 3 5 Totals Totals∗ Totals∗∗
Smart Contracts 4 3 1 3 3 0 0 0 0 14 0 72
DEX Coins 4 4 4 0 0 2 0 0 1 15 0 72
Interoperability 4 4 4 0 0 3 0 0 1 16 0 72
Privacy Coins 4 4 4 2 2 2 0 0 2 20 0 72
PoW Coins 7 5 4 7 6 2 6 4 2 43 0 72
PoS Coins 3 2 3 3 2 2 0 0 1 16 0 72
dPoS Coins 2 0 0 0 0 0 0 0 0 2 0 72
Masternode Coins 7 4 3 6 4 3 4 2 3 36 0 72
Tokens 0 1 0 0 0 0 0 0 0 1 0 72
Totals 35 27 23 21 17 14 10 6 10 163 – –
Totals∗ 0 0 0 0 0 0 0 0 0 – 0 –
Totals∗∗ 72 72 72 72 72 72 72 72 72 – – 648

Note: This tablepresents thenumbers of significant SharpeRatios, and certaintyequivalent returns for 36portfolios of each cryptocurrency category,
when considering the benchmark portfolio (equity and bonds). Where Totals represents all the significant comparisons. Where totals∗ is the
count of the cases when the benchmark portfolio is significant superior to the crypto-asset portfolios. Where Totals∗∗ is the total number of
tests performed for the Sharpe Ratio and the certainty equivalent return.

We incorporate higher moments in the portfolio selection process by using a Taylor series expansion for the
CRRA (Constant Relative Risk Aversion) utility function, (see Appendix Table A46 and Platanakis, Sakkas, and
Sutcliffe 2019b).

Table 13 depicts the number of significant Sharpe ratios and CERs. Overall, when considering higher
moments in the portfolio selection process, there are significant diversification benefits which account for 39%
of all the tests for the whole period; and 24% and 12% for the pre and post-Covid periods, respectively. These
results suggest that the benefits of adding CCACs to the benchmark portfolio (equity and bonds) decreased dur-
ing the pandemic.6 For λ = 1 there are 66 significant tests compared to 47 for λ = 5, which supports our main
finding that diversification benefits are more valuable for aggressive investors.
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Table 14. Forλ = 1, 3, 5 –whole period, pre-Covid period, andpost-Covid period using transaction costs and thebenchmark (equity andbonds).

Whole period Pre-Covid period Post-Covid period

Benchmark (equity and bonds) Lasso & elastic net/no-short sales & VBC plus no-short sales

λ (risk tolerance) 1 3 5 1 3 5 1 3 5 Totals Totals∗ Totals∗∗
Smart Contracts 8 8 3 8 8 1 6 6 2 50 0 72
DEX Coins 8 8 7 6 6 7 6 6 6 60 0 72
Interoperability 8 8 7 5 6 6 2 3 4 49 0 72
Privacy Coins 8 8 7 6 6 7 6 6 7 61 0 72
PoW Coins 8 8 7 8 8 7 8 8 7 69 0 72
PoS Coins 8 8 7 8 8 7 7 6 6 65 0 72
dPoS Coins 2 3 0 0 1 0 0 0 0 6 0 72
Masternode Coins 8 8 2 7 8 2 6 6 1 48 0 72
Tokens 0 4 0 0 1 0 0 1 0 6 0 72
Totals 58 63 40 48 52 37 41 42 33 414 – –
Totals∗ 0 0 0 0 0 0 0 0 0 – 0 –
Totals∗∗ 72 72 72 72 72 72 72 72 72 – – 648

Note: This tablepresents thenumbers of significant SharpeRatios, and certaintyequivalent returns for 36portfolios of each cryptocurrency category,
when considering the benchmark portfolio (equity and bonds). Where Totals represents all the significant comparisons. Where totals∗ is the
count of the cases when the benchmark portfolio is significant superior to the crypto-asset portfolios. Where Totals∗∗ is the total number of
tests performed for the Sharpe Ratio and the certainty equivalent return.

5.3. Transaction costs

As an additional robustness check, we also include transaction costs when measuring performance. The total
transaction costs in the jth period (TCj) are computed as follows:

TCj =
n∑
i=1
(|xij − x∗

ij−1|)Ti, (18)

whereTi represents the proportionate transaction cost for trading the ith asset, which is set to 50, 17 and 50 basis
points for equities, bonds and cryptocurrencies, respectively, by following Platanakis, Sutcliffe, and Urquhart
(2018) and Platanakis, Sakkas, and Sutcliffe (2019a), among others. x∗

ij−1 is the initial asset allocation and x∗
ij−1

is the proportion of the value of the portfolio at the end of the previous period in the ith asset. This allows the
price to change during the period based on the assumption that transaction costs are a linear function of trade
value. Finally, the total transaction costs (TCj) are subtracted from the expected portfolio returns.

When considering portfolio selection with transaction costs, our results are still valid as, except for Tokens,
CCACs continue to provide diversification benefits to investors. Table 14 presents the statistically significant
Sharpe ratios and CERs when considering the benchmark portfolio (equity and bonds). For the while period,
the crypto-asset portfolios are statistically superior on 75% of the tests. In alignment with the portfolio selection
with higher moments robustness check, the diversification benefits are significantly higher for more aggressive
investors (147 tests, or 68%) compared to more conservative investors (110 significant tests, or 51%).

5.4. Black–Littermanmodel

The Black–Litterman portfolio (Black and Litterman 1992) incorporates the investor’s subjective returns (views)
with a reference portfolio, in order to reduce the negative impact of estimation risk. Defining λ,Ht , and x

ref
t , as

the risk-aversion coefficient, the covariance matrix, and the reference portfolio, respectively. For the reference
portfolio, we use the 1/N naïve diversification rule, as in Newton et al. (2021), among others. The implied excess
return π t is computed as:

π t = λHtx
ref
t . (19)
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Table 15. For λ = 1, 3, 5 – whole period, pre-Covid period, and post-Covid period using Black Litterman and benchmark (equity and bonds).

Whole period Pre-Covid period Post-Covid period

Benchmark (equity and bonds) Lasso & elastic net/no-short sales & VBC plus no-short sales

λ (risk tolerance) 1 3 5 1 3 5 1 3 5 Totals Totals∗ Totals∗∗
Smart Contracts 6 6 3 6 6 2 6 6 2 43 0 72
DEX Coins 6 4 7 6 4 7 6 3 7 50 0 72
Interoperability 4 2 6 2 1 6 0 0 6 27 0 72
Privacy Coins 6 6 7 5 4 7 4 4 7 50 0 72
PoW Coins 8 8 7 8 8 7 8 8 7 69 0 72
PoS Coins 7 6 6 6 6 6 6 6 6 55 0 72
dPoS Coins 2 2 1 0 0 1 0 0 1 7 0 72
Masternode Coins 6 6 2 6 6 1 5 5 2 39 0 72
Tokens 0 2 0 0 0 0 0 0 0 2 0 72
Totals 45 42 39 39 35 37 35 32 38 342 – –
Totals∗ 0 0 0 0 0 0 0 0 0 – 0 –
Totals∗∗ 72 72 72 72 72 72 72 72 72 – – 648

Note: This tablepresents thenumbers of significant SharpeRatios, and certaintyequivalent returns for 36portfolios of each cryptocurrency category,
when considering the benchmark portfolio (equity and bonds). Where Totals represents all the significant comparisons. Where totals∗ is the
count of the cases when the benchmark portfolio is significant superior to the crypto-asset portfolios. Where Totals∗∗ is the total number of
tests performed for the Sharpe Ratio and the certainty equivalent return.

The investor’s views can be expressed as a normal distribution with mean D and standard deviation �; so the
general expression for posterior expected returns is computed as:

μBL = [(cHt)
−1 + P̃T

�−1P̃]−1[(cHt)
−1π t + P̃T

�−1Q], (20)

where τ is a scalar for the reliability of the implied excess returns, which is set to 0.1625 as in Bessler, Opfer, and
Wolff (2017), Platanakis and Urquhart (2019) and Newton et al. (2021), among others. P̃ is a binary matrix that
identifies the number of securities associated with the views, and Q is the column vector of subjective returns.
The non-negative diagonal matrix � quantifies confidence in the views:

� = 1
δ̃
P̃HtP̃

T , (21)

where we set δ̃ to unity as in Meucci (2010). Further, we follow Platanakis and Sutcliffe (2017) and Platanakis,
Sakkas, and Sutcliffe (2019a), among others, and use the expected returns for each asset, estimated via lasso and
elastic net regression, as described in section 3, as the investor’s views. The posterior conditional covariance
matrix can then be computed as follows:

HBL
t = Ht + [(cHt)

−1 + P̃ T�−1P̃ ]−1. (22)

The covariance matrix Ht for the Black–Litterman model is computed using the SWSV model described in
section 3.

Table 15 presents our results for the Sharpe ratios and CERs using the benchmark portfolio (equity and
bonds). The number of significant ratios for the whole period is 58%, and none of them does the underly-
ing benchmark portfolio outperform the crypto-asset portfolio. Overall, except for Tokens and dPoS, CCACs
provide diversification benefits, especially for conservative investors.7

6. Conclusions

Previous research has examined the relationships between cryptocurrencies and other financial assets, and the
important cryptocurrency characteristics that affect their portfolio attributes (see Dwyer 2015; Urquhart 2016;
Kajtazi and Moro 2019; Platanakis, Sutcliffe, and Urquhart 2018). However, the high volatility of cryptocurren-
cies and the associated estimation risk makes the portfolio construction process a challenging task for investors.
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The additional effects of high economic uncertainty is something that has not been examined extensively in
the literature. To mitigate the effects of estimation risk for the pre and post-Covid-19 periods, we employ the
Bayes-Stein model with no short sales and variance-based constraints, and estimate the input parameters using
lasso and elastic net regression. The out-of-sample portfolio performance is measured by the Sharpe ratio, cer-
tainty equivalent return and the Sortino ratio. We also consider three different levels of risk aversion allowing
an investigation of whether the benefits of diversification change with risk aversion.

This is the first research to study the diversification benefits of different types of cryptocurrency.We examine
the performance of nine different cryptocurrency asset categories, each of which uses a different algorithm to
generate new blocks of the blockchain. Our empirical results suggest that most cryptocurrency asset categories
provide diversification benefits to investors. The best out-of-sample diversifiers are Smart Contracts, PoW coins,
PoS coins, and Masternode which significantly outperform the benchmark portfolio in a consistent manner.
The diversification benefits of DEX coins, Interoperability, and Privacy coins are lower, but worthwhile. The
remaining cryptocurrencies (dPoS coins, and Tokens) provide rather poor diversification benefits.

We also find that the higher is the risk aversion of an investor, the less beneficial are cryptocurrency asset
categories as portfolio diversifiers. During uncertain economic environments, (for instance, the post-Covid-19
period), cryptocurrency asset categories provide broadly similar diversification benefits to ‘normal’ economic
environments (for instance, the pre-Covid-19 period). Our results are robust to different portfolio benchmarks,
regression techniques, variance-based constraints, performance measurements, higher moments, transaction
costs, and the Black–Litterman model.

Our results are economically significant aswe document that investors, particularlymore aggressive investors,
obtain diversification benefits from cryptocurrencies (except for two categories) based on different algorithms,
and that these remain during uncertain economic environments.

Notes

1. According to https://cryptoslate.com/coins/.
2. Daily prices quoted on CoinMarketCap (https://coinmarketcap.com/) are computed by taking the volume weighted average of

prices reported for each market.
3. There are more categories in the cryptocurrency market but there is an issue with data availability, particularly prior to 2015,

for these categories (cryptos in these categories). The underlying nine CCACs contain cryptocurrencies with an equally-long
data series that provides sufficient observations to allow comparisons with the benchmark portfolios and between the CCACs.
Using coinmarketcap.com we downloaded data for each cryptocurrency. Using cryptoslate.com we identified the category of
each individual cryptocurrency. To avoid large capitalization cryptocurrencies dominating our results, the returns for each cryp-
tocurrency category are the equally-weighted average of the returns for the cryptocurrencies in that category. Equally weighted
cryptocurrency portfolios have been used by previous studies (see Liu, Tsyvinski, and Wu 2021). Please see Appendix 1 for a
description of each of the nine CCACs based on the cryptoslate website (https://cryptoslate.com/).

4. As we cover a significant number of cryptocurrencies, our results for the underlying CCACs are generalizable to the crypto
market. A future extension of this study would be to examine other categories when additional data are available.

5. Detailed results of all robustness checks are available in the online appendix.
6. This is especially true when considering the no short-sales constraints. For more details, please see appendices A19–A21.
7. In this robustness check, Interoperabilty coin does not provide diversification benefits for more conservative investors with no

short sales constraints. For more details, please see appendices A38–A39.
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