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Abstract 38 
 39 
Phosphorus (P) load apportionment models (LAMs), requiring only spatially and temporally paired P 40 
and flow (Q) measurements, provide outputs of variable accuracy using long-term monthly datasets. 41 
Using a novel approach to investigate the impact of catchment characteristics on accuracy variation, 42 
91 watercourses Q-P datasets were applied to two LAMs, BM and GM, and bootstrapped to ascertain 43 
standard errors (SEs). Random forest and regression analysis on data pertaining to catchments’ land 44 
use, steepness, size, base flow and sinuosity were used to identify the individual relative importance 45 
of a variable on SE. For BM, increasing urban cover was influential on raising SEs, accounting for 46 
c.19% of observed variation, whilst analysis for GM found no individually important catchment 47 
characteristic. Assessment of model fit evidenced BM consistently outperformed GM, modelling P 48 
values to ± 10% of actual P values in 85.7% of datasets, as opposed to 17.6% by GM. Further 49 
catchment characteristics are needed to account for SE variation within both models, whilst interaction 50 
between variables may also be present. Future research should focus on quantifying these possible 51 
interactions and should expand catchment characteristics included within the random forest. Both 52 
LAMs must also be tested on a wide range of high temporal resolution datasets to ascertain if they 53 
can adequately model storm events in catchments with diverse characteristics. 54 
 55 
Introduction 56 
 57 
The trophic status and risk of eutrophication within watercourses is heavily influenced by phosphorus 58 
(P) concentrations (Sharpley, 2016; Omari et al., 2019). So severe is the threat posed by the nutrient 59 
that excessive presence is the most common reason for failure to achieve Good Ecological Status, as 60 
defined by the Water Framework Directive (2000), in UK waterbodies (Leaf, 2018). To effectively target 61 
resources at reducing P loads, accurate identification of the nutrient’s origin is required (Bowes et al., 62 
2014), with alternative load apportionment models (LAMs) proposed by Bowes et al. (2008) and Greene 63 
et al. (2011) to undertake this task; henceforth referred to as BM and GM respectively. Both models 64 
require spatially and temporally matched P and flow (Q) measurements, meaning they offer a cost- and 65 
labour-efficient tool compared to export coefficient and geographical information systems-based 66 
approaches (Bowes et al., 2008; Greene et al., 2011). The models exploit an, ostensibly, fundamental 67 
difference in the observed Q-P relationship when P is derived from point sources, such as wastewater 68 
treatment plants, or diffuse sources, such as agricultural fertiliser. The former is largely independent of 69 
river flow, as P does not usually require transport to the watercourse via rainfall, whereas the latter is 70 
dependent on mobilisation via precipitation. Therefore, in point source dominated rivers P concentration 71 
should decrease as a function of Q, due to dilution, whereas the opposite would be true for diffuse 72 
pollution. Details of model functions and dissimilarities are available in Crockford et al. (2017). 73 

Despite initial studies asserting their accuracy (Bowes et al., 2008; Bowes et al., 2009; Bowes et al., 74 
2010; Greene et al., 2011), Crockford et al. (2017) found both LAMs (BM and GM) are prone to 75 
substantial errors by calculating certainty statistics for each model under varying sampling temporal 76 
frequencies. The authors concluded this having used high frequency data from a river in Ireland and 77 
the statistical method of bootstrapping (Efron, 1979) to enable the calculation of standard errors (SEs) 78 
when the LAMs were applied to Q-P datasets. Crockford et al. (2017) went on to make the 79 
recommendation of using bootstrapping to ascertain accuracy levels of further datasets to understand 80 
the applicability and reliability of these LAMs. By doing so in a diverse range of catchments, statistical 81 
analysis of catchment characteristics could infer their influence on LAM accuracy, and may provide 82 
further insight into where the models would be best utilised or avoided. Validating the accuracy of these 83 
modelling methods is extremely important, as they continue to be used to apportion P load in rivers, 84 
e.g. BM has recently been used to forecast the impact of climate change influences on P loadings, 85 
realising the possible application of these models in varied catchments (Charlton et al., 2018). 86 

To address this knowledge gap, secondary Q and P data from 136 watercourses (Figure 1) throughout 87 
Britain were used to calculate point source apportionment according to both BM and GM, with results 88 
bootstrapped (N=2000) and applied to high frequency Q data to provide SE estimates for each method. 89 
The data used here comprised all that were available from the Environment Agency and the National 90 
River Flow Archive (NRFA) constrained by proximity as explained in the methodology. Therefore, these 91 
datasets are typical of those used by local authorities to apportion P load in a river catchment. Land 92 
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use, base flow index, holistic catchment steepness, watercourse sinuosity and catchment size data 93 
were then obtained, or calculated, for each catchment to facilitate investigation into the importance of 94 
these variables on SE of model outputs. This provides a novel method for evaluating model output 95 
variability and a framework for elucidating the drivers for model error in future studies. 96 

Material and methods 97 
 98 
Selection of catchment metrics 99 
 100 
Catchment characteristics (Land Use; Baseflow Index; Catchment Steepness; Catchment Sinuosity; 101 
Catchment Size) were selected given evidence their variability may impact observed Q-P mechanisms, 102 
which in turn could affect assumptions of the algorithms behind each LAM. For instance, land use 103 
causes alteration in Q flow paths, the level, dominant form and source of P (MacDonald et al., 2012; 104 
Daryanto et al., 2017; Rogger et al., 2017; Lou et al., 2018). Baseflow index is representative of 105 
catchment geology and soil type (Yaeger et al., 2012), the properties of which will influence P retention 106 
(Antoniadis et al., 2016) and Q dynamics such as residence times (Maxwell et al., 2016). Catchment 107 
steepness can cause an increase in soil erosion (Bridge and Demicco, 2008) and consequently the 108 
transport of soil adsorbed P to watercourses, whilst increased sinuosity encourages sedimentation (He 109 
et al., 2018), that also facilitates P adsorption. The release of this adsorbed P can occur at high flows, 110 
indicating diffuse sources regardless of actual point source contributions (Jarvie et al., 2012). Finally, 111 
catchment size increases can enable observation of Q variations over a longer period post rainfall event 112 
in comparison to smaller catchments (Crochemore et al., 2018). 113 

Acquisition of secondary phosphorus (P) and river flow (Q) data 114 
 115 
Water quality datasets from 2010 to 2019 were obtained from the Environment Agency website (EA, 116 
not dated) providing data for England only. Datasets were combined, filtered to remove information 117 
pertaining to other water quality measures, and grouped according to their co-ordinates. Locations with 118 
fewer than 50 data points were identified using Microsoft Excel COUNTIF function and removed, leaving 119 
3358 potentially eligible datasets (dependant on Q data availability). The threshold of fewer than 50 120 
data points was arbitrary, defined to ensure sufficient data points for the process described in “Data 121 
preparation for Load Apportionment Modelling”, where data point removal was anticipated, leaving 122 
sufficient numbers of data points remaining for statistical robustness. 123 

The NRFA provided coordinates of all UK river flow gauging stations (NRFAa, 2019). These were 124 
plotted in ArcMap 10.5.1 (ESRI, 2019) and overlaid with P sampling locations and a shapefile containing 125 
UK rivers (OS, 2019) to facilitate visual identification of gauging stations located on the same 126 
watercourses as P data locations. As P and Q data are collected by different agencies in the UK there 127 
were few locations where these data were spatially matched. Therefore, data for Q (15 minute interval) 128 
and P (collected monthly) were obtained from locations on the same stem of a river, with no watercourse 129 
entering or exiting in-between for the period 2010 to 2019. This yielded 136 eligible datasets for 130 
analysis. 131 

Data preparation for Load Apportionment Modelling 132 
 133 
R (R Core Team, 2019) was used to pair P data points to Q data points of the closest temporal proximity, 134 
and to calculate the mean of Q data within a one hour around this point. Creating an hourly average 135 
standardised the matching process, as simply pairing P points to the closest Q points facilitated time 136 
difference variation between paired data points. If requisite Q data points were absent then the 137 
respective P point was removed. Where this reduced dataset sample size to fewer than 30, which 138 
occurred in 29 cases, the dataset was excluded. This threshold was implemented in an effort to maintain 139 
representation of real-life data availability and a high number of datasets for analysis, whilst not using 140 
datasets with such low levels of data that they were unsuitable for analysis.  141 
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Determining point apportionment according to load apportionment models 142 
 143 
Point source apportionment for each watercourse was calculated using algorithms extracted from 144 
Bowes et al. (2008) and Greene et al. (2011), equations 1 and 2 respectively. For BM, the B variable 145 
was constrained to 0 (following Bowes et al., 2010 and Charlton et al., 2018).  Bootstrapping 146 
(N=2000) using high frequency Q data was then undertaken to calculate output SE using the phoslam 147 
package in R (O’Riordain and Crockford, 2014). Due to error messages from model fit a further 148 
sixteen datasets were incompatible and were discounted. 149 

(Equation 1) 150 

𝑃𝑃 = 𝐴𝐴.𝑄𝑄𝐵𝐵−1 + 𝐶𝐶.𝑄𝑄𝐷𝐷−1 151 

where P is phosphorus concentration, Q is flow, A, B (=0), C and D (≥1) are time-invariable coefficients.  152 

(Equation 2) 153 

𝑃𝑃 = 𝑎𝑎𝑄𝑄−1 + 𝑏𝑏𝑄𝑄 + 𝑐𝑐𝑄𝑄2 154 

where P is phosphorus concentration, Q is flow and a, b and c are time-invariable coefficients. 155 

Acquisition and calculation of catchment metrics 156 
 157 
For remaining datasets shapefiles detailing catchment boundaries and size for each Q sampling point 158 
were sourced from the NRFA (NRFAb, 2019) along with statistics on land-use, baseflow index and 159 
holistic steepness of catchments available from NRFAb (2019; detailed in Table 1). Finally, a sinuosity 160 
index score for each watercourse was calculated using equation 3, as employed by Yu (2017). 161 

(Equation 3) 162 

𝑆𝑆 =
𝐿𝐿
𝐿𝐿𝐿𝐿

 163 

where S is sinuosity, L is the length of the river following all curves and Lv is the length between these 164 
points following a direct path. 165 

To obtain metrics for equation 3, a UK river shapefile (OS, 2019) was overlaid with each catchment 166 
boundary in ArcMap 10.5.1. Using the clip function the river layer was reduced so only watercourses 167 
within individual catchments were present, with the resultant attribute table containing the length of 168 
these watercourse polygons which could be appropriately selected and totalled, whilst the measure 169 
function was utilised to provide Lv measurements. In total, nine catchment metrics (Table 1) were 170 
provided as explanatory variables to observed SE variation. 171 

Statistical analysis methodology 172 
 173 
All data was combined into one dataset (Appendix 1), and analysed in R using a range of packages 174 
and functions; denoted in text by ‘Package’:function. If not specified, functions were present in the base 175 
package. 176 

Summary statistics, normality testing, data transformation and model SE correlation 177 
 178 
The mean, standard deviation, median and quartile statistics were calculated for each variable. To test 179 
normality, histograms were plotted and the Anderson-Darling p statistic calculated, using 180 
‘nortest’:ad.test (Ligges, 2015). Those variables evidencing non-normal distribution were logarithmically 181 
transformed to coerce data into normal, or closer to normal, distribution. Where this resulted in negative 182 
numbers each dataset value was increased by one (Fletcher et al., 2005). Spearman’s correlation 183 
analysis was also undertaken between BM and GM to ascertain if any association was present.  184 
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Random Forest Analysis 185 
 186 
To identify relative importance of individual explanatory variables on SE obtained from BM and GM, 187 
random forest analysis was undertaken, using ‘randomForest’:randomForest (Liaw, 2018). The 188 
analysis, based on the algorithm by Breiman (2001), created a series of decision trees (questions with 189 
multiple answers regarding the explanatory variables) by randomly sub-sampling the dataset (Ekstrøm, 190 
2016). Thus, machine-learning was employed to identify the relative importance of explanatory 191 
variables in correctly predicting the response variable category (Cutler et al., 2007), measured by Mean 192 
Decrease of Accuracy (MDA) and the Gini Index. Specifically, the MDA value provided a measure of 193 
loss in predictive performance when a variable was removed or permutated (San Diego University, 194 
2017). The Gini Index measures node purity after each split (question) in the decision tree. Node purity 195 
refers to homogeneity of data categories contained within a child node after a split in the decision tree. 196 
The Gini coefficient for all nodes were summed and normalised for each variable individually to provide 197 
a ranking (San Diego University, 2017). Out of Bag Error (OOB) statistics were also calculated, which 198 
detail overall prediction error rate for the model built by the random forest, whilst error rates for the 199 
prediction of individual response variable categories were also provided in the output. 200 

For the random forest analysis, the continuous response variable was converted to categorical data, 201 
with a similar number of data points within categories to minimise bias in correctly predicting an 202 
individual category. Thus, SE was split into three categories (low, medium, high) with 30, 30 and 31 203 
points respectively; reflecting the interest in change of SE across datasets in general as opposed to SE 204 
beyond a given threshold. 205 

Three forests were grown for each dataset (BM SE or GM SE) to enable comparison of model outputs 206 
for the individual datasets and so ensure outputs were consistent when different start points of random 207 
data selection were specified via the set.seed function. The number of trees grown within each forest 208 
was 500 to ensure each dataset row (individual catchments) would be predicted more than once but 209 
not oversampled. Numerical results of explanatory variable importance were scaled to the variable with 210 
the largest score. 211 

Correlation and regression analysis of variables identified as most important in Random Forest 212 
testing 213 
 214 
Where Random Forest analysis evidenced individual explanatory variables were important in predicting 215 
response variables, further testing was undertaken to quantify the strength of potential univariate 216 
relationships. Correlative tests were first employed to determine if relationships were present (p<0.05) 217 
with linear regression undertaken to generate R2 statistics where true. Post-hoc tests (Anderson-Darling 218 
p statistic and Residuals vs Fitted, Normal Q-Q and Scale-Location plots) were performed to ensure 219 
model errors had a normal distribution, which evinces statistical assumptions of linear regression are 220 
being met (Li et al., 2012). 221 

Where post-hoc testing suggested assumptions were violated, plots were visually examined to ascertain 222 
if individual data points had disproportionate leverage, as linear regression is sensitive to outliers which 223 
distort true data patterns (Fox, 2015). Where found, the linear regression and post-hoc tests were re-224 
run with the data points removed to evaluate their impact on model assumption violation (following 225 
Osbourne et al., 2004) and, if errors were then normally distributed, to recalculate R2 statistics. 226 

Moreover, to understand if a relationship was present when considering the full dataset, a quantile 227 
regression, which negates the need for normal error distribution, was undertaken using ‘quantreg’:rq 228 
(Koenker, 2019). Model fit was compared, via AIC(k=2), to a null model created using the interaction 229 
term ‘~1’; if the null model had a better fit it evidenced the perceived relationship could be reproduced 230 
in a simple model which did not incorporate the explanatory variable of interest (Gotelli, 2001). Quantile 231 
regression could not indicate the strength of relationship, as pseudo R2 cannot be interpreted as the 232 
proportion of response variability explained by the explanatory variable (Fox, 2015).  233 
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Assessing Load Apportionment Model(s)’ fit 234 
 235 
For each catchment, AIC values were calculated to quantify BM and GM model fit and so provide 236 
information on which model provided the better fit. As the base package AIC function was incompatible 237 
with phoslam, calculation of the value was undertaken in Microsoft Excel using equation 4 as set out by 238 
Zhou et al. (2013): 239 

(Equation 4) 240 

𝐴𝐴𝐴𝐴𝐶𝐶 =
2𝑘𝑘
𝑛𝑛

+ log (𝑅𝑅𝑆𝑆𝑆𝑆/𝑛𝑛) 241 

where k represents number of model parameters (Bowes=4 and Greene=3), n represents number of 242 
data points and RSS sum of squared residuals. 243 

To calculate the RSS, modelled P values from observed Q values were produced in Excel using the 244 
BM and GM algorithms. The required parameter values for BM and GM were sourced using phoslam, 245 
entered into the spreadsheet and linked via cell coding to the algorithm. Furthermore, the tendency of 246 
modelled values to be greater or smaller than observed values, indicating bias, was calculated using 247 
‘hydroGOF’:pbias (Zambrano-Bigiarini, 2017). The function returns a percentage value representing the 248 
datasets average difference between modelled and actual values; negative values indicating 249 
underestimation and positive values indicating overestimation. 250 

Results 251 
 252 
Summary statistics, normality testing, data transformation and model SE correlation 253 
 254 
Summary statistics of all variables are contained in Table 2. Inspection of histograms and the results of 255 
Anderson-Darling tests evinced that all variables were considered to have non-normal data distribution 256 
and were therefore logarithmically transformed. All data except those for Catchment Size, Slope and 257 
Grassland were increased by one prior to transformation to remove negative datapoints post 258 
transformation. Spearman’s correlation analysis revealed a ‘strong’ (Pallant, 2016) positive correlation 259 
between BM SE and GM SE (r=0.83, n=91, p<.001). 260 

Random Forest Analysis 261 
 262 
Prediction error rates 263 
 264 
The mean OOB for the three BM forests created was 52.75% (SE: 0.64), whilst the same statistic was 265 
61.90% (SE: 2.03) for GM forests. Mean prediction error for individual response variable categories 266 
within the BM forests was 37.63% for ‘high’, 62.22% for ‘medium’ and 58.88% for ‘low’ (SE: 0.01 for 267 
all). Regarding GM forests, mean prediction error was 54.83%, 73.33% and 57.78% when predicting 268 
‘high’, ‘medium’ and ‘low’ categories (SE: 0.01, 0.01 and 0.02 respectively). 269 

Variable importance 270 
 271 
Scaled importance of variables, using both the MDA and Gini Index, are presented within Figure 2. 272 
Relative importance, and order, of explanatory variables in effecting response variables was notably 273 
different between BM and GM forest outputs. Furthermore, divergence in variable order was present 274 
between MDA and Gini ratings within models, BM or GM forest respectively; though this pattern only 275 
applied to the order after the variable considered of the greatest importance, which remained constant 276 
between the two measures within models, though not between models.  277 
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Correlation and regression analysis of variables identified as most important in Random Forest 278 
 279 
Spearman’s correlation testing between GM SE and Catchment Size and GM SE and Slope returned 280 
non-significant results (p=.16 and p=.23 respectively). The same test for BM SE to Urban did evidence 281 
a relationship (p<.001), so a linear regression was undertaken (t=4.72, d.f.=89, p<.001, R2=0.20). 282 

Post-hoc testing of the linear regression revealed model errors were not normally distributed (p<.001), 283 
with two outlying data point residuals (catchments 15 and 89) potentially disproportionally impacting the 284 
linear regression result. These points were removed and the test re-run, with a notable benefit to error 285 
normality (p=.29), though less of a change noted in model output (t=4.566, d.f.=87, p<.001 and 286 
R2=0.19); Figure 3. 287 

As per the methodology, a quantile regression was then undertaken on the full dataset and compared 288 
for fit, using AIC(k=2), with a null model. The quantile regression had the better fit, evidencing that the 289 
perceived relationship between BM SE and Urban was not able to be reproduced when no explanatory 290 
variable was included. 291 

Assessment of Load Apportionment Model(s) fit 292 
 293 
AIC values evidenced the BM algorithm provided a better modelled fit to observed data in 84 of the 91 294 
catchments. For all catchments the GM algorithm provided a higher estimate of point load 295 
apportionment compared to BM, ranging from 1.02 to 14.66 times greater (mean: 2.15, SD: 2.18). 296 
Percentage bias statistics evidenced model bias varied hugely (-99% to >200% and -100% to 297 
>1000% for BM and GM respectively). Overall BM had a more consistent, lower, bias (mean: 3.3%, 298 
SD: 32%) than GM (mean: >500% SD: >1000%), with the BM modelling P values to ± 10% of actual P 299 
values in 85.7% of datasets, opposed to GMs 17.6%. 300 

 301 

Discussion 302 

Relationship between catchment characteristics and the GM 303 
 304 
Relative homogeneity of the aggregated GM random forests output, especially in relation to the Gini 305 
Index (Figure 2), evidences catchment characteristics are not individually influential in determining GM 306 
SE, as re-iterated by correlation analysis, which could suggest variables may be interacting together. It 307 
may also infer that a parameter not included within the study is having a disproportionate impact. The 308 
high OOB strengthens this theory as it demonstrates the random forest model is having low success in 309 
predicting SE class from included variables, which would be illogical if the variables are interacting and 310 
responsible for the majority of SE variation. In reality, a combination of theories is likely to be more 311 
accurate in that variables are interacting to cause variation, though further parameters are necessary 312 
to fully account for SE alteration. If the range in SEs has been produced through chance with no real 313 
catchment characteristic influence then this could infer that the model could be applied in any 314 
catchment. However, as the model was relatively low for accuracy of modelled outputs there are 315 
remaining challenges for the use of GM in catchment management. 316 

Relationship between catchment characteristics and the BM 317 
 318 
Conversely, the BM random forest and proceeding regression analysis identified one variable, Urban, 319 
as being responsible for c.19% of SE variation. Although this figure is derived from post data point 320 
removal, a contentious although often necessary procedure (Osborne and Overbay, 2004), confidence 321 
in its validity is provided through the quantile regression results and how exclusion of data points caused 322 
only a minor alteration in the R2 value.  323 

The LAM relies upon the relationship between Q and P altering in response to the predominant 324 
contribution source and should anything facilitate a deviation from the assumptions of this relationship 325 
then model output variability will be observed, as is the case with BM SE and Urban. Urbanisation 326 
fundamentally alters hydrological mechanisms and pathways, which consequently impacts the level 327 
and timing of runoff (Hung, 2018). This is predominantly manifested by a reduction in pervious surfaces 328 
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and an increase in flow velocity (Trudeau and Richardson, 2016; Pumo et al., 2017) caused by diversion 329 
of flow. Changes in surface permeability and increased water velocity can all cause a ‘flashy’ 330 
hydrograph of reduced flow periods and increased peak discharges (Neave and Rayburg, 2016). This 331 
characteristic, combined with low frequency sampling, is a likely cause of model variability and loss of 332 
output robustness as the dataset will not represent the full range of storm events within the catchments 333 
and so cannot accurately model diffuse P contributions (Bowes et al., 2008).   Additionally, urbanisation 334 
also impacts processes such as evapotranspiration (Locatelli et al., 2017) and the geomorphological 335 
dimensions of a watercourse, due to increased water velocity (Jacobson, 2011).  336 

The impact of ‘flashy’ hydrographs and low sampling frequency on nutrient load estimation uncertainty 337 
has long been proposed (Johnes, 2007), with it still being highlighted as a barrier to robust models and 338 
reliable outputs in contemporary studies (Hollaway et al., 2018; Jung et al., 2020).This reduction in high 339 
Q data will be a further likely source of model uncertainty as true levels of diffuse contributions are 340 
masked (Johnes, 2007; Bowes et al., 2008). 341 

Stormwater infrastructure can also cause higher levels of in-stream sedimentation through either 342 
transfer of stored sediment, or the increase of bankside erosion from elevated flow rates if water 343 
diversion is the utilised management method (Ruhlman et al., 2016). Within a watercourse, 344 
sedimentation further complicates Q-P patterns as adsorbed sediment may be released during higher 345 
flows. This behaviour will mean that true point source apportionment levels are masked as the rise in 346 
Q and P would be attributed to diffuse source by the LAM assumptions (Jarvie et al., 2012), whilst 347 
increasing levels of P retention reduce the BM applicability. Furthermore, climate, chemical state and 348 
river geomorphological characteristics will impact the variability of retention rates and observed patterns 349 
(McDowell et al., 2017; Omari et al., 2019; Xiao et al., 2019). This may further conspire to cause model 350 
output variability as the Q-P relationships that the LAM rely upon are being complicated. 351 

Despite these issues, it remains that the defined relationship between BM SE and urban does not 352 
account for the majority of SE variation. Given there are complex interlinked processes that govern 353 
hydrological processes and P transfer (Holloway et al., 2018) it is feasible, as hypothesised with the 354 
GM, that the variables are interacting to cause the variation. It is also feasible that variables included in 355 
this study do not fully account for observed BM variation and other factors should be considered to 356 
estimate variation in BM and GM analyses. This sentiment becomes evident when considering 357 
catchment 89, which provided the highest SE for the BM and GM, although the quantified catchment 358 
characteristics were not obviously divergent or extreme from other datasets, so indicating that further 359 
factors are required to account for the SE variation. 360 

Applicability of LAMs 361 
 362 
Although the GM did not, holistically, provide an accurate representation of observed data points, the 363 
BM yielded results which demonstrate the algorithm generally performs well on datasets of the type 364 
analysed within this study. However, a challenge remains that these datasets are unlikely, given 365 
sampling frequency, to capture the full range of Q-P variation that occur within watercourses as recently 366 
shown by Jung et al. (2020). Only by using high frequency Q-P data can true patterns be identified 367 
(Bieroza and Heathwaite, 2015; Williams et al., 2015; Elwan et al., 2018) and thereby increase the 368 
accuracy of BM P apportionment. Moreover, P models are known to have a reduced ability to model P 369 
at high Q (Cassidy and Jordan, 2011; Chen et al., 2013; Crockford et al., 2017). When these issues are 370 
coupled with original model designers highlighting the need for high Q data to increase model 371 
robustness (Bowes et al., 2008) then interpreting BM outputs calculated from low temporal resolution 372 
datasets as representative of true trends appears unwise. Such issues will also conspire to undermine 373 
the model’s usefulness for future application on low frequency datasets, given that more frequent storm 374 
events are forecast due to climate change (GOV.UK, 2018). Not only does capturing the full range of 375 
storm events enable accurate outputs from these models, but the change in storm frequency and vigour 376 
has the capability to alter pathways and intensity of diffuse P transfer (Forber et al., 2018), which could 377 
further facilitate deviation from the Q-P relationships on which the LAM rely upon.  378 

It must also be noted that though the BM has a high success rate at predicting observed data points, 379 
not utilising methods other than LAM to explain these data points could result in misinterpretation.  For 380 
example, those catchments which consist predominantly of dynamic land-use, such as arable, or over 381 
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a longer time period forestry, could instigate biased outputs if Q-P monitoring is over too long a period 382 
or too short a period. In the example of forestry, if monitoring was centred around a felling period then 383 
diffuse contributions would be weighted highly. However, if the monitoring period was either between 384 
felling or over many years, then this diffuse loss could be missed or diluted. Only by investigating data 385 
trends and comparing these to catchment characteristics can effective, accurate mitigation measures 386 
be designed. 387 

Future research 388 
 389 
Load apportionment modelling 390 
 391 
Given concerns about the effect of low frequency data use on output accuracy it would be beneficial to 392 
undertake a study, spanning a wider range of datasets as possible, looking at how BM and GM point 393 
apportionment and SE are impacted by the inclusion of high frequency data. This would also then 394 
facilitate re-analysis of the effect of catchment characteristics on SE, which would test the conclusions 395 
of this study. Moreover, it would be valuable to expand the catchment characteristics incorporated within 396 
the random forest analysis as the results indicate SE variation is not fully explained by those included. 397 
This may include the prevalence of known point sources which may not be adequately represented by 398 
degree of urbanisation. Quantifying specific soil types and their distribution would also be an obvious 399 
choice given soil type is known to be influential in P dynamics (Bergström et al., 2015). Although base 400 
flow index is heavily influenced by soil type and so may be considered a proxy for this, it does not 401 
provide the in-depth understanding of soil type and distribution that may be contributing to the SE 402 
variation not accounted for within this study.  Regarding interactions between variables being potentially 403 
responsible for SE variation, especially in the case of GM, further statistical analysis of the dataset 404 
(Appendix 1) would enable interactions between variables to be explicitly identified and quantified. This 405 
may be important when considering the role that catchment area plays in the magnitude of export of P 406 
in a river. 407 

It would also be highly useful to quantify the impact on the LAMs output and SE of using Q-P data which 408 
was not temporally and spatially matched at the point of collection. While every effort was made to 409 
ameliorate this concern, it represents a methodological deviation from that set out by Bowes et al. 410 
(2008) and Greene et al. (2011). Moreover, if it was found to be a significant issue then it could further 411 
question the applicability of LAMs as a tool for quickly analysing a range of watercourses, as the issue 412 
itself was borne from current data availability.  413 

Finally, it would be advantageous to comprehend if the use of LAMs models on low frequency datasets 414 
could be incorporated into a wider framework for accurately assessing P apportionment. This study has 415 
shown that the BM is capable of providing a relatively accurate model of widely available low frequency 416 
datasets, whilst the models themselves facilitate reduced time and labour requirements when assessing 417 
P apportionment. If accuracy is not greatly compromised by the use of high frequency data, though this 418 
seems probable, the BM could be utilised in catchments where the outputs (SE) are found to be most 419 
consistent and avoided where model error is known to be exacerbated, such as heavily urbanised 420 
catchments. Therefore, where limited resources are available, efforts to comprehend P apportionment 421 
using other methods with increased labour requirements could be targeted towards those catchments 422 
where the BM is considered less accurate and more variable. 423 

Using catchment characteristics to evaluate models 424 
 425 
Across the 91 catchments investigated, catchment characteristics displayed diversity in their respective 426 
measurements, therefore providing a good basis for this study’s investigation into their role in LAM 427 
variation. Furthermore, that BM and GM evidence linearity in their SE outputs suggests that 428 
environmental variables, not accounted for is this study, are influencing model variation which a simple 429 
numerical model is compromised to reflect. Using catchment characteristics to evaluate the causation 430 
of standard error in models has been largely inconclusive in this study except for the suggestion that 431 
BM is influenced by percentage urban cover. Using catchment characteristics to evaluate model error 432 
remains, however, a novel method of identifying the influences on standard error as simple numerical 433 
models continue to be used in catchment management (e.g. Ascott et al., 2018). Previous use of 434 
catchment descriptors with model outputs have allowed predictions in other scenarios with fewer data 435 
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available, such as Deckers et al. (2010) or determined the impact of changing a catchment 436 
characteristic such as catchment size in Andrianaki et al. (2019). Catchment characteristics have been 437 
cited as possible explanatory influences on the variation in hydrological simulation across 979 438 
catchments in the US and UK with geology and baseflow contributions particularly identified (Seibert et 439 
al., 2018), thus confirming that investigating the causation of error may make the applicability of models 440 
more robust in the future.  441 

 442 

Conclusion 443 

This study has been the first to calculate certainty statistics when applying the BM and GM to a wide 444 
range of river catchment datasets. In doing so, it has been evidenced that the BM output variability 445 
increases as levels of urban cover rise, whilst the GM SE is less influenced by individual variables. It is 446 
hypothesised that further variables beyond those included within this study are impacting the SE of both 447 
models, whilst interactions between studied variables may also be present.  448 

Further investigation into these hypotheses is required, though more pressing is the need to ascertain 449 
if the outputs, even where there is low SE, represent true patterns of the Q-P relationship. Such research 450 
using high temporal frequency data could provide justification of the continued use of each LAM to 451 
accurately model P changes as a function of Q on low frequency datasets. Moreover, this may yield 452 
differing results regarding the importance of catchment characteristics on model variation than has been 453 
shown within this study. 454 

Finally, this study has demonstrated a method for using catchment descriptors to identify the drivers for 455 
SE variability across modelled river catchments. By identifying the descriptors that models are highly 456 
sensitive to, more appropriate use of simple numerical models, such as LAMs, may be developed. 457 

References 458 

Andrianaki, M., Shrestha, J., Kobierska, F., Nikolaidis, N. P., & Bernasconi, S. M. (2019). 459 
Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized 460 
catchment. Hydrol Earth Syst Sc, 23(8), 3219-3232. doi: 10.5194/hess-23-3219-2019 461 

Antoniadis, V., Koliniati, R., Efstratiou, E., Golia, E. and Petropoulos, S. 2016. Effect of soils 462 
with varying degree of weathering and pH values on phosphorus sorption. CATENA, 139, 463 
214-219. doi: 10.1016/j.catena.2016.01.008 464 

Bergström, L., Kirchmann, H., Djodjic, F., Kyllmar, K., Ulen, B., Liu, J., Andersson, H., 465 
Aronsson, H., Börjesson, G., Kynkäänniemi, P., Svanbäck, A. and Villa, A. 2015. Turnover 466 
and losses of phosphorus in Swedish agricultural soils: long-term changes, leaching trends, 467 
and mitigation measures. J Env Qual, 44(2), 512-523. doi: 10.2134/jeq2014.04.0165 468 

Bieroza, M.Z. and Heathwaite, A.L. 2015. Seasonal variation in phosphorus concentration-469 
discharge hysteresis inferred from high frequency in situ monitoring. J Hydrol, 524, 333-347. 470 
doi: 10.1016/j.jhydrol.2015.02.036 471 

Bong, C.H.J., Lau, T.L. and Ghani, A.A. 2016. Potential of tipping flush gate for 472 
sedimentation management in open stormwater sewer. Urban Water J, 13(5), 486-498. doi: 473 
10.1080/1573062X.2014.994002 474 

Bowes. M.J., Smith, J.T., Jarvie, H.P and Neal, C. 2008. Modelling of phosphorus inputs to 475 
rivers and diffuse point sources. Sci Total Environ, 395 (2-3), 125-138. doi: 476 
10.1016/j.scitotenv.2008.01.054 477 

Bowes, M.J., Smith, J.T., Jarvie, H.P., Neal, C. and Barden, R. 2009. Changes in point and 478 
diffuse source phosphorus inputs to the River Frome (Dorest, UK) from 1966 to 2006). Sci 479 
Total Environ, 407, 1954-1966. doi: 10.1016/j.scitotenv.2008.11.026 480 

https://dx.doi.org/10.5194/hess-23-3219-2019
https://dx.doi.org/10.1016/j.catena.2016.01.008
https://dx.doi.org/10.2134/jeq2014.04.0165
https://dx.doi.org/10.1016/j.jhydrol.2015.02.036
https://dx.doi.org/10.1080/1573062X.2014.994002
https://doi.org/10.1016/j.scitotenv.2008.01.054
https://doi.org/10.1016/j.scitotenv.2008.11.026


11 

Bowes, M.J., Neal, C., Jarvie, H.P., Smith, J.T. and Davies, H.N. 2010. Predicting 481 
phosphorus concentrations in British rivers resulting from the introduction of improved 482 
phosphorus removal from sewage effluent. Sci Total Env, 408(19), 4239-4250. doi: 483 
10.1016/j.scitotenv.2010.05.016 484 

Bowes, M.J., Jarvie, H.P., Naden, P.S., Old, G.H., Scarlett, P.M., Roberts, C., Armstrong, 485 
L.K., Harman, S.A., Wickham, H.D. and Collins, A.L. 2014. Identifying priorities for nutrient 486 
mitigation using river concentration-flow relationships: The Thames basin, UK. J Hydrol, 517, 487 
01-12. doi: 10.1016/j.jhydrol.2014.03.063  488 

Breiman, L. 2001. Random forests. Machine Learning, 45, 05-32. doi: 489 
10.1023/A:1010933404324 490 

Bridge, J.S. and Demicco, R.V. 2008. Earth surface processes, landforms and sediment 491 
deposits. New York: Cambridge University Press. 492 

Cassidy, R. and Jordan, P. 2011. Limitations of instantaneous water quality sampling in 493 
surface-water catchments: Comparison with near-continuous phosphorus time-series data. J 494 
Hydrol 405(1-2), 182-193. doi: 10.1016/j.jhydrol.2011.05.020 495 

Charlton, M. B., Bowes, M. J., Hutchins, M. G., Orr, H. G., Soley, R., & Davison, P. (2018). 496 
Mapping eutrophication risk from climate change: Future phosphorus concentrations in 497 
English rivers. Sci Total Environ, 613, 1510-1526. 10.1016/j.scitotenv.2017.07.218 498 

Chen, D., Dahlgren, R.A. and Lu, J. 2013. A modified load apportionment model for 499 
identifying point and diffuse source nutrient inputs to rivers from stream monitoring data. J 500 
Hydrol. 501, 25-34. doi: 10.1016/j.jhydrol.2013.07.034  501 

Crochmore, L., Rafael, P., Luis P., Abdulghani, H., Ilias, P., Kristina, I., Jafet, A. and Berit, A. 502 
2018. Understanding and evaluating catchment memory from a global hydrological model: 503 
paper presented at the 20th EGU general assembly conference 04-13 April 2018 Vienna, 504 
Austria. Germany: European Geosciences Union.  505 

Crockford, L., O’Riordain, O., Taylor, D., Melland, A.R., Shortle, G. and Jordan P. 2017. The 506 
application of high temporal resolution data in river catchment modelling and management 507 
strategies. Environ Mon Assess, 189(9), doi: 10.1007/s10661-017-6174-1 508 

Cutler, D.R., Edwards, T.C., Beard, K.H, Cutler, A., Hess, K.T., Gibson, J. and Lawler, J.J. 509 
2007. Random forests for classification in ecology. Ecology, 88(11), 2783-2792. doi: 510 
10.1890/07-0539.1 511 

Daryanto, S., Wang, L. and Jacinthe, P.A. 2017. Meta-analysis of phosphorus loss from no-512 
till soils. J Env Quality, 46(5), 1028-1037. doi:10.2134/jeq2017.03.0121  513 

Deckers, D., Booij, M. J., Rientjes, T. M., & Krol, M. S. (2010). Catchment Variability and 514 
Parameter Estimation in Multi-Objective Regionalisation of a Rainfall-Runoff Model. Water 515 
Res Manage, 24(14), 3961-3985. doi: 10.1007/s11269-010-9642-8 516 

EA (Environment Agency). not dated. Download open water quality archive datasets. 517 
environment.data.gov.uk/water-quality/view/download 518 

Efron, B. (1979). Bootstrap Methods: Another look at the Jacknife. Ann Statis, 1, 01-26. doi: 519 
10.1007/978-1-4612-4380-9_41  520 

Ekstrøm, C.T. 2016. The R primer. Boca Raton: CRC Press.  521 

https://doi.org/10.1016/j.scitotenv.2010.05.016
https://doi.org/10.1016/j.jhydrol.2014.03.063
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jhydrol.2011.05.020
https://doi:10.1016/j.scitotenv.2017.07.218
https://doi.org/10.1016/j.jhydrol.2013.07.034
https://doi.org/10.1007/s10661-017-6174-1
https://doi.org/10.1890/07-0539.1
https://doi.org/10.2134/jeq2017.03.0121
https://dx.doi.org/10.1007/s11269-010-9642-8
https://environment.data.gov.uk/water-quality/view/download
https://doi.org/10.1007/978-1-4612-4380-9_41


12 

Elwan, A., Singh, R., Patterson, M., Roygard, J., Horne, D., Clothier, B. and Jones, G. 2018. 522 
Influence of sampling frequency and load calculation methods on quantification of annual 523 
river nutrient and suspended solids loads. Environ Mon Assess, 190(2). doi: 524 
10.1007/s10661-017-6444-y   525 

ESRI (Environmental Systems Research Institute). 2019. ArcMap. 526 
desktop.arcgis.com/en/arcmap/ 527 

Fletcher, D., MacKenzie, D., Villouta, E., 2005. Modelling skewed data with many zeros: A 528 
simple approach combining ordinary and logistic regression. Environ Ecol Stat, 12, 45–54. 529 
doi: 10.1007/s10651-005-6817-1 530 

Forber, K.J., Withers, P.J.A., Ockenden, M.C. and Haygarth, P.M. 2018. The phosphorus 531 
transfer continuum: A framework for exploring effects of climate change. Ag Environ Let, 3. 532 
doi: 10.2134/ael2018.06.0036  533 

Fox, J. (2015). Applied regression analysis and generalized linear models (Third ed.). 534 
Thousand Oaks: SAGE Publications, Inc. 535 

Gotelli, N.J. 2001. Research frontiers in null model analysis. Global Ecol Biogeogr, 10, 337-536 
343. 10.1046/j.1466-822X.2001.00249.x 537 

GOV.UK. 2018. Climate change means more frequent flooding, warns Environment Agency. 538 
www.gov.uk/government/news/climate-change-means-more-frequent-flooding-warns-539 
environment-agency 540 

Greene, S., Taylor, D., McElarney, Y.R. and Jordan, P. 2011. An evaluation of catchment-541 
scale phosphorus mitigation using load apportionment modelling. Sci Total Environ, 409 542 
(11), 2211-2221. doi: 10.1016/j.scitotenv.2011.02.016 543 

He, S., Wang, D., Chang, S., Fang, Y. and Lan, H. 2018. Effects of morphology of sediment-544 
transporting channels on the erosion and deposition of debris flows. Environ Earth Sci, 545 
77(14). doi: 10.1007/s12665-018-7721-y  546 

Holloway, M.J., Beven, K.J., Benskin, C.McW.H., Cllins, A.L., Evans, R., Falloon, P.D., 547 
Forber, K.J., Hiscock, K.M., Kahana, R., Macleod, C.J.A., Ockenden, M.C., Villamizar, M.L., 548 
Wearing, C., Withers, P.J.A., Zhou, J.G., Barber, N.J. and Haygarth, P.M. 2018. The 549 
challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits of 550 
acceptability’ uncertainty framework to a water quality model. J Hydrol, 558, 607-624. doi: 551 
10.1016/j.jhydrol.2018.01.063 552 

Hung, C.J. 2018. Catchment hydrology in the Anthropocene: Impacts of land-use and 553 
climate change on stormwater runoff. South Carolina: University of South Carolina.  554 

Jacobson, C.R. 2011. Identification and quantification of the hydrological impacts of 555 
imperviousness in urban catchments: A review. J Environ Manage, 6, 1438-1448. doi: 556 
10.1016/j.jenvman.2011.01.018  557 

Jarvie, H.P., Sharpley, A.N., Scott, J.T., Haggard, B.E., Bowes, M.J., Massey, L.B. 2012. 558 
Within-river phosphorus retention: accounting for a missing piece in the watershed 559 
phosphorus puzzle. Environ Sci Technol, 46(24), 13284-13292. doi: 10.1021/es303562y 560 

Johnes, P.J. 2007. Uncertainties in annual riverine phosphorus load estimation: impact of 561 
load estimation methodology, sampling frequency, baseflow index and catchment population 562 
density. J Hydrol, 332, 241-258. doi: 10.1016/j.jhydrol.2006.07.006  563 

https://doi.org/10.1007/s10661-017-6444-y
http://desktop.arcgis.com/en/arcmap/
https://doi.org/10.1007/s10651-005-6817-1
https://doi.org/10.2134/ael2018.06.0036
https://doi.org/10.1046/j.1466-822X.2001.00249.x
http://www.gov.uk/government/news/climate-change-means-more-frequent-flooding-warns-environment-agency
http://www.gov.uk/government/news/climate-change-means-more-frequent-flooding-warns-environment-agency
https://dx.doi.org/10.1016/j.scitotenv.2011.02.016
https://doi.org/10.1007/s12665-018-7721-y
https://doi.org/10.1016/j.jhydrol.2018.01.063
https://doi.org/10.1016/j.jenvman.2011.01.018
https://doi.org/10.1021/es303562y
https://doi.org/10.1016/j.jhydrol.2006.07.006


13 

Jung, H., Senf, C., Jordan, P., and Krueger, T. 2020. Benchmarking inference methods for 564 
water quality monitoring and status classification. Env Monit Assess, 192, 261. doi: 565 
10.1007/s10061-020-8223-4 566 

Koenker, R. 2019. Quantreg: Quantile Regression. R package version 5.40. 567 
CRAN.R-project.org/package=quantreg 568 

Leaf, S. 2018. Taking the P out of pollution: an English perspective on phosphorus 569 
stewardship and the Water Framework Directive. Water Environ J, 32, 04-08. doi: 570 
10.1111/wej.12268  571 

Li, X., Wong, W., Lamoureux, E.L. and Wong, T.Y. 2012. Are linear regression techniques 572 
appropriate for analysis when the dependent (outcome) variable is not normally distributed? 573 
In Opth Vis. Sci, 53, 3082-3083. doi: 10.1167/iovs.12-9967  574 

Li, Z., Tang, H., Xiao, Y., Zhao, H., Li, Q. and Ji, F. 2016. Factors influencing phosphorus 575 
adsorption onto sediment in a dynamic environment. J Hydro-Environ Res, 10, 01-11. doi: 576 
10.1016/j.jher.2015.06.002 577 

Liaw, A. 2018. randomForest v4.6-14. 578 
cran.r-project.org/web/packages/randomForest/index.html 579 

Ligges, U. 2015. nortest function. cran.r-project.org/web/packages/nortest/index.html 580 

Locatelli, L., Mark, O., Mikkelsen, P.S., Arnbjerg,-Nielsen, K., Deletic, A., Roldin, M. and 581 
Binning, P.J. 2017. Hydrologic impact of urbanization with extensive stormwater infiltration. J 582 
Hydrol, 544, 524-537. doi: 10.1016/j.jhydrol.2016.11.030 583 

Lou, H., Zhao, C., yang, S., Shi, L., Wang, L., Ren, X. and Bai, J. 2018. Quantitative 584 
evaluation of legacy phosphorus and its spatial distribution. J Environ Manage, 211, 296-585 
305. doi: 10.1016/j.jenvman.2018.01.062  586 

MacDonald, G.K., Bennet, E.M. and Taranu, Z.E. 2012. The influence of time, soil 587 
characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis. 588 
Global Change Biol, 18(6), 1904-1917. doi: 10.1111/j.1365-2486.2012.02653.x  589 

Maxwell, R.M., Condon, l.E., Kollet, S.J., Maher, K., Haggerty, R. and Forrester, M.M. 2016. 590 
The imprint of climate and geology on the residence times of groundwater. Geophys Res 591 
Lett, 43, 701-708. doi: 10.1002/2015GL066916 592 

McDowell, R.W., Elkin, K.R and Kleinman, P.J.A. 2017. Temperature and Nitrogen effects 593 
on Phosphorus uptake by agricultural stream- bed sediments. J Environ Qual, 46, 295-301. 594 
doi: 10.2134/jeq2016.09.0352  595 

Neave, M. and Rayburg, S. 2016. Designing urban rivers to maximise their geomorphic and 596 
ecologic diversity. Geotec, Const Mat & Env, 11(25), 2468-2473. doi: 597 
http://www.geomatejournal.com/sites/default/files/articles/2468-2473-5164-Neave-Sept-598 
2016-c1.pdf 599 

NRFAa (National River Flow Archive), 2019. Derived flow statistics. 600 
https://nrfa.ceh.ac.uk/derived-flow-statistics   601 

NRFAb (National River Flow Archive), 2019. FEH catchment statistics. 602 
https://nrfa.ceh.ac.uk/feh-catchment-descriptors 603 

https://doi.org/10.1007/s10661-020-8223-4
https://cran.r-project.org/package=quantreg
https://doi.org/10.1111/wej.12268
https://doi.org/10.1167/iovs.12-9967
https://doi.org/10.1016/j.jher.2015.06.002
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/nortest/index.html
https://doi.org/10.1016/j.jhydrol.2016.11.030
https://doi.org/10.1016/j.jenvman.2018.01.062
https://doi.org/10.1111/j.1365-2486.2012.02653.x
https://doi.org/10.1002/2015GL066916
https://doi.org/10.2134/jeq2016.09.0352
http://www.geomatejournal.com/sites/default/files/articles/2468-2473-5164-Neave-Sept-2016-c1.pdf
http://www.geomatejournal.com/sites/default/files/articles/2468-2473-5164-Neave-Sept-2016-c1.pdf
https://nrfa.ceh.ac.uk/derived-flow-statistics
https://nrfa.ceh.ac.uk/feh-catchment-descriptors


14 

Omari, H., Dehbi, A., Lammini, A. and Abdallaoui, A. 2019. Study of phosphorus adsorption 604 
on the sediments. J Chem doi: 10.1155/2019/2760204 605 

O’Riordain, S. and Crockford, L. 2014. Phoslam package in R.  606 
https://github.com/seanpor/phoslam   607 

OS (Ordnance Survey). 2019. OS open rivers shapefile download. 608 
https://www.ordnancesurvey.co.uk/business-and-government/products/os-open-rivers.html 609 

Osbourne, J.W. and Overbay, A. 2004. The power of outliers (and why researchers should 610 
always check for them). Prac Assess Res Eval, (6), 01-12. 611 
scholarworks.umass.edu/pare/vol9/iss1/6/ 612 

Pallant, J. 2016. SPSS survival manual. 6th ed. Berkshire: Open University Press. 613 

Pumo, D., Arnone, E., Francipane, A., Caracciolo, D. and Noto, L.V. 2017. Potential 614 
implication of climate change and urbanization on watershed hydrology. J Hydrol, 554, 80-615 
99. doi: 10.1016/j.jhydrol.2017.09.002  616 

R Core Team, (2019). R, a language and environment for statistical computing. Vienna: R 617 
Foundation for Statistical Computing. 618 

Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J.C., Bodner, G., Borga, M., Chaplot, V., 619 
gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L., Horn, R., Kiss, A., Kohnova, S., 620 
Leitinger, G., Lennartz, B., parajka, J., Perdigao, R., Peth, S., Plavcova, L., Quinton, J.N., 621 
Robinson, M., Salinas, J.L., Santoro, A., Szolgay, J., Tron, S., Akker, J.J.H, Viglione, A. and 622 
Bloschl, G. 2017. Land use change impacts on floods at the catchment scale: Challenges 623 
and opportunities for future research. Water Resour Res, 53, 5209-5219. doi: 624 
10.1002/2017WR020723  625 

Ruhlman, M., Vandelay, A. and Roper, C. 2016. Cooperative planning for source water 626 
protection: Targeting sediment in the upper Saluda river watershed. Presented at the South 627 
Carolina Water Resources Conference, 17-18 October 2016, South Carolina.  628 

San Diego University. 2017. Random Forests. 629 
https://dinsdalelab.sdsu.edu/metag.stats/code/randomforest.html  630 

Seibert, J., Vis, M. J. P., Lewis, E., & van Meerveld, H. J. (2018). Upper and lower 631 
benchmarks in hydrological modelling. Hydrol Process, 32(8), 1120-1125. doi: 632 
10.1002/hyp.11476 633 

Sharpley, A. 2016. Managing agricultural phosphorus to minimize water quality impacts. Sci 634 
Agri, 73, 01-08. doi: 10.1590/0103-9016-2015-0107  635 

Trudeau, M.P. and Richardson, M. 2016. Empirical assessment of effects of urbanization on 636 
event flow hydrology in watersheds of Canada’s Great lakes-St Lawrence basin. J. Hydrol. 637 
541, 1456-1474. doi: 10.1016/j.jhydrol.2016.08.051  638 

Williams, M.R., King, K.W., Macrae, M.L., Ford, W., Esbroeck, C., Brunke, R.I., English, 639 
M.C. and Schiff, S.L. 2015. Uncertainty in nutrient loads from tile-drained landscapes: Effect 640 
of sampling frequency, calculation algorithm, and compositing strategy. J Hydrol. 530, 306-641 
316. doi: 10.1016/j.jhydrol.2015.09.060 642 

https://doi.org/10.1155/2019/2760204
https://github.com/seanpor/phoslam
https://www.ordnancesurvey.co.uk/business-and-government/products/os-open-rivers.html
https://scholarworks.umass.edu/pare/vol9/iss1/6/
https://doi.org/10.1016/j.jhydrol.2017.09.002
https://doi.org/10.1002/2017WR020723
https://dinsdalelab.sdsu.edu/metag.stats/code/randomforest.html
https://dx.doi.org/10.1002/hyp.11476
http://dx.doi/10.1590/0103-9016-2015-0107
https://doi.org/10.1016/j.jhydrol.2016.08.051
https://doi.org/10.1016/j.jhydrol.2015.09.060


15 

Xiao, C., Chen, J., Chen, D. and Chen, R. 2019. Effects of river sinuosity on the self-643 
purification capacity of the Shiwuli River, China. Water Supply, 19(4), 1152-1159. doi: 644 
10.2166/ws.2018.166 645 

Yaeger, M., Coopersmith, E., Ye, S., Cheng, L., Viglione, A., & Sivapalan, M. (2012). 646 
Exploring the physical controls of regional patterns of flow duration curves - Part 4: A 647 
synthesis of empirical analysis, process modeling and catchment classification. Hydrol Earth 648 
Syst Sc, 16(11), 4483-4498. doi: 10.5194/hess-16-4483-2012 649 

Yu, P.W.C. 2017. Submarine landslides, canyons, and morphological evolution of the East 650 
Australian Continental Margin: A thesis submitted for the degree of Doctor of Philosophy. 651 
Sydney: The University of Sydney. 652 

Zambrano-Bigiarini, M. 2017. HydroGoF function. 653 
cran.r-project.org/web/packages/hydroGOF/index.html 654 

Zhou, J., Zhao, X. and Sun, L. 2013. A new inference approach for joint models of 655 
longitudinal data with informative observation and censoring times. Stat Sin, 23, 571-593. 656 
https://www.jstor.org/stable/24310353   657 

https://doi.org/10.2166/ws.2018.166
https://doi.org/10.5194/hess-16-4483-2012
https://cran.r-project.org/web/packages/hydroGOF/index.html
https://www.jstor.org/stable/24310353


16 

Table 1 Study variables and description 658 

Table 2 Summary statistics of variables. Note: BM and GM P Apportionment were not included in 659 
statistical analysis given this study’s principal focus (SE), although they are included here to detail 660 
variation in P point apportionment across datasets 661 

  
Min. 1st Qu. Median Mean SD 3rd Qu. Max. Anderson-

Darling p 
statistic of log 
transformation 

BM P Apportionment 1.0900 11.1500 22.4000 25.7205 18.4040 38.8000 69.3000 n/a 
GM P Apportionment 4.6200 20.5000 36.1000 37.3716 19.5268 53.6500 79.8000 n/a 
BM SE 0.0295 0.4560 0.6710 0.7478 0.4701 0.9810 3.0900 .002 
GM SE 0.0087 0.4405 0.5460 0.5927 0.3325 0.7090 2.2200 <.001 
Catchment Size 9.000 63.250 128.000 336.411 543.231 269.700 3315.000 .055 
Slope 11.5000 29.8000 55.9000 65.8121 48.6541 92.4000 330.7000 .010 
Base Flow 0.2200 0.4100 0.5100 0.5341 0.1663 0.6050 0.9700 .024 
Sinuosity 0.9700 1.1950 1.2900 1.3256 0.1913 1.3950 2.2100 <.001 
Woodland 1.2300 6.5050 9.3600 11.0327 7.4910 12.8150 45.7800 .069 
Arable 0.1400 15.9600 36.3700 37.9219 24.4800 54.3900 82.9500 <.001 
Grassland 9.9500 22.2800 34.8000 38.5304 19.2820 52.7500 80.9900 .009 
Urban 0.0000 3.0150 5.3100 8.6696 10.3945 9.8250 70.4600 .447 
Other 0.0000 0.0000 0.0800 3.1884 6.8373 2.7800 40.7500 <.001 
 662 

 663 

 664 

Variable 
Name 

Description 

BM P 
Apportionment 

The mean percentage of a river’s phosphorus load apportioned to point sources according 
to the bootstrapped BM (Bowes et al., 2008); equation 1. 

BM SE Standard error of the bootstrapped BM P Apportionment  
GM P 
Apportionment 

The mean percentage of a rivers phosphorus load apportioned to point sources according 
to the bootstrapped GM (Greene et al., 2011); equation 2. 

GM SE Standard error of the bootstrapped GM P Apportionment. 
Catchment 
Size 

The catchment size in km2 of the Q data collection point; as defined by NRFAb (2019). 

Slope The holistic steepness of a catchment varying from <25 in the flattest areas of the country 
to >300 in mountainous regions (NRFAb, 2019). 

Base Flow Baseflow index score derived from the Hydrology of Soil Types classification system which 
provides calculated runoff responses for individual soil types. These scores are aggregated 
across the catchment (NRFAb, 2019). 

Sinuosity  Sinuosity index score, calculated as detailed in Section 3.5. 
Woodland Percentage of catchment classified as ‘woodland’ by NRFAb (2019). 
Arable Percentage of catchment classified as ‘arable or horticultural’ by NRFAb (2019). 
Grassland Percentage of catchment classified as ‘grassland’ by NRFAb (2019). 
Urban Percentage of catchment classified as ‘urban’ by NRFAb (2019). 
Heath Percentage of catchment classified as ‘mountain, heath or bog’ by NRFAb (2019). 
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Figure 1 Location of original 136 sampling locations used in this study. Please note that due 665 
to thresholds set for dataset size and model fit challenges, the final number analysed was 91 666 

 667 
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Figure 2 A) Mean Decrease of Accuracy (MDA) of BM forests, B) MDA of GM forests, C) Gini Index of BM forests, D) Gini Index of GM forests 668 
Note: Higher the scaled value, greater the variable importance 669 
 670 

A B 

C D 
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 671 

Figure 3. Regression of standard errors (SEs) in BM against measure of urban cover.  672 

Note: post removal of data points with outlying residuals, with both variables increased by 1 to avoid negative numbers and logarithmically 673 
transformed. 674 

 675 
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