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a b s t r a c t

This article proposes a semi-analytical method to investigate the dynamics and bifur-
cation scenarios of piecewise linear oscillators. The method is based on a mapping
technique with a matrix structure that allows easy and rapid construction of any
periodic orbit. When validated against direct numerical integration simulations, a good
correlation and an accurate prediction of bifurcation phenomena were shown. The
method is applied to analyse the nonlinear dynamic responses and bifurcations scenarios
causes by changes of stiffness and viscous damping. A set of minimum conditions that
the system must meet to present period doubling bifurcations and sub-harmonic orbits
was given.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Piecewise-smooth dynamical systems are essential to the study of engineering devices which include mechanisms that
roduce sudden changes in behaviour. Among them, piecewise linear systems are the simplest and most widely used non-
mooth models. Practical applications of these models include electrical circuits with switches, diodes or transistors [1],
echanical systems with motion limiting constraints [2], assemblies with impact between parts [3], slip and friction
roblems [4,5], and control systems that use switching-based logics [6]. For mechanical systems, examples of how impact
scillators can be used to analyse their dynamics can be found in studies of gear assemblies [7–9], heat-exchanger
ynamics [10,11], and percussive drilling performance [12,13]. Sudden changes in the parameters that control these
ystems induces rich and complex behaviour. Their strong inherent nonlinearity makes chaotic dynamics become frequent.
ollisions also lead to wear of the components of the system. Determination of the response allows preventing unwanted
ear or improper functioning, and provides important information useful for mechanical design. Recent contributions
o fundamental and applied nonlinear dynamics of impact oscillators have been done through analytical and numerical
nvestigations [14,15], design of nonlinear controllers [16,17], energy harvesting and vibration transmission [18–20],
esign of experimental rigs [21] and nonlinear resonances [22,23].
Particularly, in nuclear power plants there are several components whose dynamics can by modelled using piecewise

inear systems. Flow-induced vibrations of fuel assemblies, heat exchangers, and steam generators are important structural
roblems where these models have been applied [24–26]. Using these non-smooth systems, the chaotic dynamics of heat
xchanger tubes impacting on the generally loose baffle plates was first analysed by Paidoussis [11]. The dynamics of heat
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exchangers and related wear phenomena in spacer-tube zones was investigated by Goyder et al. [10], using dimensional
analysis, physical modelling involving piecewise linear approach and numerical simulations. Computation of nonlinear
vibro-impact responses of loosely supported heat-exchanger tubes subjected to fluidelastic coupling forces, as well as
validation against experimental results, has been presented by Piteau et al. [27]. A piecewise linear system has been used
as well by Christon et al. [28] to model fuel structures implicit large-eddy CFD simulations, presenting a new approach to
estimate fuel rod wear in grid-to-rad fretting problems. These few examples reveal how piecewise linear systems have
become important models for studying dynamics of various engineering systems.

To understand the multiple phenomena involved in non-smooth linear systems, analytical and numerical methods have
een developed. Shaw and Holmes [9] presented a detailed description of a classical base-excited piecewise linear system
ith a discontinuity in the restoring force. The limiting case in which stiffness slope approaches infinity, representing a
igid impact oscillator, was also considered. A general procedure to analyse stability of these non-smooth systems was
hown by Natsiavas [29], where different bifurcation scenarios were disclosed, and the impossibility of having Hopf
ifurcations with positive damping was demonstrated. An impact condition was modelled introducing a constant of
estitution factor (COR) by Foale [30], also inducing critical phenomena and multistability. In turn, Chin et al. [31] studied
ifurcations in impact oscillators using the Nordmark map [32] as an equivalent discrete model.
The oscillator with a play was studied simultaneously by Li et al. [33] and Kleczka et al. [34]. In these studies, the

mpact condition was introduced with a COR and a linear stiffness definition, respectively. The latter contribution showed
ow this kind of systems is characterized by sudden changes of chaotic dynamics, named crises, and demonstrated how
heir occurrence can be determined numerically. Later, Wiercigroch [35,36] provided a further overview of the system
ynamics through codimension-1 bifurcation scenarios, and showed experimental evidence on bifurcation scenarios and
haotic motion. The nature of periodic and chaotic orbits of similar systems were comprehensively studied by Luo and his
o-workers, e.g. [37], where predictions on stable and unstable orbits based on mapping structures were presented in [38].
hese authors were the first to apply analytical methods based on maps to investigate the global dynamics of piecewise
mooth systems. In the following years such methods were used to study other types of piecewise linear oscillators, e.g.
39–41]. Exact solutions for an oscillator with a symmetrical trilinear spring and subjected to harmonic excitation was
resented by Natsiavas [42], where period-one and sub-harmonic orbits were investigated. Chong et al. [43] presented
detailed description of a piecewise linear oscillator with a play where rich and diverse dynamics of this system was

nvestigated by numerical simulation for a wide range of system parameters.
Piecewise linear systems topic that have been extensively studied and has led to discovering of new type of bifurcations,

o-called grazing bifurcations. Nordmark [32] investigated the singularities caused by grazing impact and the possibility
f having non-periodic orbits beyond bifurcation. Foale [30] presented different bifurcation scenarios that can be reached
n a rigid impact oscillator. A comparison between bifurcation events obtained for a rigid impact and a Hertz contact
odel was provided by Foale and Bishop [44]. Analytical and experimental investigations on bifurcation scenarios for an

mpact oscillator with a one-sided elastic constraint near grazing were presented by Ing et al. [45,46].
Dynamics near grazing is thought to be governed by a complex interplay between smooth and non-smooth bifurcations.

heir relationship was studied by Mason et al. [47] and Jiang et al. [48]. Molenaar et al. [49] derived grazing impact
appings caused by rigid and elastic restraints, and concluded that the square-root singularity persists in systems with

igid restraints, whereas a 3/2 singularity is involved in those with elastic restraints. Di Bernardo et al. [50] presented
classification of main border collision bifurcation scenarios in piecewise smooth dynamical systems, summarizing and
pdating Feigin’s original work, e.g. [51,52]. The border collision bifurcation term had been first introduced for maps by
usse and Yorke in [53]. Also, di Bernardo et al. [54] contributed to the understanding and unification theory for non-
mooth systems, by proposing general techniques for analysing bifurcations that are unique to non-smooth dynamical
ystems and so-called discontinuity-induced bifurcations. Jiang et al. [55] investigated the grazing-induced bifurcations
n impact oscillators with one-sided elastic and with rigid constraints. Similarity between first grazing-induced bifurcation
nd hysteresis phenomena of bifurcation diagrams for both oscillators were shown, but some differences in the shape and
volution of the diagrams were pointed out.
The aim of this paper is to propose a systematic method, based on a mapping technique, capable of reproducing the

ynamics and bifurcation behaviour in multiple configurations of an impact oscillator. A generic and versatile piecewise
inear model is defined which, by variation of its parameters, comprises a wide range of practical cases. Validation of
ur method against numerical results is presented, for some selected parameter sets. A study of how the stiffness and
amping affect the system response is also provided. Results on the relation between grazing bifurcations and chaotic
ynamics are discussed.
The organization of the paper is as follows. In Section 2, the physical model is introduced. Definitions of maps and

tability analysis are presented in Section 3. In Section 3.1 the six local maps for the system are defined. In Sections 3.2
nd 3.3, our semi-analytical method is applied to the case of period-1 orbits, and its generalization to other kinds of orbits
s described. In Section 4, a sample case of the results obtained with the semi-analytical method and a validation against
umerical results are presented. The effects of modifying stiffness and damping functions are analysed in Sections 5 and
, respectively. Section 7 is devoted to discussion and conclusions.
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Fig. 1. (a) Physical model; (b) piecewise stiffness; (c) piecewise constant viscous damping. The coefficients k2 and c2 represent the intrinsic stiffness
and viscous damping of the system, present over the whole range of motion. The coefficients k1 and c1 model the change in stiffness and damping
when the oscillator impacts and crosses the discontinuity boundaries at y = ±G.

2. Mathematical modelling

For the sake of brevity and clarity, we present our method by considering a low-dimensional mechanical system,
within the same class of models previously studied by means of numerical and analytical techniques (e.g. [37,42,43]). Our
physical model is depicted in Fig. 1(a). It is a periodically excited single degree-of-freedom oscillator with the piecewise
linear restoring force presented in Fig. 1(b). The damping coefficient is piecewise constant and discontinuous, as shown in
Fig. 1(c). The oscillator is excited by a harmonic external force of amplitude A and frequency Ω . The piecewise nature of
both stiffness and damping makes it possible to represent diverse impact scenarios. In non-dimensional form, the equation
of motion for the oscillator can be written as

ẍ + c(x)ẋ + k(x) = a cos(ωτ ), (1)

where x = y/y0 is the dimensionless displacement, τ = ωnt is the dimensionless time, a is the non-dimensional forcing
amplitude and ω is the non-dimensional forcing frequency, cf. [43,46,55]. The stiffness and damping functions are given
by

k(x) =

⎧⎪⎨⎪⎩
(x − e) + βe x > e,

βx |x| ≤ e,

(x + e) − βe x < −e,

(2)

c(x) =

⎧⎪⎨⎪⎩
2ξ x > e,

2αξ |x| ≤ e,

2ξ x < −e.

(3)

Non-dimensional parameters have been defined using arbitrary reference parameters of the displacement y0 (here, y0 = G)
and the natural frequency ωn =

√
ks/m:

ks = k1 + k2; cs = c1 + c2; ξ =
cs

2mωn
; ω =

Ω
ωn

;

a =
A

y0ks
; β =

k2
ks

; e =
G
y0

; α =
c2
cs

;
(4)

where ξ is the damping ratio, e is the non-dimensional gap, β is the stiffness coefficient ratio, and α the damping
coefficient ratio. Impacts occur when the trajectory crosses the gap boundaries x = ±e.

The rich dynamics associated with this kind of systems was previously reported in [43]. Direct numerical simulations
performed by using the computational suite of numerical codes for non-smooth systems ABESPOL [56], were presented
for a wide range of parameters. One of the bifurcation diagrams computed in [43] is reproduced by our own brute
force numerical simulations in Fig. 2. The details about how the numerical simulations were performed are given in
Section 4. For these calculations the forcing frequency ω is varied from 0.01 to 1.10, and the vertical axis corresponds
to the maximum displacement (xmax) for each period of the external force (T = 2πω−1). Other parameters are fixed to
ξ = 0.02, a = 0.3, β = 0, α = 1. At lower forcing frequencies, ω ∈ (0.01, 0.3414), the system exhibits a mixture of chaotic
and periodic trajectories, with different kinds of impact orbits and diverse periodicity. Then a pitchfork bifurcation takes
place at ω = 0.3784 and a symmetric period-1 solution is observed up to ω = 0.9210, where a saddle–node bifurcation
occurs and the system jumps to a non-symmetric attractor. Additional panels of Fig. 2 show trajectories in phase space
3
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Fig. 2. Bifurcation diagram obtained by direct numerical simulation (central panel). Parameters are set as a = 0.3, β = 0, ξ = 0.02, α = 1 and
= 1. Additional panels illustrate phase portraits for selected frequencies ω, where blue points represent stroboscopic Poincaré sections (sampling
requency set to ω) and red lines stand for trajectories. For ω = 0.121 and ω = 0.335: chaotic attractors; ω = 0.132: multi-impact period-1 orbit;

= 0.254: symmetric period-3 orbit; ω = 0.304: non-symmetric period-2 orbit; ω = 0.6: coexistence of no-impact and single-impact period-1
rbits; ω = 0.95: no-impacting period-1 orbit.

x, ẋ) for different frequencies. For ω = 0.121 and ω = 0.335, chaotic attractors are observed. For ω = 0.304 and
= 0.254, Poincaré sections indicate a periodicity greater than one with complex periodic motion. For ω = 0.6, two

oexisting attractors are present. One of them is a no-impact orbit while the other goes beyond the gap boundaries,
oth having period one. For ω = 0.132 and ω = 0.95, period-1 orbit with multi-impact and a non-impact are present
espectively. These examples illustrate the variegated types of motion that can be observed in these systems.

. Maps and stability analysis

Having regions of the system where the dynamics is described by linear equations is an advantage from the viewpoint
f its analytical treatment. In this section, exact solutions within each of the regions are used to define mapping
elationships and generate a systematic methodology to find global orbits. These maps are defined in Section 3.1. In
4
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Fig. 3. (a) Three regions of the phase plane X1 , X2 and X3 , the corresponding boundaries Σi , and the six mappings Pij , are also depicted. (b) Schematic
illustration of a non-symmetric period-1 solution. Values of τij represent the time spent going from Σi to Σj .

Section 3.2, their application is illustrated through analysis of period-1 solutions, and in Section 3.3, a generalization of
the method to more complex orbits is presented.

3.1. Trajectories and maps

The piecewise form of stiffness and damping functions, k(x) and c(x), naturally defines the regions X1 = {(x, ẋ) : |x| ≤ e},
X2 = {(x, ẋ) : x > e}, and X3 = {(x, ẋ) : x < −e}. The dynamics of the system in each region is governed by a linear ordinary
differential equation. Switching between regions takes place at the discontinuity boundaries Σ1 = {(x, ẋ) : x = e, ẋ > 0},
Σ2 = {(x, ẋ) : x = e, ẋ < 0}, Σ3 = {(x, ẋ) : x = −e, ẋ < 0} and Σ4 = {(x, ẋ) : x = −e, ẋ > 0}. Expressions for the
displacement xi(τ ) and the velocity ẋ = vi(τ ) inside each subspace can be exactly obtained, and they are presented in
Appendix A.

In order to describe any desired global trajectory of the dynamical system, six local maps can be defined:

P12 : Σ1 → Σ2; P21 : Σ2 → Σ1; P23 : Σ2 → Σ3;

P34 : Σ3 → Σ4; P43 : Σ4 → Σ3; P41 : Σ4 → Σ1.
(5)

As illustrated in Fig. 3, each of these maps projects the point at which an orbit crosses one of the boundaries onto the
following crossing of another boundary:

Pij : (xi, vi, li,mi) → (xj, vj, lj,mj), (6)

with vi = ẋi. Here, we have introduced two new variables, li = cos(ωτi) and mi = sin(ωτi), where τi is the time at which
the orbit crosses Σi. According to the exact results presented in Appendix A, the maps have the form

Pij

⎛⎜⎝ xi
vi
li
mi

⎞⎟⎠ =

⎛⎜⎝ xj
vj
lj
mj

⎞⎟⎠ = Ak(τij)

⎛⎜⎝ xi
vi
li
mi

⎞⎟⎠ + bk(τij), (7)

where Ak and bk are matrices given by the parameters associated to the region Xk traversed going from Σi to Σj, and
τij = τj − τi is the time elapsed between the two crossings. The new variables li and mi determine that the maps Pij are
linear, with a dependence on τij. This addition has the advantage of making easier the construction of global solutions. On
the other hand, it implies increasing the number of variables and requires imposing the additional condition l2i +m2

i = 1.
The analytical expressions for the matrices Ak and bk are given in Appendix B.

3.2. Period-1 orbit

Once local maps are defined, global trajectories of the system can be constructed. To illustrate the method, let us
consider the period-1 solution shown in Fig. 3(b). The sequence of local maps needed to assembly this solution is as
follows:

P12 : (e, v1, l1,m1) → (e, v2, l2,m2), (8)

P23 ◦ P12 : (e, v1, l1,m1) → (−e, v3, l3,m3), (9)

P ◦ P ◦ P = (e, v , l ,m ) → (−e, v , l ,m ), (10)
34 23 12 1 1 1 4 4 4

5
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P41 ◦ P34 ◦ P23 ◦ P12 : (e, v1, l1,m1) → (e, v1, l1,m1), (11)

he initial and final points of the complete sequence of maps, given by Eq. (11), are equal to (e, v1, l1,m1), resulting in a
losed period-1 orbit. Eqs. (8) to (10) represent the mapping sequences for some portion of the orbit. Using the matrix
ransformations of Appendix B and the additional condition τ12 + τ23 + τ34 + τ41 = 2πω−1, which ensures that we obtain
period-1 orbit, these mapping sequences can be expressed as,⎛⎜⎝±e

vj
lj
mj

⎞⎟⎠ = A(τ12, τ23, τ34)

⎛⎜⎝ e
v1
l1
m1

⎞⎟⎠ + b(τ12, τ23, τ34), (12)

here A(τ12, τ23, τ34) and b(τ12, τ23, τ34) represent the matrix product corresponding to each mapping sequence, and
±e, vj, lj,mj) is the final vector field of each of Eqs. (8)–(11). Note that these four equations are vector in nature, with
our components each.

Finally, selecting the first component of Eqs. (8)–(10) and by an algebraic manipulation, the system variables v1, l1 and
m1 can be expressed in terms of times τ12, τ23 and τ34. By the combination of this result with the first two components
f Eq. (11) and the additional condition l21 + m2

1 = 1, a set of three transcendental equations with three unknowns (τ12,
23 and τ34) is obtained:

F(τ12, τ23, τ34) = 0, (13)

ith F : R3
→ R3. To solve this system of transcendental equations, we apply the multidimensional Newton’s method. To

atch all possible solutions for a given set of parameters, a multidimensional grid of time values is generated by dividing
ach time span into n intervals, using the fact that 0 < τij < 2πω−1. This grid is used to apply Newton’s method taking

each point as seed. After the whole set of simulations, a comparison of solutions and unification of the repeated instances
is carried out.

After finding the solution of Eq. (13) for a given set of parameters, its stability must be assessed. Linear stability of a
periodic solution is determined by the eigenvalues of the first derivative of the map, evaluated at the solution. The map
governing the period-1 orbit of Fig. 3(b) can be written as

un+1 = P(un) = P41 ◦ P34 ◦ P23 ◦ P12, (14)

where un = (vn, ln,mn) represents the vector field of a given solution in the boundary Σ1, and un+1 = (vn+1, ln+1,mn+1)
the corresponding vector field after one orbit –i.e. after one iteration of the map. Applying the chain rule, its first derivative
is

DP =

(
∂ui+4

∂ui

)
un

=

(
∂ui+4

∂ui+3

)(
∂ui+3

∂ui+2

)(
∂ui+2

∂ui+1

)(
∂ui+1

∂ui

)⏐⏐⏐⏐
un

, (15)

where the subscripts represent each of the steps in the mapping sequence. Then, the partial derivatives of the Jacobian
can be obtained by implicit derivation of the mappings. Therefore, the stability of the periodic orbit examined will be
governed by the eigenvalues of the Jacobian matrix. If the module of the greatest eigenvalue is smaller than one the orbit
will be stable. As shown in [29], the only possible bifurcations in these systems happen with the greatest eigenvalue λ of
DP being real. Particularly, crossing of the stability limit λ = −1 gives period doubling bifurcation, while crossing λ = +1
ives a saddle–node or a pitchfork bifurcation.

.3. Generalization to more complex orbits

A generalization of this method can be applied to find any other desired periodic orbit of this or similar piecewise
inear systems. If N is the number of maps needed to describe the motion, the minimum of transcendental equations for
he orbit will be equal to N − 1. To find these equations, we extend the procedure presented in the preceding section.

Let us consider a k-periodic orbit described by a sequence of N maps as follows:

PN 1 ◦ PN−1N ◦ ... ◦ P23 ◦ P12   . (16)
N maps

6
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Note that the sequence does not necessarily have to start with the map P12, which is chosen here only to illustrate the
rocess. The sequence of local maps that describe a portion of the trajectory are be given by

P12
first local map

P23 ◦ P12  
2 first local maps

...

Pn−1n ◦ ... ◦ P12  
N − 1 local maps

(17)

Here a similar approach to that presented in the previous section should be performed. Taking the first two components
of the global mapping sequence of Eq. (16), the first component of each of the local maps sequences of Eq. (17), the
condition of l21 + m2

1 = 1 and the condition of k-periodic
∑N1

ij=12 τij = 2kπω−1, a system of equation is obtained,

F(τ12, τ23..., τN1, v1, l1,m1) = 0, (18)

with F : RN+3
→ RN+3. This system has N + 3 equations with N + 3 unknowns, namely the unknowns the N elapsed

times between boundaries (τij) and the three components of the vector field of Point 1, (v1, l1,m1).
However, to arrive at the least-order system that properly represents the solution, some additional algebraic manip-

ulations must be done. To reduce the order of the system form N + 3 to N , the unknown variables (v1, l1,m1) must be
expressed in terms of the unknown times τij. This is done by taking the first component of the first three local maps
sequences of Eq. (17) and solving for the mentioned variables. The nature of the proposed semi-analytical method allows
this with simple matrix manipulations. Finally, the k-periodic condition

∑N1
ij=12 τij = 2kπω−1 naturally gives a dependency

between one of the times τij with the rest, and consequently reduces the order of the system by 1. In this way, the order
of the system is now N − 1 and the least-order system that defines the solution is obtained,

F ′(τ12, τ23..., τN−1N ) = 0, (19)

with F ′
: RN−1

→ RN−1. To solve this problem, a numerical method able to handle a system of transcendental equations
must be applied. As pointed out in the preceding section, a strategy to explore multiple seeds must be applied, in order
to find all possible solutions for each set of parameters.

The stability of the solutions can be studied applying the same methodology as for the period-1 orbit. The Jacobian
matrix DP can be built using the chain rule:

DP =

(
∂ui+N

∂ui

)
un

=

(
∂ui+N

∂ui+(N−1)

)(
∂ui+(N−1)

∂ui+(N−2)

)
...

(
∂ui+1

∂ui

)⏐⏐⏐⏐
un  

N partial derivatives

. (20)

For eigenvalues lower than one the solution will be stable, and vice versa.
The procedure presented in this section can be used to find any desired periodic orbit of this system. The same method

ould be extended to build solutions of other piecewise systems, with the condition that exact solutions in each region
re known.

. Validation of the semi-analytical method

To validate the proposed semi-analytical method, a comparison with results of direct numerical integration is
erformed. Using the results presented in [43], several set of parameters are chosen with the aim of reproducing
nteresting behaviours and bifurcation phenomena. Before this, a sample case of the results obtained through the proposed
emi-analytical method is presented. A characterization of the different types of solutions obtained is carried out.
Direct numerical simulations are performed by a Matlab routine that uses the 4th-order Runge–Kutta algorithm. We

ompute the complete time history starting from a given initial condition (x0, v0). Accuracy is essentially based on the size
f the time step. Here, it is set to 5× 10−4 times the force period T . To compute bifurcation diagrams, an initial transient
qual to 100 periods is disregarded to allow for steady periodic orbits to develop, and 100 periods are recorded afterwards.
or chaotic motion on Poincaré sections, 2000 extra periods were computed. A tolerance parameter of 5 × 10−5 is set to
valuate the convergence of phase portrait values after one period. A typical bifurcation diagram and phase portraits for
he selected frequencies are presented in Fig. 2.

To implement the proposed semi-analytical method, a code is developed using Matlab function fsolve, which solves
mplicit systems of nonlinear equations of the form F (X) = 0. The optimization parameters of this function are set to
olFun = 10−10 and TolX = 10−10 to have a proper convergence in the algorithm. To evaluate all possible solutions for
given set of parameters of Eq. (13), multiple seeds (τ12, τ23, τ34) must be considered. To do this, each interval 0 < τij < T

is divided into 8 points, thus having a grid of 83
= 512 different seed values for each parameter set. After running all

these simulations and properly evaluating the stability and symmetry of the obtained solutions, bifurcation and phase
diagrams are constructed to illustrate the results.
7
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Fig. 4. Bifurcation diagram obtained with our new semi-analytical method. Parameters are set as a = 0.3, β = 0, ξ = 0.02, α = 0 and e = 1. Red
and pink are used to mark symmetric stable and unstable orbits, blue and cyan are used for non-symmetric stable and unstable ones, and grey
points represent non-physical solutions. Additional panels illustrate phase portraits for selected frequencies ω where blue and red colour are used
to illustrate the trajectory inside (|x| < e) and outside (|x| > e) the gap respectively.

4.1. Physical and non-physical bifurcation scenarios obtained by the semi-analytical method

Fig. 4 presents a typical bifurcation diagram obtained by our method. The additional panels illustrate diverse archetypic
trajectories. For ω = 0.4, a stable symmetric orbit is obtained. As the frequency decreases, this orbit remains stable until
ω = 0.378, where a pitchfork bifurcation takes place, making the symmetric motion unstable and generating two non-
symmetric stable orbits. For ω = 0.36 and ω = 0.32 non-symmetric stable and unstable orbits are obtained, respectively.
The change in stability takes place at ω = 0.349, where the largest eigenvalue of the Jacobian crosses λ = −1. Finally,
for ω = 0.27 a non-physical orbit is obtained.

Non-physical orbits are defined as those where the number of crossings of the boundaries Σi is larger than the number
postulated in the map sequence. The mapping technique links points located on the boundaries between regions, but
8
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Fig. 5. Six different non-physical orbits obtained with the proposed method for excitation frequency of ω = 0.26 and the same parameters as in
ig. 4. Red colour is used to mark the trajectory described by the solution inside the gap (|x| < e) and blue colour for the trajectory described by
he solution outside the gap (|x| > e).

oes not limit the domain that the trajectory covers to join both points. For this reason, it is possible to obtain orbits that
ccasionally cover more than one region with a single map. These solutions do not make physical sense, since moving
hrough the regions changes the parameters of the equation of motion, and consequently, a new sequence of maps must
e postulated to properly reproduce the obtained solution. In the particular case for ω = 0.27 shown in Fig. 4, a loop is

observed in the top-left of the phase portrait. This implies two extra boundary crossings (one at Σ3 and another one at
Σ4) for the unique map P41 to join boundary Σ4 with Σ1. Consequently, a such solution is characterized as non-physical
because the correct sequence to describe that portion of the trajectory is P41 ◦ P34 ◦ P43.

To determine if a solution is non-physical, we verify that the trajectory remains within a single region for each local
map. This is done by applying the following conditions to each of the solutions: x > e, ∀(x, ẋ) ∈ P12, x < −e, ∀(x, ẋ) ∈ P34
and |x| < e, ∀(x, ẋ) ∈ Pij with ij ̸= 12, 34. These conditions must be checked for all the obtained solutions of Eq. (18).
For instance, for the local map P41, the trajectory must remain in X1 region, which mathematically is described as
|x| < e, ∀(x, ẋ) ∈ P41. This condition is not fulfilled for the solution of ω = 0.27 of Fig. 4, and therefore it is classified as
non-physical.

Different types of non-physical solutions are presented in Fig. 5 for ω = 0.26. Panel 5(a) depicts a situation where a
small loop on the left side of phase portrait has an extra cross of the boundaries Σ3 and Σ4. For this case some similar
solution, properly defined by the proposed method, might be found by postulating the sequence P41◦P34◦P43◦P34◦P23◦P12.
Panels 5(c) and (e) show symmetric cases of non-physical solutions, where additional crossing of the four boundaries Σi
occur. Case 5(f) is a situation similar that shown in Fig. 4, where a small loop in the central zone starts to grow until its
size generates an additional crossing of the limit x = −1. Fig. 5(b) and (d) represent non-symmetrical solutions with an
important difference between the size of the orbit at both sides of the phase diagram.

These non-physical solutions will be discarded henceforth in this work. As can be seen in Fig. 4, the typical structure
of the bifurcation diagram remains present in the region of these solutions. Future investigations can be carried out to
determine if these structures can be used to describe the behaviour of the system beyond the region of period-1 solutions.

4.2. Validation of the method

To validate the proposed semi-analytical method in Fig. 6 the bifurcation diagrams obtained with both methods are
presented together. As observed the proposed method makes an exact prediction of the different bifurcation scenarios.
9
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Fig. 6. Superposition of bifurcation diagrams from Figs. 2 and 4. Red and pink are used to mark symmetric stable and unstable orbits, blue and cyan
re used for non-symmetric stable and unstable ones, and black points mark the results for numerical integration method. A precise correlation
s observed between the results of both methods. Zoom area correspond to 0.2 < ω < 0.4, and show a precise prediction of period-doubling
henomena. The additional panels on the right illustrate the evolution of the real part of the eigenvalues of the Jacobian for the solutions obtained
ith the proposed method (frequency regions are (a) 0.2 < ω < 0.4 and (b) 0.8 < ω < 1).

lso a very good correlation between obtained phase portraits is observed. Stable period-1 orbits determined by the
roposed method has an exact correlation with those obtained by direct numerical integration results. The difference
etween the values of xmax obtained with both methods is presented in Fig. 7(a) and (b) for two different ranges of ω. The
aximum difference is less than 0.01% between the methods, which represents a good correlation. The unstable orbits
resented in Fig. 4 are not possible to reproduced with direct integration method and in Fig. 6 it can be seen how unstable
eriod-1 orbits co-exist with other types of motion like period-2, period-3 or chaotic.
The right-hand panels of Fig. 6 show the dependence of the real part of the eigenvalues of the Jacobian matrix on the

requency. Sudden changes in the slope of the eigenvalues evolution close to bifurcations is obtained in all cases. These
hanges correspond to the frequencies where the imaginary part of the eigenvalues become zero, as presented in Fig. 8.
ig. 6(a) presents the range 0.2 < ω < 0.4. Two period-doubling scenarios are obtained for ω = 0.283 and ω = 0.349, and
pitchfork bifurcation occurs at ω = 0.378. Fig. 6(b) depicts the range 0.8 < ω < 1, where two saddle–node bifurcations
ake place at ω = 0.546 (close to the grazing condition) and ω = 0.921.

In Fig. 9, bifurcation diagrams of displacement as a function of the damping ratio (ξ ), obtained with our method and by
irect numerical integration, are shown. Again, a very good agreement between predictions of both methods is obtained.
or ξ = 0.0153, the non-symmetric period-1 solution becomes unstable, which corresponds to the appearance of period-
oubling phenomena. Between 0.0153 < ξ < 0.1033, three coexisting unstable period-1 orbits are predicted, one of
hem symmetric and two non-symmetric. In the same region, chaotic and periodic orbits with periodicity greater than
ne are computed by direct numerical integration. For ξ = 0.04 and ξ = 0.075, additional panels in Fig. 9 present chaotic
ttractors, for ξ = 0.02 we find a period-2 orbit and for ξ = 0.0583 one of period-3. For 0.1033 < ξ < 0.1773 period-1
on-symmetric orbits become again stable (see the case ξ = 0.11 in Fig. 9), but for 0.1235 < ξ < 0.1736 these period-1

solutions become non-physical because the orbit for this range has a small loop with an extra crossing to boundaries Σ
1

10
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Fig. 7. Difference of xmax values (grey colour) obtained with both methods for two selected regions in Fig. 6; (a) for 0.365 ≤ ω ≤ 0.369 largest
alue of δ is less than 0.0025%; (b) for 0.498 ≤ ω ≤ 0.502 the largest value of δ is around 0.0042%. Blue and red are used to mark symmetric and
on-symmetric semi-analytical solutions, respectively. The black circles mark the solutions obtained by direct numerical integration.

Fig. 8. Evolution of real (a) and imaginary (b) part of the eigenvalues in therms of excitation frequency. A smaller range of values (0.34 < ω < 0.39)
or system parameters correspond to Fig. 4 is presented. Vertical dashed lines indicates the frequencies where the imaginary part become zero,
aving an exact correspondence with the change in the slope of the real part (ω = 0.3493, ω = 0.3773 and ω = 0.3792).

nd Σ2 (see case ξ = 0.15 in Fig. 9). Finally, for ξ = 0.1773 a pitchfork bifurcation occurs, giving a period-1 symmetric
orbit as the stable condition for 0.1773 < ξ < 0.2.

5. Effect of stiffness

Once the validation of the semi-analytical method has been carried out, it can be used to study the behaviour of the
system under certain variations of parameters. In this section the influence of stiffness function definition is investigated.
For this purpose, two alternative situations are analysed. In case A the stiffness function is modified in such a way that
the value of k2, which defines the stiffness inside the gap (|x| < e), is kept constant, while outside the gap (|x| > e) k1 is
varied. In case B the opposite situation is considered. In both cases, all the other original parameters are held constant,
but their non-dimensional counterparts vary according to the changes in k1 or k2 (see Tables 1 and 2). As it has been done
in a preceding section, period-1 solutions are investigated by application of the semi-analytical method to the mapping
sequence of Eq. (11).
11
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Fig. 9. Superposition of bifurcation diagrams obtained by direct numerical integration and proposed semi-analytical method. System parameters
are set as a = 0.7, β = 0, ω = 0.3, α = 0 and e = 1. Red and pink are used to mark symmetric stable and unstable orbits, blue and cyan are
sed for non-symmetric stable and unstable ones, and black points mark the results for numerical integration method. Additional panels illustrate
hase portrait for the analytical method at damping values of ξ = 0.01, ξ = 0.11 and ξ = 0.19. Phase portrait and Poincaré section for ξ = 0.02,
= 0.0583 and ξ = 0.15 and chaotic attractor for ξ = 0.04 and ξ = 0.075, correspond to results obtained with the numerical integration method.
ote that for range 0.1235 < ξ < 0.1736 marked by dashed lines, the two black lines represent the two non-symmetric period-1 solutions obtained
y direct numerical integration with different initial conditions and not a period-2 solution.

Fig. 10(a) presents the six bifurcation diagrams for the different cases listed in Table 1. To facilitate a visual comparison
etween the diagrams, the forcing frequency Ω is used as the bifurcation parameter, instead of the dimensionless
requency ω used for previous figures. This correspond with the fact that the two grazing frequencies for cases A1 to
12
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Table 1
Non-dimensional parameters for case A. Original parameters are m = 1, G = 1, A = 0.8, c1 = 0, c2 = 0.2 and y0 = 1. Stiffness
inside the gap is held constant at k2 = 2.
Case β a ξ ωn α e

A1 (k1 = −1.5) 4 1.6 0.1414 0.7071 1 1
A2 (k1 = −1) 2 0.8 0.1 1 1 1
A3 (k1 = −0.5) 1.33 0.53 0.0816 1.2247 1 1
A4 (k1 = 0.5) 0.8 0.32 0.0632 1.5811 1 1
A5 (k1 = 1) 0.66 0.27 0.0577 1.7321 1 1
A6 (k1 = 2) 0.5 0.2 0.05 2 1 1

Table 2
Values of non-dimensional parameters for case B. Original parameters are m = 1, G = 1, A = 0.3, c1 = 0, c2 = 0.16 and
y0 = 1. Stiffness outside the gap is held constant at k1 = 1.
Case β a ξ ωn α e

B1 (k2 = 1) 0.5 0.15 0.0566 1.4142 1 1
B2 (k2 = 0.75) 0.43 0.17 0.0605 1.3229 1 1
B3 (k2 = 0.5) 0.33 0.2 0.0653 1.2247 1 1
B4 (k2 = 0.25) 0.2 0.24 0.0716 1.118 1 1
B5 (k2 = 0.05) 0.0476 0.2857 0.0781 1.0247 1 1
B6 (k2 = 0) 0 0.3 0.08 1 1 1

Fig. 10. Different bifurcation diagrams for: (a) cases A1 to A6 as listed in Table 1 where dimensional excitation frequency Ω is used as the bifurcation
arameter; (b) cases B1 to B6 as listed in Table 2, where dimensionless excitation frequency ω is used as the bifurcation parameter. Red and pink
re used to mark symmetric stable and unstable orbits, blue and cyan are used for non-symmetric stable and unstable ones.

6 are the same, calculated by setting the amplitude of the linear solution inside the gap (|x| < e) equal to one. This
ccurs because the stiffness inside the gap is the same for all the cases.
As observed in this figure, a typical softening behaviour for cases A1, A2 and A3 is obtained. Note that for these cases

tiffness ratio β is greater than one, which means that the stiffness inside the gap is bigger than outside. The value
f β is also related to the maximum amplitude reached, as β grows there is an increase in the maximum amplitude
f the peak of the diagram. For cases A4, A5 and A6, hardening bifurcations diagrams are obtained. This correspond
o the fact that β < 1 and stiffness outside the gap is bigger than inside. Moderate differences between the slope of
he stiffness function inside and outside the gap generate bifurcation diagrams slightly shifted to the left (soft) or right
hard), but without the presence of unstable orbits and therefore saddle–node bifurcations. This is the situation for cases
3, A4 and A5, whose β parameter are close to one, corresponding to a small difference in stiffness slope at both sides
f boundaries. On the opposite side, cases A1, A2 and A6 have β values with a larger difference with the linear case
= 1, and in consequence the bifurcations diagrams present richer non-linear behaviours like multiple solutions for

ome system parameters, saddle–node bifurcations and unstable orbits.
Fig. 10(b) the bifurcation diagrams for the six different system parameters indicated in Table 2 are presented.

imensionless forcing frequency ω is used here as the bifurcation parameter. All the cases present a hardening behaviour,
13
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Table 3
Values of non-dimensional parameters for case C. Constant values of original parameters are m = 1, G = 1, A = 0.6, k1 = 0,
k2 = 1 and y0 = 1. Viscous damping inside the gap is held constant at c2 = 0.4, and c1 values are indicated for each case in
the table.
Case β a ξ ωn α e

C1 (c1 = −0.36) 1 0.6 0.02 1 10 1
C2 (c1 = −0.3) 1 0.6 0.05 1 4 1
C3 (c1 = 0) 1 0.6 0.2 1 1 1
C4 (C1 = 0.4) 1 0.6 0.4 1 0.5 1
C5 (C1 = 0.8) 1 0.6 0.6 1 0.33 1

Table 4
Values of non-dimensional parameters for case D. Constant values of original parameters are m = 1, G = 1, A = 0.3, k1 = 1,
k2 = 0 and y0 = 1. Viscous damping outside the gap is held constant at c1 + c2 = 0.16, but values of c1 and c2 vary for each
case as indicated in the first column of the table.
Case β a ξ ωn α e

D1 (c1 = −0.64, c2 = 0.8) 0 0.3 0.08 1 5 1
D2 (c1 = −0.08, c2 = 0.24) 0 0.3 0.08 1 1.5 1
D3 (c1 = 0.08, c2 = 0.08) 0 0.3 0.08 1 0.5 1
D4 (c1 = 0.14, c2 = 0.02) 0 0.3 0.08 1 0.125 1

characterized by the bending of the peak of the diagram to the high frequency region. This corresponds to the fact
that, for case B, all parameters give values of stiffness ratio β < 1. Cases B4, B5 and B6 present a single cutoff of the
imit xmax = 1, meaning a single frequency with grazing condition for the linear solution inside the gap. This situation
s related to the occurrence of more complex behaviour and bifurcation scenarios. In particular, pitchfork bifurcations
ake place in cases B5 and B6 for ω = 0.341 and ω = 0.353, respectively. As seen in the preceding sections, pitchfork
bifurcations in these systems imply the apparition of non-symmetric period-1 solutions, that then could be followed
by period-doubling bifurcations and associated more complex orbits. On the other hand, cases B1 to B3 present two
frequencies where xmax = 1, and consequently only saddle–node bifurcation scenarios and symmetric orbits.

The main result of the analysis of case B is related to the condition of a single crossing of the limit xmax = 1, associated
with the appearance of more complex behaviours and pitchfork bifurcations. This condition can be analytically described
by setting the amplitude of the linear solution inside the gap equal to one, which is equivalent to

(β − ω2)2 + (2αξω)2 − a2 = 0. (21)

To have real solutions of Eq. (21),

αξ 4
− 2αξ 2β + a2 > 0 (22)

must hold, and to have only a single solution, it is necessary that

β2 < a2. (23)

Therefore, Eqs. (22) and (23) are necessary but not sufficient conditions for having more complex dynamical responses,
like multi-period solutions of even chaotic orbits.

6. Effect of damping

As another example of how our method could be applied to investigate the dynamics of piecewise linear systems, in
this section the effects associated with variations in the viscous damping function is studied in two different cases. In
case C, the damping function is modified in such a way that the value of the viscosity c2 inside the gap (|x| < e) is kept
constant, while the viscosity c1 is varied to have different viscous damping outside the gap (|x| > e). In case D, diverse
situations with the same viscous damping outside the gap (|x| < e) are analysed by keeping constant c1 + c2, but with
different values of damping inside the gap. As in the preceding section, all other original parameters are held constant,
but their non-dimensional counterparts vary according to changes in c1 or c2 (see Tables 3 and 4). To analyse differences
between both cases, period-1 solutions are investigated by the application of the our method to the mapping sequence
of Eq. (11).

Fig. 11(a) depicts a plot of all the bifurcation scenarios for the parameters indicated in Table 3. For this case the
dimensionless frequency ω is used as the bifurcation parameter, noting that Ω = ω, due to the fact that for all the
cases in Table 3 ωn = 1. The five diagrams in Fig. 11(a) present the same crossover frequency of the conditions xmax = 1.
The value of these cutoff frequencies is related to the definition of the system parameters within the gap. Note that all
cases in Table 3 have the same parameter settings for |x| < e.

The results reveal a difference between the behaviour of the system depending on whether α > 1 or α < 1, exhibiting
some similarity with the hardening and softening situations associated with the value of β in case A. In cases C1 and
14
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Fig. 11. Bifurcation diagrams with ω used as the bifurcation parameter and computed for (a) cases C1 to C5 as listed in Table 3, where red dots
ndicates symmetric stable orbits, grey colour is also used to plot symmetric stable orbits but only for case C3, indicating that this represent the
ure linear situation (α = 1 and β = 1); (b) cases D1 to D4 as listed in Table 4, where red dots indicates symmetric stable orbits, pink symmetric

unstable, blue and cyan mark stable and unstable non-symmetric orbits respectively.

Fig. 12. Phase portraits for ω = 0.96 for cases C1, C3 and C5 in Table 3. A non-smooth change in slope of the orbit in the boundaries Σi , is observed
or each of the cases.

2, the viscous damping inside the gap is bigger than outside, so that α > 1. Diagrams show the biggest values of the
aximum amplitude, and a displacement to higher frequencies of these peaks. For cases C4 and C5 the opposite behaviour

s obtained: the peak in the bifurcation diagram moves to smaller frequencies and its associate maximum amplitude
ecreases. Making a comparison with the results of case A, in case C the peaks that move to higher frequencies present
n increment of the maximum amplitude, instead of the decrements observed in Fig. 10(a). But a more interesting result
f this comparison is the fact that for case C the non-linearity introduced by the discontinuity of the damping function
oes not generate the apparition of saddle–node bifurcations and the associated unstable orbits.
The three panels in Fig. 12 show the effect of a non-smooth change in damping force, that generates a change in the

lope of the phase portrait when crossing any of the boundaries Σi. Note that the slope of the phase portrait is directly
elated to the evolution of the system acceleration ẍ. Form Eq. (1) the acceleration can be expressed as,

ẍ = a cos(ωτ ) − c(x)ẋ − k(x). (24)

q. (24) demonstrate how non-smooth changes in damping force (associated with c(x) function) generate different values
f ẍ at both sides of the boundaries Σi. Therefore, configurations with α ̸= 1 will present a non-smooth phase portrait
elated to this change on slope. How far is α from 1 will determine the degree of non-smoothness, and the sign of the
change of slope will be given by whether α is greater or smaller than one, in agreement with the results presented in
Fig. 12.

In Fig. 11(b) bifurcation diagrams for the four different parameter sets indicated in Table 4 is presented. The
dimensionless forcing frequency ω is used here as the bifurcation parameter. For all cases, results reveal a hardening
15
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behaviour, related to the setting of the parameter β = 0. In this situation, the effect of variations in the damping function
is associated with the possibility, or not, of having pitchfork bifurcations and related non-symmetric orbits. For cases D2,
D3 and D4 this type of bifurcation takes place, but for case D1 it never appears, and symmetric orbits remain stable even
for small frequencies. This behaviour is related to the value of the product αξ , representing the damping ratio inside the
gap. As this product increases, the damping ratio for |x| < e also increases and therefore the appearance of pitchfork
bifurcations and non-symmetric orbits is inhibited. This fact shows how an increase in viscous damping can act as an
impediment to the appearance of non-symmetrical orbits, the subsequent period doubling bifurcations, and the possibility
of having chaotic orbits.

7. Conclusions

A semi-analytical method capable to describe and analyse any periodic orbit of a piecewise linear oscillator with a
harmonic excitation was presented. All the local maps of the system were developed using the available analytical solution
in each region of the domain. Based on the local maps, and by the expansion of vector field with two new variables
l = cos(ωτ ) and m = sin(ωτ ), we arrived with the minimum order transcendental system of equation was developed. The
roposed change of variables allows for a simple implementation of the sequence of mappings and, therefore, implies an
mportant advantage in the algebraic handling of the equations. For a given orbit, described by a number N of mappings,
t was shown that a minimum order N − 1 is obtained for the transcendental system of equations that describes this
olution.
To validate the proposed semi-analytical method comparisons against brute-force numerical results was performed.

articularly, the mapping sequence for period-1 solutions was investigated for parameter sets obtained from [43]. A
ery good agreement between the two methods was observed, and the proposed methodology was capable to capture
ll relevant bifurcation situations. A significant number of obtained solutions were classified as non-physical, because
hey presented some inconsistencies between the postulated maps sequence and the trajectory described by the solution.
his set of solutions has been discarded for the scope of this work, but a deeper understanding of their behaviour and
tructures could be a useful to gain a greater insight into piecewise linear systems.
Two practical cases of how the semi-analytical method can by applied to the study of piecewise linear system were

resented in Sections 5 and 6. In the first of them, the influence of different stiffness function definition was investigated.
t was found that a pitchfork bifurcation, which makes the symmetric orbits unstable and the asymmetric ones stable, is
he starting point for a period-doubling cascade, and the subsequent appearance of chaotic motion. Associated with this, a
eries of minimum conditions that must be met by the system for this phenomenon to occur was defined. In Section 6, the
nfluence of viscous damping was investigated. Our results show how an increase in damping can control the appearance
f non-symmetrical orbits, doubling phenomena and more complex behaviour.
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Appendix A. Linear solutions of Eq. (1) in each region

Expressions for position and velocity in region X1, for given initial conditions x1(τn) = xn and v1(τn) = vn, are:

x1(τ ) = C1 expλ1(τ−τn) +C2 expλ2(τ−τn) +C3 cos (ωτ + φ1), (A.1)

v1(τ ) = λ1C1 expλ1(τ−τn) +λ2C2 expλ2(τ−τn) −ωC3 sin (ωτ + φ1), (A.2)

here constants are:

λ1,2 = −αξ ±

√
(αξ )2 − β2, (A.3)

tan (φ1) = −
2αξω

β − ω2 , (A.4)

C3 =
a√

(β − ω2)2 + (2αξω)2
, (A.5)

C1 =
λ2xn − vn − C3[λ2 cos (ωτn + φ1) + ω sin (ωτn + φ1)]

λ2 − λ1
, (A.6)

C2 =
λ1xn − vn − C3[λ1 cos (ωτn + φ1) + ω sin (ωτn + φ1)]

λ1 − λ2
. (A.7)

xpressions for position and velocity in regions X2 and X3, for given initial conditions x2,3(τn) = xn and v2,3(τn) = vn, are:

x2,3(τ ) = ±(1 − β)e + C4,7 expλ3(τ−τn) +C5,8 expλ4(τ−τn) +C6 cos (ωτ + φ2), (A.8)

v2,3(τ ) = λ3C4,7 expλ3(τ−τn) +λ4C5,8 expλ4(τ−τn) −ωC6 sin (ωτ + φ2), (A.9)

where constants are:

λ3,4 = −ξ ±

√
ξ 2 − 1, (A.10)

tan (φ2) = −
2ξω

1 − ω2 , (A.11)

C6 =
a√

(1 − ω2)2 + (2ξω)2
, (A.12)

C4,7 =
λ4(xn ∓ (1 − β)e) − vn − C6[λ4 cos (ωτn + φ2) + ω sin (ωτn + φ2)]

λ4 − λ3
, (A.13)

C5,8 =
λ3(xn ∓ (1 − β)e) − vn − C6[λ3 cos (ωτn + φ2) + ω sin (ωτn + φ2)]

λ3 − λ4
. (A.14)

ppendix B. Definition of mapping transformations

The six mapping relations illustrated in Fig. 3 are defined as follows.

• Mapping relation P12:⎛⎜⎝ e
v2
l2
m2

⎞⎟⎠ = AII (τ12)

⎛⎜⎝ e
v1
l1
m1

⎞⎟⎠ + BII (τ12), (B.1)

• Mapping relation P21:⎛⎜⎝ e
v1
l1
m1

⎞⎟⎠ = AI (τ21)

⎛⎜⎝ e
v2
l2
m2

⎞⎟⎠ + BI (τ21), (B.2)

• Mapping relation P23:⎛⎜⎝−e
v3
l3

⎞⎟⎠ = AI (τ23)

⎛⎜⎝ e
v2
l2

⎞⎟⎠ + BI (τ23), (B.3)
m3 m2
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• Mapping relation P43:⎛⎜⎝−e
v3
l3
m3

⎞⎟⎠ = AI (τ43)

⎛⎜⎝−e
v4
l4
m4

⎞⎟⎠ + BI (τ43), (B.4)

• Mapping relation P41:⎛⎜⎝ e
v1
l1
m1

⎞⎟⎠ = AI (τ41)

⎛⎜⎝−e
v4
l4
m4

⎞⎟⎠ + BI (τ41), (B.5)

• Mapping relation P34:⎛⎜⎝−e
v4
l4
m4

⎞⎟⎠ = AIII (τ34)

⎛⎜⎝−e
v3
l3
m3

⎞⎟⎠ + BIII (τ34). (B.6)

or previous equations matrices are defined depending on the region where the maps are defined.

• Matrices for region XI :

AI (τ ) =

⎛⎜⎝a11(τ ) a12(τ ) a13(τ ) a14(τ )
a21(τ ) a22(τ ) a23(τ ) a24(τ )

0 0 cos (ωτ ) − sin (ωτ )
0 0 sin (ωτ ) cos (ωτ )

⎞⎟⎠ (B.7)

BI (τ ) =

⎛⎜⎝0
0
0
0

⎞⎟⎠ (B.8)

a11(τ ) =
λ2 expλ1τ

−λ1 expλ2τ

λ2 − λ1

a12(τ ) =
− expλ1τ

+ expλ2τ

λ2 − λ1

a13(τ ) = −C3[(λ2 cos(φ1) + ω sin(φ1))
expλ1τ

λ2 − λ1
− (λ1 cos(φ1) + ω sin(φ1))

expλ2τ

λ2 − λ1

− cos(ωτ + φ1)]

a14(τ ) = −C3[(−λ2 sin(φ1) + ω cos(φ1))
expλ1τ

λ2 − λ1
− (−λ1 sin(φ1) + ω cos(φ1))

expλ2τ

λ2 − λ1

+ sin(ωτ + φ1)]

a21(τ ) =
λ1λ2(expλ1τ

− expλ2τ )
λ2 − λ1

a22(τ ) =
−λ1 expλ1τ

+λ2 expλ2τ

λ2 − λ1

a23(τ ) = −C3[(λ2 cos(φ1) + ω sin(φ1))
λ1 expλ1τ

λ2 − λ1
− (λ1 cos(φ1)

+ ω sin(φ1))
λ2 expλ2τ

λ2 − λ1
+ ω sin(ωτ + φ1)]

a24(τ ) = −C3[(−λ2 sin(φ1) + ω cos(φ1))
λ1 expλ1τ

λ2 − λ1
− (−λ1 sin(φ1)

+ ω cos(φ1))
λ2 expλ2τ

+ ω cos(ωτ + φ1)]

(B.9)
λ2 − λ1
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• Matrices for region XII and XIII :

AII (τ ) = AIII (τ ) =

⎛⎜⎝b11(τ ) b12(τ ) b13(τ ) b14(τ )
b21(τ ) b22(τ ) b23(τ ) b24(τ )

0 0 cos (ωτ ) − sin (ωτ )
0 0 sin (ωτ ) cos (ωτ )

⎞⎟⎠ (B.10)

BII (τ ) =

⎛⎜⎝b1(τ )
b2(τ )
0
0

⎞⎟⎠ (B.11)

BIII (τ ) =

⎛⎜⎝b3(τ )
b4(τ )
0
0

⎞⎟⎠ (B.12)

b11(τ ) =
λ4 expλ3τ

−λ3 expλ4τ

λ4 − λ3

b12(τ ) =
− expλ3τ

+ expλ4τ

λ4 − λ3

b13(τ ) = −C6[(λ4 cos(φ2) + ω sin(φ2))
expλ3τ

λ4 − λ3
− (λ3 cos(φ2) + ω sin(φ2))

expλ4τ

λ4 − λ3

− cos(ωτ + φ2)]

b14(τ ) = −C6[(−λ4 sin(φ2) + ω cos(φ2))
expλ3τ

λ4 − λ3
− (−λ3 sin(φ2) + ω cos(φ2))

expλ4τ

λ4 − λ3

+ sin(ωτ + φ2)]

b21(τ ) =
λ3λ4(expλ3τ

− expλ4τ )
λ4 − λ3

b22(τ ) =
−λ3 expλ3τ

+λ4 expλ4τ

λ4 − λ3

b23(τ ) = −C6[(λ4 cos(φ2) + ω sin(φ2))
λ3 expλ3τ

λ4 − λ3
− (λ3 cos(φ2)

+ ω sin(φ2))
λ4 expλ4τ

λ4 − λ3
+ ω sin(ωτ + φ2)]

b24(τ ) = −C6[(−λ4 sin(φ2) + ω cos(φ2))
λ3 expλ3τ

λ4 − λ3
− (−λ3 sin(φ2)

+ ω cos(φ2))
λ4 expλ4τ

λ4 − λ3
+ ω cos(ωτ + φ2)]

b1,3(τ ) = ∓
(1 − β)eλ4 exp(λ3τ )

λ4 − λ3
±

(1 − β)eλ3expλ4τ

λ4 − λ3
± (1 − β)e

b2,4(τ ) = ∓
(1 − β)eλ4λ3 exp(λ3τ )

λ4 − λ3
±

(1 − β)eλ3λ4expλ4τ

λ4 − λ3

(B.13)
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