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ON RATIONAL NUMBERS WITH SMALL 

NUMERATORS AND DENOMINATORS IN MUSIC 

 

Abstract 

Rational numbers with small numerators and denominators play a 

special role in music. For example, the frequency ratio 
1
2

 corresponds 

to the interval of an octave, whilst the frequency ratios 
5
6

,
4
5

,
2
3

 

correspond to the intervals of a major triad. These have led to various 

tunings of the set of notes on a stave involving rational ratios,           

known as just intonation. The differences between these tunings are 

quite subtle. Here, by the process of generalisation, we explore some 

other ways of using rational numbers with small numerators and 

denominators in music. We include a collection of tunings of the notes 

on the stave obtained in this way, where the differences between the 

tunings are not so subtle. 
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1. Introduction 

We describe some theoretical musical notions concerning rational 

numbers with small numerators and denominators, and present a number of 

examples. We proceed by generalisation: we take properties of music written 

on the stave, and describe alternative situations in which those same 

properties emerge. Our aim is to create pieces and scales that are diverse 

and, to a greater or lesser degree, harmonious. 

Example 1. Consider two notes played simultaneously on a stringed 

instrument, whose frequencies differ by a factor of 2. This situation has the 

property that the frequency of the upper note is double the frequency of the 

lower note. An analogous situation is found where we have a piece P played, 

and accompanied by P played twice at twice the speed. Our sound file           

[8] gives this in case P is Bach’s two part invention no. 9, tuned as in         

[7, Example 2]. 

In Section 2, we derive rational approximations of equal temperament, 

analogous to those in the 12 tone equal temperament case. A special case is 

31 tone equal temperament. 

In Section 3, we introduce various scales, analogous to just intonation 

approximating 12 tone equal temperament. Just scales approximating 12 tone 

equal temperament are only subtly different from each other, for example,      

a major third could be given by a frequency ratio of 
4
5

 or .
64
81

 Most of the 

scales we present here have frequencies which depart significantly from the 

corresponding frequencies in 12 tone equal temperament. 

In Section 4, we discuss rescaling the harmonics of our notes, to 

conform with some of the properties of Section 3. 

In Section 5, we associate some theoretical notions in 31 tone equal 

temperament, analogous to such notions in 12 tone equal temperament, and 

illustrate with an example. Another example is given in Section 6. 

We give some rescalings in 31 tone equal temperament in Section 7. 
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The prime 11 is of special interest, as it is so badly approximated in 12 

tone equal temperament  .0285.1~11212
42

 We give some examples in 

Section 8. 

Note that there are other fixed scales, featuring more than twelve tones, 

constructed with rational numbers, such as Partch’s 43 tone scale [3] (some 

background concerning just intonation can also be found in the same 

reference). Our approach almost entirely refers back to music written on a 

stave. 

2. Rational Approximations of Equal Temperament 

In this section, we discuss using approximate relations between integers, 

under multiplication, to derive equally tempered scales in ,  with rational 

approximations. 

Let p be a prime, and   the set of primes .p  Let 0  be a           

real number. Then we define a quasi-relation to be an expression   

,32 32 paaa pL  where ia  for ,i  and .11   

Suppose we are given quasi-relations ,32 32 pjjj aaa
j p  where 

.11  j  Suppose the vectors  pjj aa ...,,2  are linearly 

independent, for .11  j  Solving the set of 1  equations in 

  variables, 

,11,03322  jxaxaxa ppjjj   

yields a family of solutions   ,...,,, 32 yxxx p   where   runs through 

elements of ,  and y  is fixed. There consequently exist integral 

solutions, of which we fix one  ....,,, 32 pzzzz   

Let us assume 02 z  and fix .c  We take an equally tempered 

scale ,E  with frequencies given by ,2. 2z
n

c  as n runs through the elements of 
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.  If we call the interval given by the frequency ratio 2

1

2 z  a basic interval, 

this scale has 2z  basic intervals to an octave. For ,q  this scale has an 

endomorphism ,qe  given by multiplication by ,2 2z

zq

 which we think of as an 

approximation to multiplication by q. In place of the quasi-relations ,j       

we have the relations ,1jr  where ,32
32

pjjj a
p

aa
j eeer   for  j1  

.1  

Let us remark that many relations between the endomorphisms qe  can 

be exposed, by multiplying the elements jr  together. 

For example, let us take 5p  and .
40
1  Consider the quasi-

relations 144 5.3.2   and .5.2 37   In  ,5,3,2  we have associated linearly 

independent vectors  1,4,4   and  .3,0,7   The equations 

037,044 52532  xxxxx  

have an integral solution  .28,19,12  If we take ,440c  then we recover 

the equally tempered scale 12E  commonly used on a piano, with 12 basic 

intervals to an octave. We have a map     5,3,2:  given by 

  .281912,, 532532 yyyyyy   Then, for small s,iy  532 532 yyy  is a 

rational approximation of 
 

,2 12
,, 532 yyy

 which gives, for example, a rational 

approximation of  110,212  n
n

 as 

.
2

5.3
,

2

5.3
,

2

3
,

2

5
,

2
3

,
2

5.3
,

2

5.3
,

2

5
,

2

5.3
,

2

3
,

2

5.3
,1

37

22

4

3

4

2

5

2

9

23

26

2

3

2

7

3









 

This corresponds to a tuning of the notes of the stave to just intonation – see 

Example 2. 
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For another example, let us take ,7p  and .
80
1  Consider the 

quasi-relations ,5.3.2 144   7.5.3.2 32   and .7.5.3.2 4215   In  ,7,5,3,2      

we have associated linearly independent vectors    1,3,2,1,0,1,4,4   

and  .4,2,1,5   Applying row reduction to the equations 

,0425,032,044 75327532532  xxxxxxxxxxx  

we obtain an integral solution  .87,72,49,31  Taking z to be this    

element, and ,440c  we obtain an equally tempered scale 31E  with 31 

basic intervals to an octave, cf. [4]. 

We have a map     7,5,3,2:  given by   7532 ,,, yyyy  

.87724931 7532 yyyy   Then, for small s,iy  7532 7532 yyyy  is a 

rational approximation of 
 

31
,,, 7532

2
yyyy

 which gives, for example, a 

rational approximation of  300,231  n
n

 as 





 ,
2

5
,

7.5.3
2

,
5
3.2

,
3.2

7
,

7
2

,
2

3
,

2

5.7
,

5.3
2

,
5.4
7.3

,
7.3

2
,1

2

73

3

2

5

4

2

6
 

,
5
2

,
2

5
,

7.3
2

,
2
3

,
3.2

7.5
,

7
5.2

,
5
7

,
3.2

7
,

3
2

,
2

7.3
,

5

2 3

4

25

322

22

42

5
 

.
2

7.3
,

7.3
5.2

,
2

5.3
,

7.5
2

,
3

2
,

2

7
,

7
3.2

,
3
5

,
2

7.5.3
5

23

3

6

2

4

2

2

6 



 

The approximations of the fifth and seventh harmonics in 31 tone equal 

temperament are rather more accurate than the approximations in 12 tone 

equal temperament, although the approximation of the third harmonic is less 

accurate  ~52vs0079.1~52,9970.0~32vs9989.0~32 31
72

12
28

31
49

12
19

 

.9994.0~72vs0182.1~72,0005.1 31
87

12
34
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3. Some Scales 

We introduce some scales, which are given by functions :f  

  ,...,,2,1,0 N  where the note i semitones above the note two octaves 

below middle C have frequency  Fif Hz (here, F is some constant). Our 

audio files record Bach’s two part invention no. 9 played in these scales, 

without overtones [8]. 

Let r be a real number .1  We define ra mod  to be the real number 

in  r,1  that is equal to a modulo ,r  in the multiplicative group of real 

numbers. For example, .
8
9

2mod9   

We introduce scales that possess properties that are also possessed by 

scales obtained by tuning the notes of the stave to just intonation. 

Example 2. A scale tuned in just intonation in this way is obtained as 

follows. Let S be the 12 element set  ,20,30,2mod53  nmnm  

ordered with respect to the standard ordering on .  Consider a map           

which is order-preserving with respect to the product ordering on its           

domain,    Sf 4,3,2,1,0:  given by   .2, ssn n  If we identify 

  S4,3,2,1,0  with the lexicographic ordering, with the ordered set 

 59...,,3,2,1,0  (with its standard ordering <), this gives us a map from 

 59...,,3,2,1,0  to   which determines our scale. 

The above scale has the following properties: 

 Its frequency ratios are given by rational numbers. 

 Its frequency ratios generate a subgroup of   of small rank, with a 

set of generators of small numerator and denominator. 

 It approximates a scale in equal temperament. 

The term ‘small’ here is deliberately vague. The idea is that the smaller a 

natural number is, the closer it is to 1, the frequency ratio of a unison. For us, 
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the prime 2 is certainly small, equal to the frequency ratio of an octave, 

whilst the prime 29 is not especially small. 

Here are some more scales constructed in a similar way with some of the 

same properties: 

Example 3. Let S be the 12 element set  ,110,3mod2  mm  

ordered with respect to the standard ordering on .  Consider a map             

which is order-preserving with respect to the product ordering on its    

domain,    Sf 4,3,2,1,0:  given by   .3, ssn n  If we identify 

  S4,3,2,1,0  with the lexicographic ordering, with the ordered set 

 ,59...,,3,2,1,0  this gives us a map from  59...,,3,2,1,0  to   which 

determines our scale. 

Example 4. Let S be the 12 element set  ,110,2mod5  mm  

ordered with respect to the standard ordering on .  Consider a map which  

is order-preserving with respect to the product ordering on its domain, 

   Sf 4,3,2,1,0:  given by   .2, ssn n  If we identify 

  S4,3,2,1,0  with the lexicographic ordering, with the ordered set 

 ,59...,,3,2,1,0  this gives us a map from  59...,,3,2,1,0  to   which 

determines our scale. 

Example 5. Let S be the 12 element set  ,110,2mod7  mm  

ordered with respect to the standard ordering on .  Consider a map           

which is order-preserving with respect to the product ordering on its           

domain,    Sf 4,3,2,1,0:  given by   .2, ssn n  If we identify 

  S4,3,2,1,0  with the lexicographic ordering, with the ordered set 

 ,59...,,3,2,1,0  this gives us a map from  59...,,3,2,1,0  to   which 

determines our scale. 
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Example 6. Let S be the 16 element set 

,92,
2

143,
3 



 





  n

n
n

n   

ordered with respect to the standard ordering on .  Consider a map        

which is order-preserving with respect to the product ordering on its        

domain,    Sf 3,2,1,0:  given by   .5, ssn n  If we identify 

  S3,2,1,0  with the lexicographic ordering, with the ordered set 

 ,63...,,3,2,1,0  this gives us a map from  63...,,3,2,1,0  to   which 

determines our scale. 

Example 7. Let S be the 11 element set ,2111,
11 



  n

n
 ordered 

with respect to the standard ordering on .  Consider a map which is      

order-preserving with respect to the product ordering on its domain, 

   Sf 4,3,2,1,0:  given by   .2, ssn n  If we identify 

  S4,3,2,1,0  with the lexicographic ordering, with the ordered set 

 ,54...,,3,2,1,0  this gives us a map from  54...,,3,2,1,0  to   which 

determines our scale. 

Example 8. Let S be the 12 element set  ,65,2mod3  nn  

ordered with respect to the standard ordering on .  Consider a map           

which is order-preserving with respect to the product ordering on its          

domain,    Sf 4,3,2,1,0:  given by   .2, ssn n  If we identify 

  S4,3,2,1,0  with the lexicographic ordering, with the ordered set 

 ,59...,,3,2,1,0  we obtain a sequence of 60 real numbers. Reversing this 

sequence gives us a map from  59...,,3,2,1,0  to   which determines our 

scale. 

Example 9. Let S be the 12 element set ,143,
3 



  n

n
 ordered with 

respect to the standard ordering on .  Consider a map which is order- 
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preserving with respect to the product ordering on its domain,  1,0:f  

 S  given by   .5, ssn n  If we identify   S1,0  with the 

lexicographic ordering, with the ordered set  ,23...,,3,2,1,0  this gives us 

a map from  23...,,3,2,1,0  to .  Concatenating this sequence with the 

single term sequence  25  and then the reverse 24 term sequence gives us a 

map from  48...,,3,2,1,0  to   which determines our scale. 

Example 10. Let S be the 24 element set  ,252,2  nn  ordered  

with respect to the standard ordering on .  If we identify S with its 

ordering, with the ordered set  ,23...,,3,2,1,0  this gives us a map from 

 23...,,3,2,1,0  to .  Concatenating this sequence with the single term 

sequence  226  and then the reverse 24 term sequence gives us a map from 

 48...,,3,2,1,0  to   which determines our scale. 

Example 11. Let S be the 11 element set  ,30,2mod53  mnm  

  ,53\20 23 n  ordered with respect to the standard ordering on .  

Consider a map which is order-preserving with respect to the product 

ordering on its domain,    Sf 4,3,2,1,0:  given by   .2, ssn n  

If we identify   S4,3,2,1,0  with the lexicographic ordering, with the 

ordered set  ,54...,,3,2,1,0  this gives us a map from  54...,,3,2,1,0  to 

  which determines our scale. 

Example 12. Consider a map which is order-preserving with respect to 

the product ordering on its domain,    7,6,5,4,3,2,17,6,5,4,3,2,1: f  

  given by   ., nssn   If we identify  27,6,5,4,3,2,1  with the 

lexicographic ordering, with the ordered set  ,48...,,3,2,1,0  this gives us 

a map from  48...,,3,2,1,0  to   which determines our scale. 

Example 13. Consider a map which is order-preserving with respect to 

the product ordering on its domain,  12,11,10,9,8,7,6,5,4,3,2,1:f  
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   5,4,3,2,1  given by   ., nssn   If we identify 

   5,4,3,2,112,11,10,9,8,7,6,5,4,3,2,1   

with the lexicographic ordering, with the ordered set  ,59...,,3,2,1,0  this 

gives us a map from  59...,,3,2,1,0  to   which determines our scale. 

Example 14. Let S be the 8 element set  ,52,2mod3  mm     

and let T be the 12 element set    ,3,12  SS  ordered with respect to       

the standard ordering on .  Consider a map which is order-preserving      

with respect to the product ordering on its domain,   Tf 4,3,2,1,0:  

  given by   .3, ssn n  If we identify   S4,3,2,1,0  with the 

lexicographic ordering, with the ordered set  ,59...,,3,2,1,0  this gives us 

a map from  59...,,3,2,1,0  to   which determines our scale. 

Example 15. Let S be the 8 element set  ,52,2mod3  mm    

and let T be the 12 element set    ,3,12  SS  ordered with respect to        

the standard ordering on .  Consider a map which is order-preserving            

with respect to the product ordering on its domain   Tf 4,3,2,1,0:  

,  given by   .2, ssn n  If we identify   S4,3,2,1,0  with the 

lexicographic ordering, with the ordered set  ,59...,,3,2,1,0  this gives us 

a map from  59...,,3,2,1,0  to   which determines our scale. 

Example 16. Let S  be the 31 element set defined in Section 2, 

ordered with respect to the standard ordering on .  Consider a map which  

is order-preserving with respect to the product ordering on its domain, 

   Sf 1,0:  given by   .2, ssn n  If we identify   S1,0  with 

the lexicographic ordering, with the ordered set  ,61...,,3,2,1,0  we 

obtain a map from  61...,,3,2,1,0  to   which determines our scale. 

Example 17. Let S be the 12 element set   ,122,
1

1




 

n
n

n  
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ordered with respect to the standard ordering on .  Consider a map      

which is order-preserving with respect to the product ordering on its   

domain,    Sf 4,3,2,1,0:  given by   .2, ssn n  If we identify 

  S4,3,2,1,0  with the lexicographic ordering, with the ordered set 

 ,59...,,3,2,1,0  this gives us a map from  59...,,3,2,1,0  to   which 

determines our scale. 

To end this section, for contrast, we record an example of a scale which 

does not approximate a scale in equal temperament, whose frequency ratios 

are given by rational numbers, and where the 50 element set of frequencies 

generates a subgroup of   of rank 50. 

Example 18. Let S be the 50 element set consisting of prime numbers, 

running from 31 to 281, ordered with respect to the standard ordering on .  

Identifying this with the ordered set  ,49...,,3,2,1,0  we obtain a map 

from  49...,,3,2,1,0  to   which determines our scale. 

4. Rescaling Harmonics 

The scales of the preceding section were fixed, as the piece progressed. 

In this section, the tunings potentially alter as the piece progresses. More 

examples of this phenomenon are to be found in the paper of Stange et al. 

[5]. 

In the preceding section, we have altered the notes of our Bach invention 

by fixing frequencies for the notes on the stave. An alternative approach, 

which we have used in a previous work, is to rescale the harmonics of our 

notes, and glue the pieces together along consonances, which we consider to 

be coincidences between harmonics of the original piece. This works 

roughly as follows: (for more details, see [6]) choose positive real numbers 

32,   and 5  to correspond to frequency ratios for the second, third and 

fifth harmonics, respectively (the frequency ratios for the fourth and sixth 

harmonics are then 2
2  and ,. 32   respectively). We then have an associated 
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interpretation of our piece with harmonics given by these frequency ratios, 

and certain consonances between notes corresponding to consonances in           

the original piece. When we do this, the pitch drift from the first C of the 

Bach invention to the last C of the piece at the same point on the stave is 

.14
5

32
3

18
2

   

We wish to present some examples when the si  are chosen so that 

532 ,,   has rank 2  (in imitation of the condition on scales in the 

preceding section, where frequencies were chosen to generate a subgroup   

of   of ‘small’ rank), and the si  are given by fractions with small 

numerator and denominator (also in imitation of a condition in the preceding 

section). 

To obtain a rank 2 group ,,, 532   we take a relation between the 

,si  which we insist takes some simple form. To help the piece be audible, 

we insist the pitch drift p from the first C of the piece to the last C of the 

piece at the same point on the stave is approximately equal to 1. 

Example 19. For our first example (rank 2), we take 2
25   to be our 

relation. If we write ,23
a  then the pitch drift constraint 1p  gives us 

.
16
23a  If we take ,52   then 103   and .255   So, we finally fix 

10,5 32   and .255   

For our second example (rank 1), we take    .4,2,1,, 532   

Here, we set an initial frequency 528F  for the second example, and 

264F  for the first. 

5. 31 Tone Equal Temperament 

Ostinati. The quasi-relation 144 5.3.2   corresponds to the relation 

,1.. 1
5

4
3

4
2  eee  in 12 tone equal temperament, where 2e  is multiplication by 
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2, 3e  is multiplication by ,212
19

 and 5e  is multiplication by .212
28

 Inverting 

this relation, ignoring the octaves, and applying successive factors of the 

relation to the note C gives us a sequence C, E, A, D, G, C. Concatenating 

this with itself many times gives an ostinato which is a manifestation of the 

fifties progression: 

    
 1
3

1
3

1
35 eeee DAEC  

.
1

3
1

35
1

3     
 eeee

AECG  

In general, when we have a relation 132
32  pa

p
aa eeer   between s,ie  

we have associated ostinati comprising sequences of successively consonant 

notes, obtained by applying factors of jr  in sequence to a single note. Here, 

successive factors in the sequence differ by .1
ie  

For example, we have seen the quasi-relation 4215 7.5.3.2   lifts to a 

relation in 31 tone equal temperament, whose inverse is .4
7

2
53

5
2

eeee  This 

gives us a sequence 

         ,,,,,, 0
2
53

2
20

2
5320532053030 FeeeFeeeFeeeFeeFeF  

       ,,,, 0
2

7
2
53

4
20

2
7

2
53

3
20

1
7

2
53

3
20

1
7

2
53

2
2 FeeeeFeeeeFeeeeFeeee   

      ,,, 00
4

7
2
53

5
20

3
7

2
53

5
20

3
7

2
53

4
2 FFeeeeFeeeeFeeee   

which, concatenated with itself a number of times gives a repeated ostinato 

O of successively consonant notes. 

Scales. The C major scale is obtained by applying a sequence of six 

successive consonant intervals (perfect fifths) to an initial note: 

.,,,,,, BEADGCF  
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The sequence of five notes C, G, D, A, E forms our fifties progression, in 

reverse. Any two sequences of d successive notes in this sequence differ by a 

transposition. 

Sequences of endomorphisms ie  with 2i  correspond to sequences of 

successive consonant intervals, which can be chosen to contain an ostinato, 

as well as transpositions. Note here we disregard 2e  as we identify notes in 

our scale up to octave equivalence. For example, extending the ostinato of 

the preceding subsection gives us the scale :  

           ,,,,,,, 0
3

7
2
530

2
7

2
530

1
7

2
530

2
53053030 FeeeFeeeFeeeFeeFeeFeF   

       .,,, 0
4

7
4
5

2
30

3
7

4
5

2
30

3
7

3
5

2
30

3
7

2
5

2
3 FeeeFeeeFeeeFeee   

The first five notes of ,  and the last five notes of   differ by a 

transposition. 

There is a natural correspondence between scales of n notes constructed 

in this way: if we order such a scale by < within the interval  ,2,1  its 

elements are in ordered correspondence with the elements of the totally 

ordered set  ....,,3,2,1 n  

Distribution. We can use the notes in an existing piece written on the 

stave to determine the distribution of notes in a new piece in one of the 

aforementioned scales. 

Example 20. Consider the set  ,44...,,4,3,2,1  which is in bijection 

with the set of half bars of Bach’s two part invention no. 1 [1] (the number n 

corresponds to the nth half bar). We have a natural bijection between the 11 

notes 
 GCFBEADGCFB ,,,,,,,,,,  

of the invention and the notes of ,  respecting the order in which these are 

given above. To each n with ,441  n  we have a subset    n  

consisting of the notes of the nth half bar of our invention, translated via our 

natural bijection to a subset of .  
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Our piece consists of the ostinato O, with notes in ,  repeated four 

times, where notes have 2 seconds duration, along with an accompaniment. 

The first  n3
6

 seconds of our accompaniment to the nth note of the 

repeated ostinato consist of the following note of the ostinato, transposed to 

the octave between 0
32 F  and 0

42 F  if n is odd and transposed to the octave 

between 0
52 F  and 0

62 F  if n is even. The remaining 
 
 n
n



3
2

 seconds of 

our accompaniment to the nth note of the repeated ostinato consists of the 

elements of  ,n  transposed to the octave between 0
42 F  and ,2 0

5F  and 

played with duration   ,
3

2
n

 in ascending order of frequency if n is 

odd, in descending order of frequency if n is even. 

We set .150 F  

6. Movement 

The pieces described above are somewhat homogeneous. Musical 

entities have certain numerical quantities associated with them, for example, 

a musical note has a volume, a duration and a pitch. A sense of movement 

can be introduced by allowing these quantities to vary in a consistent 

fashion. We give an example of this, where the frequency, duration, and 

amplitudes of the harmonics of a note are exponentially dependent on a 

single parameter. The span and sets of notes of the phrases of this piece are 

also dependent on a single parameter. 

Example 21. We are working in 31 tone equal temperament, as in 

Section 2. We begin by concatenating three relations corresponding to the 

linearly independent vectors  ,0,1,4,4    1,3,2,1   and  ,4,2,1,5   

in  .7,5,3,2  
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Figure 1. The three relations. 

Taking the leftmost vertex as zero, and tracing our relations around in 

,31  we obtain the following graph with labelled vertices: 

 

Figure 2. Elements of 31  derived from the three relations. 

Following the circumscribed path around, and ignoring repetitions, we 

obtain the following sequence: 

 .13,9,19,25,4,10,3,28,26,5,18,0a  

Let  ,...,,,, 321 ii aaaa  for .12...,,3,2,1i  Let 

 .somefor31mod,4270 ii xxninn    

We play the set of notes i  in ascending order, where the jth harmonic 

of n  has frequency ,2.440 31
n

j  amplitude j
n

252  and duration .2.
8
1 31

n

 

Here, j runs from 1 to 7. 

7. Rescaling Harmonics in 31 Tone Equal Temperament 

Suppose we have 532 ,,   in the multiplicative subgroup 7,5,3,2  
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of ,  as in Section 4. Then we can approximate elements 532 ,,   by 

elements of .231
1

 Rescaling our Bach invention with these approximations 

in turn gives us a piece, played in 31 tone equal temperament. 

Example 22. For a first example, we take ,22 31
31

2   ,23 31
49

3   

.25 31
72

5   For a second example, we take ,23 31
49

2   ,27 31
87

3   

.221 31
137

5   Note we do not approximate 21 by the closest possible 

power of 31
1

2  available, namely .22.2 31
136

31
87

31
49

  One effect of this is to 

introduce slight variations in pitch between notes that would be identical if 

we chose approximations  31
136

31
87

31
49

2,2,2  instead. 

8. The Prime 11 

In Sections 5 to 7, we have considered 31 tone equal temperament, 

which we were encouraged to contemplate by analysis of the second, third, 

fifth and seventh harmonics, in Section 2. One step beyond this is the 

eleventh harmonic, or the frequency ratio given by the prime 11. 

It is possible to approximate the prime 11 in 31 tone equal temperament 

we  have .9946.0~112 31
107

 A better approximation can be found in 24 

tone equal temperament, which also includes two copies of 12 tone equal 

temperament we  have .9992.0~11224
83

 In 2 tone equal temperament, we 

have the weak approximation .0285.1~1122
7

 

Here, we present examples involving the prime 11 in our frequency 

ratios. 
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Example 23. For our first example (rank 2), we take 1
25
  to be a 

relation. We take 
10
11

,2 32   and .
2
1

5   

For our second example (rank 3), we take .11,5,2 532   

Thus,    ,2,2,2,, 2
7

3
7

532   and our scale weakly approximates the 

whole tone scale. 

We set our initial frequency to be 264F  for the first example, and 

132F  for the second. 

References 

 [1] J. S. Bach, Two Part Invention No.1, BWV 772. 

 [2] J. S. Bach, Two Part Invention No.9, BWV 780. 

 [3] D. J. Benson, Music: A Mathematical Offering, Cambridge University Press, 

November 2006. 

 [4] C. Huygens, Brief betreffende de harmonische cyclus, Histoire des Ouvrages des 

Sçavans, Rotterdam, October 1691, pp. 78-88. 

 [5] K. Stange, C. Wick and H. Hinrichsen, Playing music in just intonation: a 

dynamically adaptive tuning scheme, Computer Music Journal 42(3) (2018),     

47-62. 

 [6] W. Turner, On representing consonance structures. 

  http://homepages.abdn.ac.uk/w.turner/pages/. 

 [7] W. Turner, On reading timbre and tempo from the score. 

  http://homepages.abdn.ac.uk/w.turner/pages/. 

 [8] W. Turner, Examples 1-23. http://homepages.abdn.ac.uk/w.turner/pages/. 


