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We deal with the online identification of the payload mass carried by a single-link flexible arm that moves on a vertical plane and
therefore is affected by the gravity force. Specifically, we follow a frequency domain design methodology to develop an algebraic
identifier. This identifier is capable of achieving robust and efficient mass estimates even in the presence of sensor noise. In order
to highlight its performance, the proposed estimator is experimentally tested and compared with other classical methods in several
situations that resemble the most typical operation of a manipulator.

1. Introduction

Flexible link robotics is a research field focused on building
robots with better performance than the conventional robots.
The flexibility of these robots is a consequence of using
links with lower sectional area and lighter materials than its
rigid counterpart. Higher operational speed, lower energy
consumption, better transportability, and lower cost are only
a few advantages of the flexible link robots over the traditional
rigidmanipulators.These advantages can only be obtained by
facing very challenging problems on modelling and control
that after four decades have not been completely solved.

The flexible link robots are systems characterised by non-
linear ordinary, coupled, and partial differential equations,
whose exact solution is not viable practically. This had led to
look for models with manageable complexity but still reliable
and useful for the design of controllers. From the control
perspective, the same characteristics that improve the per-
formance of these robots have led to vibration problems that
undermine the positioning of the end effector.The solution to
these problems can be very difficult considering the complex-
ity of the model and, in the most general case, its nonmini-
mum phase nature. Surveys dealing with dynamic modelling
and control of flexible link robots can be found in [1–3].

In flexible link robotics, to guarantee an accurate posi-
tioning in pick and place tasks is a very important problem
to solve. One of the main obstacles to overcome is to design
a control algorithm capable of cancelling the vibrations
when the dynamics is affected by changes in the payload
mass. When these changes are not considered in the control
design, the algorithm may lose accuracy and effectiveness in
the vibration suppression and, in some cases, may become
unstable.

Several works have addressed the problem from the adap-
tive control point of view. Most of them rely on the indirect
methods category, which consists of two clearly differentiated
stages (there are some early research works that use a direct
approach; Siciliano et al. [4] and Yuh [5] applied the Model
Reference Adaptive Control (MRAC)). In the first stage, an
online identification of the system parameters is needed. In
the second one, the parameters identified in the first stage
are used to adjust the adaptive control law, in such a way that
the overall performance of the system is improved.This paper
is devoted to the real time characterization of the parameter
that is most likely to change in a robot: the payload. In par-
ticular, we want to identify the tip mass, as we assume that
the payload polar moment of inertia is negligible. Once this
parameter has been identified, to update the dynamic model

Hindawi Publishing Corporation
Shock and Vibration
Volume 2015, Article ID 294157, 13 pages
http://dx.doi.org/10.1155/2015/294157



2 Shock and Vibration

of the arm is immediate, and to recompute the controller
parameters is straightforward.

A payload change affects in two ways a flexible link
robot, it changes the vibration frequencies of the links, and it
changes themotor torques demanded for a specificmaneuver.
Hence the identification algorithms can be classed, on a
similar way, into frequency based approaches and model
based approaches.

The frequency based approaches, normally, do not
depend explicitly on the robot’s model but on the output
where the vibrations appear and in some cases on the input.
The more classical approaches are normally based on the
FFT [6]. The adaptive notch filter [7] is one of the preferred
methods because of its fast convergence rates and its low com-
putational burden. Other approaches, like [8], have consid-
ered adaptive observers to perform simultaneously frequency
and states estimation. A more recent work uses algebraic
identification to estimate amplitude, frequency, and phase of
a sinusoidal signal in the presence of noise andDC-offsets [9],
which are two common problems not explicitly considered in
the methods aforementioned.

In the second category, which we referred to as model
based approaches, the payload mass is identified by using the
dynamicmodel of the robot and the input and output signals.
Least square based techniques, like [10–12], cover most of the
work carried out under this category, but there are some other
alternatives based on algebraic manipulations of the model
transfer functions [13], Kalman filtering [14], or the already
mentioned algebraic identification technique [15] that are also
worth mentioning.

From the vibration control point of view, the frequency
based approaches are at a disadvantage. The frequency based
approaches require the system to vibrate at least a cycle
fraction before the identification can be carried out. This
condition goes against themain goal of the control algorithm,
the vibration suppression, where a very fast identification
is required. In order to update the controller as soon as
possible during the trajectory execution, on the other hand,
the model based approaches have proved to be highly reliable
in problems concerning dynamic linear systems, but its
applicability to nonlinear systems is not straightforward and
may imply in some cases numerical differentiation of noisy
signals.

In this paper, we will focus on the problem of real time
identification of the tip mass of a single-link flexible arm that
moves in a vertical plane under the effects of the gravity. The
algorithm follows a model based approach and it is based
on the algebraic identification framework, proposed in [16],
and it generalizes a previous research work presented in [15].
Unlike the previous research work, where onlymovements in
the horizontal plane were considered and then a linear model
was used, in this paper we deal with a nonlinear dynamic
model as a consequence of taking the gravity into account.
This leads to a more complex problem, where most of the real
time identification techniques developed up to date cannot be
applied. Preliminary results of this identification algorithm
were presented in [17]. This paper details our new identifica-
tion algorithm, proposes several improvements, and presents
a comparative analysis with other identification methods.
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Figure 1: Robotic system scheme.

The algebraic identification provides a very fast and sim-
ple solution for online parameter estimation in systemswhere
the parameters are piecewise constant (change from one
constant value to another unpredictably). This methodology
is fundamentally different from other approaches in some
basics aspects: (a) it does not require any statistical knowl-
edge of the noise corrupting the signals; therefore, classical
Gaussian noise assumptions are not necessary; (b) it does not
need to compute iterative time derivatives of noise corrupted
signals; (c) it is not an asymptotic approach; and (d) it does
not require persistently exciting inputs in order to make the
system identifiable [18].

This paper is organised as follows. Section 2 presents the
dynamic model of the flexible-link robot. In Section 3, the
design of the algebraic identification algorithm is presented.
Section 4 is devoted to the analysis and comparison of the
experimental results. Conclusions and future work are pre-
sented in Section 5.

2. Dynamic Model

Figure 1 shows a schematic representation of the flexible
link robot. It consists of a motor and a flexible beam that
bends on the vertical plane and therefore is affected by the
gravitational force. One end of the beam is clamped to the
shaft of the motor, while the other end moves freely and
carries a payload.Themodel we introduce in this section was
prepared according to the lumped mass method presented in
[19] and relies on the following assumptions.

(i) The link mass is negligible in comparison to the tip
mass.

(ii) The payload is considered as a point mass; therefore,
its polar moment of inertia can be neglected.

(iii) The deflections are elastic and small in relation to
the link’s length, so that geometrical linearity can be
assumed.

(iv) Torsion and compression effects of the link are small
in relation to the deflections.
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The dynamic model relates the coupling torque between
the motor and the link (Γ) to the angular motor position (𝜃

𝑚
)

and the angular tip position (𝜃
𝑡
). The dynamic model of the

system is given by

Γ (𝑡) = 𝑚𝑙
2 ̈𝜃
𝑡
(𝑡) + ] ̇𝜃

𝑡
(𝑡) +𝑚𝑔𝑙cos (𝜃

𝑡
(𝑡)) , (1)

Γ (𝑡) = 𝑐 (𝜃
𝑚
(𝑡) − 𝜃

𝑡
(𝑡)) , (2)

where 𝑚 is the payload mass, 𝑙 is the link’s length, ] is
the viscous friction damping coefficient, and 𝑐 is a stiffness
constant that can be defined in function of Young’s modulus
(𝐸) and the cross-sectionalmoment of inertia (𝐼) as 𝑐 = 3𝐸𝐼/𝑙.
This last expression is a result of applying the lumped mass
methodology developed in [19] to a single-link flexible robot
that considers the assumptions presented above.

For the algebraic estimation algorithm that we develop in
this paper, the torque measured at the base of the link, the
angular motor position, and the angular tip position need to
be known.The sensory system of our robot provides the angle
of the motor (𝜃

𝑚
) and the coupling torque (Γ) at the base of

the link. The angular tip position (𝜃
𝑡
) is not measured but it

can be estimated as follows:

𝜃
𝑒

𝑡
(𝑡) = 𝜃

𝑚
(𝑡) −

Γ (𝑡)

𝑐
. (3)

Here it is important to notice that the estimation of tip
position, 𝜃𝑒

𝑡
, is completely independent from the payload

mass𝑚, whose value is in principle unknown.

3. Algebraic Identification Algorithm

In this section the algebraic methodology, presented in [16],
is used to design an online algorithm to identify the payload
mass of a flexible link robot moving under gravity. The basic
methodology works from the premise that the parameters
are constant throughout time, but it can be extended to
identification problems where the parameters are piecewise
constant; that is, payload changes in a pick and place task.
For the sake of clarity, the designmethodology is explained in
three stages. The design procedure considers (1) and (3). The
presence of the cosine function in (1) determines its nonlinear
characteristic in the tip position variable (𝜃

𝑡
). From the iden-

tification point of view, however, and considering that the tip
position can be estimated from (3), this nonlinear equation
can be considered linearly identifiable in its parameters𝑚 and
]. Taking this into consideration the designmethodology is as
follows.

3.1. First Stage: Algebraic Reformulation of the Problem. Per-
forming an online estimation of the parameters in (1) implies,
for some identification techniques, numerical differentiations
of a noise corrupted signal 𝜃𝑒

𝑡
. As it is well known, these

operations amplify the noise in the resulting signals and affect
adversely the performance of the identification algorithms.
The algebraic identification framework provides a method-
ology to avoid this issue. In this section, we formulate a new
mathematical relationship between the measured signals and
the parameters of themodel by applying standard operational

calculus and algebraic operations.This new expression, com-
pared with the original model, is purposefully formulated to
be independent from time derivatives and initial conditions.
The procedure is as follows.

First, let us apply the Laplace transform to (1):

Γ (𝑠) = 𝑚𝑙
2
[𝑠

2
𝜃
𝑡
(𝑠) − 𝑠𝜃

𝑡
(𝑡0) −

̇𝜃
𝑡
(𝑡0)]

+ ] [𝑠𝜃
𝑡
(𝑠) − 𝜃

𝑡
(𝑡0)] +𝑚𝑔𝑙𝜒 (𝑠) ,

(4)

where 𝜃
𝑡
(𝑡0) and ̇𝜃

𝑡
(𝑡0) represent unknown initial conditions

and 𝜒(𝑠) is the Laplace transform of the signal cos(𝜃
𝑡
(𝑡)).

Taking two times derivatives with respect to 𝑠, the initial
conditions are eliminated:

𝑑
2
Γ (𝑠)

𝑑𝑠2
= 𝑚𝑙

2
[2𝜃
𝑡
(𝑠) + 4𝑠

𝑑𝜃
𝑡
(𝑠)

𝑑𝑠
+ 𝑠

2 𝑑
2
𝜃
𝑡
(𝑠)

𝑑𝑠2
]

+ ][2
𝑑𝜃
𝑡
(𝑠)

𝑑𝑠
+ 𝑠

𝑑
2
𝜃
𝑡
(𝑠)

𝑑𝑠2
]+𝑚𝑔𝑙

𝑑
2
𝜒 (𝑠)

𝑑𝑠2
.

(5)

In order to eliminate the derivatives in the time domain
(positive power of 𝑠), we multiple both sides by 𝑠−2 to obtain

𝑠
−2 𝑑

2
Γ (𝑠)

𝑑𝑠2
= 𝑚𝑙

2
[2𝑠−2𝜃

𝑡
(𝑠) + 4𝑠−1

𝑑𝜃
𝑡
(𝑠)

𝑑𝑠
+
𝑑
2
𝜃
𝑡
(𝑠)

𝑑𝑠2
]

+ ][2𝑠−2
𝑑𝜃
𝑡
(𝑠)

𝑑𝑠
+ 𝑠
−1 𝑑

2
𝜃
𝑡
(𝑠)

𝑑𝑠2
]

+𝑚𝑔𝑙𝑠
−2 𝑑

2
𝜒 (𝑠)

𝑑𝑠2
.

(6)

Equation (6) can be written in the time domain by
applying the inverse Laplace transform (there are few
properties that are specially useful for this problem; if we
denote the inverse Laplace transform by L−1, then it is well
known that L−1𝑠(⋅) = 𝑑/𝑑𝑡(⋅), L−11/𝑠(⋅) = ∫

𝑡

0 (⋅)(𝜎)𝑑𝜎, and
L−1𝑑V/𝑑𝑠V(⋅) = (−1)V𝑡V(⋅)). The resulting equation is given
by (we denote by (∫

(𝑗)

𝜙(𝑡)) the integral expression ∫
𝑡

0 ∫
𝜎1

0 ⋅ ⋅ ⋅

∫
𝜎𝑗−1

0 𝜙(𝜎
𝑗
)𝑑𝜎
𝑗
⋅ ⋅ ⋅ 𝑑𝜎1 with the definition (∫ 𝜙(𝑡)) =

∫
𝑡

0 𝜙(𝜎1)𝑑𝜎1)

∫

(2)
𝑡
2
Γ (𝑡) = 𝑚𝑙

2
[2∫
(2)

𝜃
𝑡
(𝑡) − 4∫ 𝑡𝜃

𝑡
(𝑡) + 𝑡

2
𝜃
𝑡
(𝑡)]

+ ][−2∫
(2)

𝑡𝜃
𝑡
(𝑡) +∫ 𝑡

2
𝜃
𝑡
(𝑡)]

+𝑚𝑔𝑙 ∫

(2)
𝑡
2 cos (𝜃

𝑡
(𝑡))

(7)

and in a more compact form as

𝑞 (𝑡) = 𝑚 [𝑙
2
𝛽 (𝑡) + 𝑔𝑙𝜉 (𝑡)] + ]𝜂 (𝑡) , (8)
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where

𝑞 (𝑡) = ∫

(2)
𝑡
2
Γ (𝑡) ,

𝛽 (𝑡) = 2∫
(2)

𝜃
𝑡
(𝑡) − 4∫ 𝑡𝜃

𝑡
(𝑡) + 𝑡

2
𝜃
𝑡
(𝑡) ,

𝜉 (𝑡) = ∫

(2)
𝑡
2 cos (𝜃

𝑡
(𝑡)) ,

𝜂 (𝑡) = − 2∫
(2)

𝑡𝜃
𝑡
(𝑡) +∫ 𝑡

2
𝜃
𝑡
(𝑡) .

(9)

Functions 𝑞(𝑡), 𝛽(𝑡), 𝜉(𝑡), and 𝜂(𝑡) can be expressed as the
outputs of the following time-varying linear and unstable
filters in perturbed Brunovsky’s canonical form:

𝑞 (𝑡) = 𝑧1,

𝑧̇1 = 𝑧2,

𝑧̇2 = 𝑡
2
Γ (𝑡) ,

𝛽 (𝑡) = 𝑧3 + 𝑡
2
𝜃
𝑡
(𝑡) ,

𝑧̇3 = 𝑧4 − 4𝑡𝜃
𝑡
(𝑡) ,

𝑧̇4 = 2𝜃t (𝑡) ,

𝜉 (𝑡) = 𝑧5,

𝑧̇5 = 𝑧6,

𝑧̇6 = 𝑡
2 cos (𝜃

𝑡
(𝑡)) ,

𝜂 (𝑡) = 𝑧7,

𝑧̇7 = 𝑧8 + 𝑡
2
𝜃
𝑡
(𝑡) ,

𝑧̇8 = − 2𝑡𝜃
𝑡
(𝑡) .

(10)

The implementation of this algorithm requires as inputs
the coupling torque measurements (Γ) and the estimation
of the tip position (𝜃𝑒

𝑡
), presented in (3). Notice that even

though the original expression (1) and the resulting equation
(8) have the same structure, the latter does not depend on
time numerical differentiations.

3.2. Second Stage: Parameter Calculation. To identify the
parameters of a system we need at least the same number
of linearly independent equations as unknown parameter.
The algebraic identification exploits the advantages of the
resulting expression for the algebraic reformulation of the
problem, expression (8) in our case, to define these inde-
pendent equations. In this context, several approaches have
been proposed, not only to define these equations, but also
to enhance the performance of the identifier in the presence
of noise in the measurements. In the following paragraphs,
first, we briefly describe the most relevant approaches, and

then we detail the procedure followed in this paper. The
approaches we mention are not necessarily referring to our
specific application, but they could be easily adapted to our
problem.

A first approach is to generate as many linearly indepen-
dent equations as parameters have to be estimated by succes-
sive differentiation of (8), which was obtained after algebraic
manipulations. This approach was developed in [20] in
the context of multiple harmonic signals identification. Note
that (8) is a single equation which involves two parameters to
be estimated. Then we need an extra equation for the iden-
tification. Once the resulting system of equations is solved,
and in those cases where high frequency noise is present in
the measurements, a low-pass filtering has to be carried out
in order to improve the signal to noise ratio of the parameter
estimates. Depending on the nature of the measurements
considered, the equations defined in this approach might
not be completely linearly independent all the time. When
this happens, a local loss of identifiability may occur. In
[21], this drawback was solved by using invariant nonlinear
filtering.

Other approaches to define this system of equations are to
use the equation resulting from the algebraic reformulation of
problem, (8) in our case, and to evaluate it at different times.
Under this approach, an overdetermined system of equations
is defined by taking a large number of points in time. This
action allows us to achieve the two goals mentioned above at
the same time: to identify the parameters and to reduce the
effects of the noise present in the measurements. The bigger
the number of evaluation instants is, the greater the low-
pass filtering effect is. To solve this overdetermined system of
equations a least squares fitting based method is normally
considered. In [22], the least squares method in connection
with algebraic identification was proposed to identify the
parameters for induction motors. In order to increase the
computational efficiency of this stage, in [23], a continuous
least squares approximation was implemented in a recursive
way to identify the two main vibration modes of a flexible
structure. In [24] the adjustment of the overdetermined sys-
tem was carried out by using a recursive least squares algo-
rithm. This last identifier was designed to determine the
parameters of a servo model. In the present paper we use
the continuous least square approximation with a recursive
implementation of the involved integrals. A detailed descrip-
tion is presented below.

The goal of the following steps is to determine the
unknown parameters 𝑚 and ] from (8). However, at the end
of this section we will only center our attention on the value
of the parameter 𝑚, while the value of the parameter ]
will be discarded. The parameter ], associated with the
viscous friction, was introduced in themodel only to improve
the behaviour of the estimator. According to our obser-
vations, an approximate model of the damping enhances
the performance in terms of precision. Having made this
clarification, we define the following cost function:

𝜀 = ∫

𝑡

0
{[𝑙

2
𝛽 (𝜏) + 𝑔𝑙𝜉 (𝑡) 𝜂 (𝜏)] ⋅ [

𝑚

]
]− 𝑞 (𝜏)}

2

𝑑𝜏, (11)
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and its minimization leads to

[

𝑚

]
] = [

[

∫

𝑡

0
[
𝑙
2
𝛽 (𝜏) + 𝑔𝑙𝜉 (𝜏)

𝜂 (𝜏)

]

⋅ [
𝑙
2
𝛽 (𝜏) + 𝑔𝑙𝜉 (𝜏)

𝜂 (𝜏)

]

𝑇

𝑑𝜏]

]

−1

⋅ ∫

𝑡

0
[
𝑙
2
𝛽 (𝜏) + 𝑔𝑙𝜉 (𝜏)

𝜂 (𝜏)

] 𝑞 (𝜏) 𝑑𝜏.

(12)

This calculation can be efficiently implemented in a recur-
sive way as follows. Let us rewrite (12) as

[

𝑚

]
] = 𝐴

−1
(𝑡) 𝐵 (𝑡) = [

𝑎11 (𝑡) 𝑎12 (𝑡)

𝑎21 (𝑡) 𝑎22 (𝑡)
]

−1

[

𝑏1 (𝑡)

𝑏2 (𝑡)
] , (13)

where

𝑎11 (𝑡) = ∫

𝑡

0
(𝑙

2
𝛽 (𝜏) + 𝑔𝑙𝜉 (𝜏))

2
𝑑 (𝜏) ,

𝑎12 (𝑡) , 𝑎21 (𝑡) = ∫

𝑡

0
(𝑙

2
𝛽 (𝜏) + 𝑔𝑙𝜉 (𝜏)) (𝜂 (𝜏)) 𝑑 (𝜏) ,

𝑎22 (𝑡) = ∫

𝑡

0
(𝜂 (𝜏)

2
) 𝑑 (𝜏) ,

𝑏1 (𝑡) = ∫

𝑡

0
(𝑙

2
𝛽 (𝜏) + 𝑔𝑙𝜉 (𝜏)) 𝑞 (𝜏) 𝑑 (𝜏) ,

𝑏2 (𝑡) = ∫

𝑡

0
𝜂 (𝜏) 𝑞 (𝜏) 𝑑 (𝜏) .

(14)

Assume that functions 𝛽(𝑡), 𝜉(𝑡), 𝜂(𝑡), and 𝑞(𝑡) are
sampled at discrete times 𝑡 = 𝑘𝑇

𝑠
, 𝑘 = 1, 2, 3, . . ., where 𝑇

𝑠

is the sampling time. If we define the function 𝜙
𝑇

[𝑘] =

[(𝑙
2
𝛽[𝑘] + 𝑔𝑙𝜉[𝑘]) 𝜂[𝑘]], the matrices 𝐴(𝑡) and 𝐵(𝑡) can be

computed recursively in discrete time as follows:

𝐴 [𝑘] = 𝐴 [𝑘 − 1] + 𝜙 [𝑘] 𝜙
𝑇

[𝑘] 𝑇
𝑠
,

𝐵 [𝑘] = 𝐵 [𝑘 − 1] + 𝜙 [𝑘] 𝑞 [𝑘] 𝑇
𝑠
,

𝐴 [0] = 0
[2×2],

𝐵 [0] = 0
[2×1],

(15)

where 0
[2×2] and 0

[2×1] are zero matrices and their subscripts
represent their dimensions. The parameters 𝑚 and ] can be
computed from these matrices as

[

𝑚 [𝑘]

] [𝑘]
] = 𝐴

−1
[𝑘] 𝐵 [𝑘] . (16)

3.3. Third Stage: Resetting and Switching-Off Considerations.
In the algorithm presented above, we considered that the
uncertain parameters remain constant throughout the time.

However, this condition is not wide enough to solve the
payload identification problem of the typical pick and place
tasks. In this application, the uncertain parameter 𝑚 may
suddenly change to a new constant value as the manipulator
takes or drops an object. To detect payload changes, in this
case, we require the algorithm to be reinitiated once it has
achieved an estimate of the current parameters. But the
instant when the parameter is accurately computed is, in
principle, unknown and amethod to determine it is therefore
needed.

To detect when the identification algorithm has con-
verged, we consider in this paper the strategy proposed in
[25]. In this strategy, the convergence time is expressed
in terms of the moving average and the moving standard
deviation of the parameter to identify. In our case, if we
define 𝑚[𝑘] as the payload mass estimate at the sample 𝑘, its
moving average (𝐸[𝑚[𝑘]]) and its moving standard deviation
(𝜎[𝑚[𝑘]]) are defined as follows:

𝐸 [𝑚 [𝑘]] =
1
𝑀

𝑀−1
∑

𝑖=0
𝑚[𝑘− 𝑖] ,

𝜎 [𝑚 [𝑘]] = √
1
𝑀

𝑀−1
∑

𝑖=0
(𝑚 [𝑘 − 𝑖] − 𝐸 [𝑚 [𝑘]])

2
,

(17)

where the length of thewindow (𝑀) defines the set of samples
considered in the calculations. The payload mass estimated
𝑚[𝑘] is said to have converged when the following criterium
is fulfilled:

𝜎 [𝑚 [𝑘]]

|𝐸 [𝑚 [𝑘]]|
≤ Δ. (18)

The constant Δ is the tolerance parameter and should
be set up according to the application’s requirements. If the
application needs a high precision, a small Δ should be
provided. On the other hand, if the application requires a fast
estimation, a greater Δ should be considered.

There are some other alternatives to the procedure pre-
sented above. In [21] the convergence time was computed in
terms of an artificial parameter called the sentinel parameter.
This parameter emulates, in terms of time of convergence, the
behaviour of the remaining system parameters, but, unlike
the others, its value converges to an arbitrary value explicitly
defined beforehand.

On a final note, wewould like to point that for those appli-
cationswhere the parameters never change, and only a unique
estimate of the parameters is necessary, it is advisable to
switch off the algorithm once it has converged. The unstable
nature of the filters involved in the identificationmay produce
an arithmetic overflow when long time has passed. Given the
fast nature of the algebraic identification, the algorithm is
expected to be reset long before any numerical problemmight
arise.

4. Experiments

In this section, the algebraic identification algorithm pre-
sented above is experimentally validated and compared
against least squares fitting based approaches.
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Payload

Flexible
link

Motor

Figure 2: Flexible single-link robot platform.

4.1. Experimental Platform. Figure 2 shows the single-link
flexible robot considered in the experiments. It is composed
of a Maxon DC motor with gear reduction, a tubular
duraluminium link, and amass-adjustable payload structure.
The link is connected at one side to the gear shaft, while
at the same time holding the payload structure at its free
end. The motor position commands are sent from a National
Instrument PXI real time systemand are executed by aMaxon
EPOS motor driver. The control loops are executed with a
sampling time of 𝑇

𝑠
= 2 mseconds. The sensory system

consists of strain gages placed at the base of the link and two
incremental encoders tomeasure themotor position and gear
shaft position.The strainmeasurements at the base of the link
are used to estimate the coupling torque (Γ), while the outer
encoder is used to measure the exact orientation of the link
at its base (𝜃

𝑚
). The inner encoder measurements were not

taken into account because the backlash in the gear reduction
would produce erroneous estimates of the position of the base
of the link. However, the outer encoder has a relatively low
resolution of 1024 pulses/revolution. Under these conditions,
the measured signals used by the identification algorithm,
(𝜃
𝑚
) and (Γ), are very noisy, and their time derivatives, as

might be expected, are even noisier and should not be used
for an identification algorithm. To illustrate this, Figure 3
shows, for an arbitrary experiment, the signals relevant
for the identification algorithm: the estimation of the tip
position (𝜃

𝑒

𝑡
), computed as it was shown in (3), from the

experimental records of 𝜃
𝑚

and Γ; the first- and second-
order time numerical differentiation of such estimation of
the tip position, ( ̇𝜃

𝑒

𝑡
) and ( ̈𝜃

𝑒

𝑡
); and the coupling torque (Γ).

As a consequence of the limited resolution of the outer
encoder, the estimated signals ( ̇𝜃

𝑒

𝑡
) and ( ̈𝜃

𝑒

𝑡
) present important

discontinuities as shown in Figures 3(b) and 3(c). These two
differentiated signals are relevant for the other identification
algorithms that we will use as references, in the following
sections, to evaluate our algebraic identification algorithm.

The most relevant features of the robot are described
in Table 1. The stiffness constant 𝑐 and damping coefficient

Table 1: Flexible robot parameters.

Parameter Units Symbol Value
Beam length (m) 𝑙 1.045
Beam rotational stiffness (N⋅m⋅rad−1) 𝑐 2498.2
Beam viscous damping
coefficient (N⋅m⋅s⋅rad−1) ] 0.2

Payload mass 1 (Kg) 𝑚1 1.150
Payload mass 2 (Kg) 𝑚2 1.690
Payload mass 3 (Kg) 𝑚3 2.930

] were experimentally identified. A frequency based iden-
tification, explained in [26], was considered to adjust the
parameter 𝑐. The damping coefficient ] provided in this table
is given for indicative purpose only, and it is not required for
the identification algorithm. This parameter was computed
by adjusting approximately the decay rate of the residual
vibrations in the time domain for a specific experiment, but
it might change considerably depending on the experiment.

4.2. Definition of the Experiments. To validate the alge-
braic identifier, three types of experiments were defined to
reproduce the typical operations of a manipulator. These
experiments consider three payload masses (𝑚1, 𝑚2, 𝑚3),
whose values are given in Table 1. The motor position was
controlled using the algebraic controller explained in [26],
while no tip vibration control algorithm was considered. It
is noteworthy that the algebraic identifier presented does not
depend on the control algorithm used for themotor position.
In fact, it only considers the dynamics of the flexible link.

4.2.1. Experiment Type 1. The motor position (𝜃
𝑚
) tracks a

fourth-order trajectory between 90 degrees, the vertical pose,
and 45 degrees in 2 seconds.This experiment replicates a pick
and place operation, where the robot lifts, moves, and places
an object between two points following a defined trajectory.

4.2.2. Experiment Type 2. The motor position (𝜃
𝑚
) tracks

a 4-second sinusoidal trajectory between 90 degrees and 45
degrees. This experiment is used to prove the stability of the
algorithm when a persistent input is applied. Identification
stability is not evident taking into account that the algorithm
is based on unstable filters.

4.2.3. Experiment Type 3. The motor is blocked at 0 degrees
(𝜃
𝑚

= 0), and then the link is gently hit in its tip. This
experiment reproduces those cases where the controlled
robot is not capable of completely cancelling the vibrations
at the tip position or the robot at rest picks or releases an
unknown payload.

Before ending this section, we present the motor position
(𝜃
𝑚
) and torque (Γ)measurements for each experiment type.

Due to space constrains, we only display the measurements
for the payload mass𝑚2. The plots for the payload masses𝑚1
and 𝑚3 are similar and do not add value to the discussion.
Figures 4, 5, and 6, show the sensor measurements used
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Figure 3: Example of the signals involved in the identification algorithm to discuss (a) estimation of the tip position (𝜃
𝑒

𝑡
), (b) first-order

numerical time differentiation of the estimation of the tip position ( ̇𝜃
𝑒

𝑡
), (c) second-order numerical time differentiation of the estimation of

the tip position ( ̈𝜃
𝑒

𝑡
), and (d) coupling torque (Γ).

Table 2: Algebraic identification: convergence time for the different experiments and payloads.

Errors Experiment type 1 Experiment type 2 Experiment type 3
10% 5% 2% 10% 5% 2% 10% 5% 2%

Payload𝑚1 0.57 s 0.77 s 1.08 s 0.68 s 0.84 s 1.24 s 0.022 s 0.028 s 0.030 s
Payload𝑚2 0.33 s 0.61 s 1.27 s 0.40 s 0.65 s 0.88 s 0.036 s 0.132 s 0.238 s
Payload𝑚3 0.29 s 0.39 s 0.58 s 0.58 s 0.73 s 1.16 s 0.048 s 0.050 s 0.196 s

for the identification in the experiment types 1, 2, and 3,
respectively.

4.3. Algebraic Identification Results: Convergence Times and
Precision. In this section we present the experimental results
of applying the first two stages of the algebraic identification
algorithm that we detailed in Section 3.The third stage of this
algorithm will be addressed in the next section.

The first two stages of the identification method can be
summarised in three steps: first, to use the sensor measure-
ments, 𝜃

𝑚
and Γ, to estimate the tip position 𝜃

𝑒

𝑡
by means

of (3); second, to compute the functions 𝑞(𝑡), 𝛽(𝑡), 𝜉(𝑡),
and 𝜂(𝑡) from (10); and, third, to sample these functions to

obtain the matrices 𝐴[𝑘] and 𝐵[𝑘], as shown in (15), and
use them to finally compute the payload mass by applying
(16). Table 2 summarizes the performance of the algebraic
estimation algorithm in terms of speed of convergence and
precision. In this table, we present the convergence times of
the algorithm for the three types of experiments presented
above, when the estimates reach and stay in the band of
±10%,±5%,±2%of the real payloadmass value.The following
paragraphs are devoted to the discussion of these results in
the context of pursuing the implementation of an adaptive
control.

The convergence rates, shown in Table 2, demonstrate
that algebraic identification produces accurate and fast
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Figure 6: Experiment type 3: motor position and torque measure-
ment for mass𝑚2.

payload mass estimates in all the cases studied. This is in the
experiments that considered large trajectories (experiment
types 1 and 2), persistent inputs (experiment 2), and also
in those that considered quasistatic situations (experiment
type 3). Specifically speaking, this algorithm achieves pay-
load estimates with errors lower than 5% in less than 0.84
seconds.This means that, in the specific case of the trajectory
considered in the experiment type 1, once the parameters in
the adaptive controller have been updated, the controller has
more than one half of the trajectory time interval to improve
the tracking and the vibration suppression.

There are important differences in the convergence time
between those experiments that involved large trajectories
(experiment types 1 and 2) and the one that considered a
quasistatic situation (experiment type 3). In the experiments
of the first group, the payload estimates were achieved in an
average time of 0.48, 0.67, and 1.03 secondswith errors of 10%,
5%, and 2%, respectively, and with little difference between
them. In the quasistatic situation, experiment type 3, the
algorithm needed 0.035, 0.07, and 0.15 seconds to guarantee
the same margin errors. This means that in the experiment
type 3 the payload estimation was achieved about 8 times
faster than in the experiment types 1 and 2. These differences
should be taken into account by the adaptive controller.

4.4. Algebraic Identification Results: Resetting Algorithm. The
purpose of the convergence criterium (18) is to automatically
detect when the algebraic identification algorithm has con-
verged in order to immediately reset the identification algo-
rithm if necessary. In this sectionwe present the results of this
convergence criterium when it was applied to experiments
type 1.

At this point, we assumed that the sensor measurements
in the experiments type 1, 𝜃

𝑚
and Γ, were used to estimate

the tip position 𝜃
𝑒

𝑡
, as shown in (3), and, subsequently, to

estimate the payload mass by applying (10), (15), and (16).
The convergence criterium used the payload mass estimates
provided by the previous algorithm and it was configured
in terms of the tolerance parameter (Δ) and the windows
size (𝑀). In the context of experiments type 1, we assumed
that it was desirable to have an identification algorithm
capable of performing payload estimates in a period of time
shorter than one half of the trajectory, that is, in less than
1 s. With this condition in mind, we defined the tolerance
parameter (Δ) of 0.015 and a windows size (𝑀) of 150 samples
(0.3 s). Table 3 summarizes the performance of the resetting
algorithm evaluated for these experiments. As can be seen
in this table, convergence times stay less than or equal to 0.9
seconds for all the payload masses considered. It means that
the payloadmass is computed in the 45% of the time required
for the trajectory. In the same table, it can be also noticed
that the estimation errors are below the 5% margin of error,
which is an acceptable error for a potential adaptive control
application. To count with a resetting algorithm is especially
important because the convergence time varies depending on
the type experiment trajectory performed. Taking estimates
of the parameter based on a fixed time implies not exploiting
the full potential of the identifier in terms of updating speed
and, what it worse, it could make us take incorrect estimates
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Table 3: Algebraic identifier resetting algorithm: evaluation for
experiment type 1.

Experiment type 1
Convergence

time
% of the trajectory

duration Error

Payload𝑚1 0.90 s 45.0% 3.99%
Payload𝑚2 0.63 s 31.7% 4.61%
Payload𝑚3 0.65 s 32.4% 1.06%

of the parameter if the algorithm has not already converged.
This is apparent in our experiment where, as it was pointed
in the last section, the convergence time for the experiment
type 3 was achieved in only a fraction of time required for the
experiment types 1 and 2.

4.5. Comparison with Least Square Fitting. In this section
we compare the performance of the linear least squares
fitting approach against the algebraic identification approach.
For the purpose of a fair comparison between these, we
considered two versions of the linear least squares fitting.

In the first case, we obtained the tip payload mass (𝑚)
and viscous friction coefficient (]) by applying the regular
linear least square fitting to (1) that is linear in parameters.
Here we considered the motor position (𝜃

𝑚
) and coupling

torque (Γ) measurements to compute an estimation of the tip
position (𝜃𝑒

𝑡
) by taking into account expression (3). Taking

these equations into account, the procedure is reduced to
apply a linear least squares fitting to the following equation:

Γ (𝑡) = 𝑚 (𝑙
2 ̈𝜃
𝑒

𝑡
(𝑡) + 𝑔𝑙cos (𝜃𝑒

𝑡
(𝑡))) + ] ( ̇𝜃

𝑒

𝑡
(𝑡)) , (19)

where the first- and second-order time derivatives of the
estimation of the tip position, ( ̇𝜃

𝑒

𝑡
) and ( ̈𝜃

𝑒

𝑡
), respectively, were

computed by numerical differentiation.
In the second case, we filtered the terms of (19) through a

low-pass second-order Butterworth filter, before applying the
regular linear least square fitting indicated in the first case.
This is shown in

𝐹 {Γ (𝑡)} = 𝑚𝐹 {𝑙
2 ̈𝜃
𝑒

𝑡
(𝑡) + 𝑔𝑙cos (𝜃𝑒

𝑡
(𝑡))}

+ ]𝐹 { ̇𝜃
𝑒

𝑡
(𝑡)} ,

(20)

where the letter 𝐹 indicates the low-pass filtering operation.
This filtering operation was performed to soften the effects
of the noise present in the input signals of the linear squares
fitting. The noise effects were shown in Figure 3.

Looking at the convergence rates of the regular least
squares fitting, shown inTable 4, it is easy to evidence that this
method is far behind in performance in comparison to the
algebraic identifier. If we consider all the experiment types,
this method requires 3.27 seconds to reach the 10% margin
error while the algebraic identification algorithm achieves
this in only 0.68 seconds. This means that the algebraic
identifier is about 5 times faster than the regular least squares
fitting.
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Figure 7: Comparison of the convergence times respect cut-
off frequency for the identification of the payload mass 𝑚3 in
experiment type 1.

On the other hand, the performance of the filtered
version of the linear least square algorithm did not show
any significant and consistent improvement in comparison
with its nonfiltered version or the algebraic identification
algorithm. In this performance study, cut-off frequencies
between 0 and 40Hz were considered in filter 𝐹 of (20) to
deal with the noise present in themeasurements. Discretizing
the filter using the bilinear transform and a sampling time
of 𝑇
𝑠
= 2ms, the poles 𝑃

𝑖
of the filter must fulfill Haykin’s

condition |𝑃
𝑖
𝑇
𝑠
| < 0.5 [27]. This implies that the maximum

cut-off frequency of the filter is 0.5/2𝜋𝑇
𝑠

= 39.7Hz ≈

40Hz. To illustrate the performance of this identification
method, Figure 7 shows its convergence time with respect to
different cut-off frequencies.This graphic presents the results
of identification of the payload mass 𝑚3 in the experiment
type 1. However, similar results are obtained from the other
experiment types and masses. For ease of comparison with
the other methods, the convergence times for the nonfiltered
linear least squares algorithm and the algebraic algorithm are
also indicated in Figure 7.

Figures 8, 9, and 10 show comparisons of the identifica-
tion algorithms here discussed. A cut-off frequency of 10Hz
was considered for the filtered version of the linear least
squares algorithm.

5. Conclusions

In this paper, an online algebraic identification algorithm has
been presented for the identification of the payload mass
of a single-link flexible robot moving under gravity. This
algorithm was designed for a specific nonlinear dynamic
structure that can be arranged to be linear in parameters.
The algorithm considers as inputs the motor position and
the torque measured at the base of the link. Its performance
has been experimentally evaluated in situations that involve
large trajectories (experiment types 1 and 2), trajectories that
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Table 4: Linear least squares fitting: convergence time for the different experiments and payloads.

Errors Experiment type 1 Experiment type 2 Experiment type 3
10% 5% 2% 10% 5% 2% 10% 5% 2%

Payload𝑚1 2.30 s >5 s >5 s 1.30 s 1.45 s 2.94 s 1.92 s 4.27 s >5 s
Payload𝑚2 2.15 s >5 s >5 s 1.30 s 1.46 s >5 s 3.27 s >5 s >5 s
Payload𝑚3 2.34 s >5 s >5 s 1.40 s 1.42 s 2.95 s 0.49 s 3.70 s >5 s
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Figure 8: Experiment type 1: (a) algebraic identifier, (b) least square fitting, and (c) least square fitting with filter.
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Figure 9: Experiment type 2: (a) algebraic identifier, (b) least square fitting, and (c) least square fitting with filter.

persistently excited the link (experiment type 2), and in a
quasistatic situation (experiment type 3), where the flexible
link, initially at rest, is externally perturbed.The performance
analysis of this algorithm shows that it is capable of achieving
estimates in less than 0.84 seconds with an error lower than
5%. For large trajectories, similar to those we considered in
the experiments (45 degrees in 2 seconds), this might be
an acceptable convergence rate if it has to be included in
an indirect adaptive control implementation. An adaptive
controller that considers this identification algorithm might
count with more than one half of the trajectory lasting

time to improve the trajectory tracking and the vibration
suppression.

To highlight the performance of our identification algo-
rithm, we presented a comparison with a linear least
square fitting. Other identification algorithms described in
the scientific literature and referenced in Introduction have
not been included in this comparison because they are
not suited to deal with nonlinear dynamics. In particu-
lar, two least squares fitting based algorithms were con-
sidered: the regular least square fitting and a prefiltered
version. For estimations with errors below 10%, the results of
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Figure 10: Experiment type 3: (a) algebraic identifier, (b) least square fitting, and (c) least square fitting with filter.

the comparison show that the algebraic identification algo-
rithm is about 5 times faster than the regular least squares
fitting. The filtered variant, for its part, did not show any
improvement in terms of time of convergence in comparison
with its regular version. The performance superiority of our
algorithmover the linear least square fitting can be attributed,
in good part, to the fact that the algebraic identifier does
not require any time derivative of the measurements. This
trait avoids the noise amplification problems that the other

methods present and, moreover, allows using sensors of the
link position with relatively low resolution, as we showed in
our experiments.

In this work we implemented a resetting algorithm to
detect when the estimation convergence is achieved. This
algorithm was tested in some experiments that reproduce
the typical trajectory tracking performed in a pick and place
task (experiment type 1). Its performance demonstrates its
feasibility for a potential adaptive control application.
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Our further work will be devoted to the study of adaptive
control laws based on the estimation algorithm here devel-
oped.
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Informática Industrial, vol. 3, no. 3, pp. 24–41, 2009.

[2] S. K. Dwivedy and P. Eberhard, “Dynamic analysis of flexible
manipulators, a literature review,” Mechanism and Machine
Theory, vol. 41, no. 7, pp. 749–777, 2006.

[3] M. Benosman and G. Le Vey, “Control of flexible manipulators:
a survey,” Robotica, vol. 22, no. 5, pp. 533–545, 2004.

[4] B. Siciliano, B.-S. Yuan, and W. J. Book, “Model reference
adaptive control of a link flexible arm,” in Proceedings of the
25th IEEE Conference on Decision and Control, pp. 91–95, IEEE,
Athens, Greece, December 1986.

[5] J. Yuh, “Application of discrete-time model reference adaptive
control to a flexible single-link robot,” Journal of Robotic Sys-
tems, vol. 4, no. 5, pp. 621–630, 1987.

[6] S. Yurkovich and A. P. Tzes, “Experiments in identification
and control of flexible-linkmanipulators,” IEEE Control Systems
Magazine, vol. 10, no. 2, pp. 41–46, 1990.

[7] S. Bittanti, M. Campi, and S. M. Savaresi, “Unbiased estimation
of a sinusoid in colored noise via adapted notch filters,”
Automatica, vol. 33, no. 2, pp. 209–215, 1997.

[8] G. Obregón-Pulido, B. Castillo-Toledo, and A. Loukianov, “A
globally convergent estimator for n-frequencies,” IEEE Trans-
actions on Automatic Control, vol. 47, no. 5, pp. 857–863, 2002.

[9] J. R. Trapero, H. Sira-Ramı́rez, and V. F. Batlle, “An algebraic
frequency estimator for a biased and noisy sinusoidal signal,”
Signal Processing, vol. 87, no. 6, pp. 1188–1201, 2007.

[10] D. M. Rovner and R. H. Cannon, “Experiments toward on-line
identification and control of a very flexible one-link manipula-
tor,”The International Journal of Robotics Research, vol. 6, no. 4,
pp. 3–19, 1987.

[11] T.-C. Yang, J. C. S. Yang, and P. Kudva, “Adaptive control of
a single-link flexible manipulator with unknown load,” IEE
Proceedings D: Control Theory and Applications, vol. 138, no. 2,
pp. 153–159, 1991.

[12] J.-S. Chen and C.-H. Menq, “Experiments on the payload-
adaptation of a flexible one-link manipulation with unknown
payload,” in Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 1614–1619, IEEE, Cincinnati,
Ohio, USA, May 1990.

[13] J. J. Feliu, V. Feliu, and C. Cerrada, “Load adaptive control of
single-link flexible arms based on a new modeling technique,”

IEEE Transactions on Robotics and Automation, vol. 15, no. 5,
pp. 793–804, 1999.
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