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Abstract

This paper proposes a fractional-order integral controller, FI, which is a simple, robust and well-performing tech-
nique for vibration control in smart structures with collocated sensors and actuators. This new methodology is com-
pared with the most relevant controllers for smart structures. We demonstrate that the proposed controller improves
the robustness of the closed-loop system to changes in the mass of the payload at the tip. The previous controllers
are robust in the sense of being insensitive to spillover and maintaining the closed-loop stability when changes occur
in the plant parameters. However, the phase margin of such closed-loop systems (and, therefore, their damping) may
change significantly as a result of these parameter variations. In this paper we explore the possibility of increasing
the phase margin robustness by using a fractional-order controller with a very simple structure. We have applied this
controller to an experimental smart structure, and simulations and experiments have shown the improvement attained
with this new technique in the removal of the vibration in the structure when the mass of the payload at the tip changes.

Keywords: fractional-order control; smart structures; active vibration damping; piezoelectric actuators; strain
gauges; robust control.

1. Introduction

There are many industrial and scientific applications
for which very lightweight mechanical structures are
needed. These are built from lightweight materials
with a small cross section. However, the performance
of these structures may be impaired because they are
prone to undamped vibrations and noises; see for exam-
ple Moheimani & Fleming (2005), Vepa (2010). Smart
structures, or structures with integrated sensors and ac-
tuators, are a technical solution which efficiently damps
mechanical vibrations in applications in which passive
techniques are either insufficient or impractical. Ex-
amples of these smart structures are nanopositioning
devices in scanning probe microscopes Fleming et al.
(2010), large telescopes Preumont et al. (2009), active
noise cancellation systems in vibroacoustics Tokhi &
Veres (2002) or precision machines Quintana & Ciurana
(2011).

The most common class of smart structures are
those with integrated piezoelectric actuators and sen-
sors. Their small volume, low weight and ease of struc-
tural integration, signify that piezoelectric sensors and
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actuators are very often used as transducers in smart
structures. It is well known that there are a number
of difficulties associated with the control of flexible
structures, the foremost being: variable resonance fre-
quencies; high system order - which implies the risk
of destabilizing systems with high-frequency dynamics
(spillover effect), and highly resonant dynamics Aphale
et al. (2007). Traditional control system design tech-
niques such as LQG, H2 and H∞ have been applied to
control these structures; see for example Banks et al.
(1996), Petersen & Pota (2003), Halim & Moheimani
(2002b), Ghosh et al. (2015), Halim & Moheimani
(2002a), Zhu et al. (2009). Unfortunately, the direct ap-
plication of such techniques has the tendency to produce
control systems of a high order and possibly poor stabil-
ity margins. Other techniques address Lyapunov based
techniques Preumont (2011) so as to guarantee stability,
or flatness based control Meurer et al. (2008) for trajec-
tory tracking that is robust to spillover effects.

A different approach is that of attempting to take ad-
vantage of the properties of collocated resonant me-
chanical systems in order to design robust control sys-
tems. The most useful characteristic of a collocated sys-
tem is the interlacing of poles and zeros up the jω axis
(IPZ property). This results in a phase response that
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lies continuously between 0◦ and 180◦. Some control
techniques have been developed that exploit this prop-
erty, yielding controllers with significantly more robust
properties while having simpler structures than those
mentioned previously. In particular, some of these con-
trollers make it possible to address the spillover problem
in a quite straightforward manner. We have therefore fo-
cused our research on this class of controllers. The most
relevant controllers for smart structures that use the IPZ
property are presented as follows.

Positive position feedback (PPF) is one of the control
techniques to use the IPZ property and to have found
a practical application. This technique was first intro-
duced in Goh & Caughey (1985). PPF is essentially a
second-order filter, which has proven to be an effective
vibration control method for flexible systems embedded
with smart materials Fanson & Caughey (1990), Chu &
Cui (2015). PPF controllers are stable in the presence of
uncontrolled in-bandwidth modes, and roll off quickly
at higher frequencies, thus reducing the risk of spillover.
A modification of this controller, denoted as the MPPF
controller, was proposed in Nima Mahmoodi & Ahma-
dian (2009) in order to improve the active damping.
An adaptive version of the MPPF was later proposed
in Nima Mahmoodi et al. (2010). Another control tech-
nique is Velocity feedback (VF). Bar-Kana et al. (1991)
proved that this technique could remove vibrations even
in the case of totally undamped structures and Omidi
et al. (2015) is a recent example of a practical appli-
cation. VF attempts to introduce damping in the sys-
tem. However, one drawback of the controller involved
is that its high-frequency gain must be attenuated so as
to avoid noise amplification and destabilization owing
to unmodeled or non-collocated dynamics. Two addi-
tional poles must therefore be added to the controller,
which often yield a relatively low performance and a
poor phase margin. Another approach is the resonant
control (RC), which guarantees closed-loop stability in
the presence of uncontrolled out-of-band modes of the
structure. This has been successfully applied to collo-
cated resonant systems Pota et al. (2002), but the high-
pass nature of the controller may impede its use in cer-
tain applications. An improvement to this technique is
the integral resonant control (IRC). This controller sig-
nificantly augments the damping provided by the RC
while maintaining the rolling off feature at higher fre-
quencies.

The previous controllers are robust in the sense of be-
ing insensitive to spillover and maintaining the closed-
loop stability when changes occur in the plant param-
eters. However, the phase margin of these closed-loop
systems (and, therefore, their damping) may change sig-

nificantly with these parameter variations. In this pa-
per, we explore the possibility of increasing the phase
margin robustness by using a fractional-order controller
with a very simple structure.

The previous work carried out on the control of flexi-
ble structures and robots showed the increase in robust-
ness that can be achieved by using fractional-order con-
trollers. For example, a fractional-order proportional-
derivative controller was proposed by Manabe Man-
abe (2002) for a flexible spacecraft attitude control;
controllers that include a proportional term plus two
fractional-order derivative terms of different orders
were designed by Valerio (2005) to control a planar
two degrees of freedom flexible robot; a fractional-
order proportional-derivative controller was also used
by Monje et al. (2007) for the control robust of payload
changes of a single link flexible robot, while an analog
device denoted as a ”fractor” was proposed by Bohan-
nan (2008) to control a flexible link using a fractional-
order proportional-integral controller. Despite the fact
that fractional-order controllers can improve the ro-
bustness of control systems, none of the previous con-
trollers guarantee robustness to spillover effects. We
should also mention several methods with which to
tune fractional-order controllers with simple structures
that already exist. Fractional-order PI controllers that
achieve nominal phase margin and gain crossover fre-
quency specifications or nominal gain margin and phase
crossover frequency specifications, together with lo-
cal robustness to plant gain changes were proposed by
Monje et al. (2004). Phase-lead and phase-lag com-
pensators that achieved nominal phase margin and gain
crossover frequency specifications, together with local
robustness to plant gain changes and low and high fre-
quency disturbance rejection were also developed by
Monje et al. (2008). Padula & Visioli (2012) proposed
tuning rules so as to optimize certain integral control
performance indexes applied to integral and unstable
processes. More recently, Tavazoei & Tavakoli-Kakhki
(2014) developed some conditions for the simultane-
ous achievement of desired phase and gain margins with
fractional-order compensators. We should state that all
these methods - and others that also exist in scientific
literature - are not as well suited to controlling systems
as that studied in this work, which consists of an infinite
dimensional system with very lowly damped vibration
modes.

This paper therefore presents the development of a
new control scheme for collocated smart structures,
which achieves higher robustness by using a fractional-
order controller. The robustness is achieved in the phase
margin and, equivalently, in the damping of the closed-
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loop system. In order to assess the advantages attained
by this controller, its performance is compared with the
performances achieved by three techniques that simul-
taneously share the following features: 1) they propose
controllers that are robust to spillover effects, 2) they
have robust stability to large parametric variations, 3)
the controllers yielded are linear and the methodology
used in their design is relatively simple, and 4) they are
highly recognized works in the smart material structures
scientific community, and are considered as reference
methods with which to control beam structures with
piezoelectrics. These three techniques are the afore-
mentioned IRC, PPF and MPPF control schemes.

This paper is organized as follows. Section 2 de-
scribes the experimental setup. Section 3 develops the
dynamic modeling and identification of the platform.
Section 4 presents the three well-known techniques with
which to control collocated smart structures, Section 5
develops our new fractional-order controller. Section 6
presents simulated and experimental results using the
three proposed controllers and Section 7 outlines some
conclusions.

2. Experimental system

The experimental smart structure consists of a flexi-
ble aluminium cantilevered beam which is clamped at
one end (the base of the beam) and is free at the other
end (the tip of the beam). We should mention that the
clamped end is attached to a DC motor that is not used
in the experiments shown in this paper. This DC motor
is braked. We therefore assume that the clamped end of
the beam is quiet. This structure is shown in Figure 1
and is composed of:

− The uniform flexible beam.

− Strain gauges placed at the base of the beam to
measure the torque at that point of the structure.

− Piezoelectric actuators placed at the base of the
beam (hereafter denoted as PEA), whose purpose
is to apply torque to the structure in order to re-
move existing mechanical vibrations.

− A Polytec LDV (model OFV-5000) with a sensor
head of model ”OFV-534 Compact Sensor Head”
which measures the displacement and velocity of
the free end of the beam (laser vibrometer).

The whole system is regarded as a Single-input
Single-output system (SISO). The input (control signal)
is the voltage applied to the piezoelectric actuators and

the output (controlled signal) is the voltage measured
by the gauges located at the base of the beam. More-
over, since we are concerned with the precision and vi-
bration cancellation achieved at the tip of the structure,
the Polytec sensor provides measurements of this point.
These last measurements are not fed back for control
purposes, and are used solely to verify the performance
of the controlled system. The features of the beam are
shown in Table 1.

Table 1: Parameters of the flexible arm

Stiffness (N ·m2) EI 2.40
Width (m) h 0.05
thickness (m) b 0.002
Length (m) L 1.26
Linear density (kg/m) ρ 0.268
Mass of the beam (Kg) Mb 0.338
Payload mass (Kg) Mp [0.0 , 0.3]
Payload rotational
inertia (Kg ·m2) Jp

[
0.0 , 4.7·10−5

]
The data obtained from the experimental platform

was computed in real time using a PC equipped with
LabView and an acquisition card of the PCI-6221 type.

Figure 1: Picture of the experimental platform.

3. Modelling and identification of the platform

3.1. Dynamic model

The linearized equations of motion can be derived
from energy equations and the Hamilton principle (note
that the movement is constrained to the horizontal plane
and the gravity effects are negligible). For the system
represented in Figure 2, these equations are:

∂ 2

∂x2

(
EI

∂ 2w(x, t)
∂x2

)
+ρ

∂ 2w(x, t)
∂ t2 = qy(x, t) (1)
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qy(x, t) =−
∂

∂x

(
∂τp

∂x

)
(2)

where ρ is the link density per unit length , w(x, t) is
the elastic displacement (at a point x in a time t), EI is
the link flexural rigidity, and τp is the torque induced
by the piezoelectric actuator and may be assumed to
be a constant throughout the extent of the patch com-
prised between the coordinates x1 and x2. This moment
is modeled as:

τp =−µρ(H(x− x1)−H(x− x2))Vp(t) (3)

where H(x− xi) is the Heaviside step function starting
at the coordinate xi, µ is the moment of the patch per
unit linear density of the beam and per unit of applied
voltage for the actuator patch, and Vp(t) is the voltage
applied to the piezoelectric actuator.

Payload

X

Y w(x, t)

Piezoelectric
actuator

Strain
gauges

E, I, ρ

Figure 2: Scheme of the flexible beam.

The geometrical and natural border conditions are:

w(t,0) = 0 (4)

∂w
∂x

(t,0) = 0 (5)

EI
∂ 2w
∂x2 (t,L) =−Jp

∂

∂x

(
∂ 2w(t,L)

∂ t2

)
(6)

EI
∂ 3w
∂x3 (t,L) = Mp

∂ 2w(t,L)
∂ t2 (7)

where the parameters of these equations are the payload
mass Mp, link length L, and rotational inertia of the pay-
load Jp

The dynamical model of the whole system can be ob-
tained by solving the above boundary value problem.
This was done in Pota & Alberts (1995), in which the
exact transfer functions for a flexible slewing link piezo-
electric laminate were presented. The resulting tran-
scendental forms of transfer functions represented six

input/output pair combinations for a slewing flexible
beam with a DC motor and a piezoelectric actuator as
inputs, and the motor angle, the bending moment at the
location of the piezoelectric actuator and the tip posi-
tion as outputs (sensed variables). In the special case
in which the hinged end is clamped, these results yield
the desired transfer function between the piezoelectric
actuator and the strain gauge measurement of the bend-
ing moment at the base of our one-end-clamped link. In
Pota & Alberts (1995), the resulting transfers functions
were reduced to a rational form using Maclaurin series
expansions. This process yields an infinite number of
vibration modes.

In our system, since the piezoelectric actuator and the
strain gauge sensor are placed in the same position, they
constitute a collocated actuator-sensor pair. It is possi-
ble to show (e.g. Aphale et al. (2007), Preumont (2011))
that, in this special case, the rational transfer function
which relates the input to the system (i.e., the voltage
applied to the PEA) and the output of the system (i.e.,
the strain measured at the base of the beam, Vg(t), given
in volts) resulting from the above Maclaurin series ex-
pansion has the form

Vg(s)
Vp(s)

= G(s) =
N

∑
i=1

αi

s2 +2ξiωis+ω2
i
+D, (8)

where D is a real number, N = ∞, and it is verified that
parameters αi, ωi and ξi -which are respectively the
gains, the natural frequencies and the damping coeffi-
cients associated with each vibration mode of the beam-
are equal to or greater than zero. This infinite dimen-
sional transfer function is often approximated by means
of a modal discretization, in which expression (8) still
holds but N is now a finite number. Note that this trans-
fer function has 2N poles and 2N zeros.

Another property of collocated systems is the inter-
lacing of poles and zeros up the jω axis, e.g. Aphale
et al. (2007). Let us denote the N pairs of complex con-
jugate poles of (8) as pi and p∗i , 1 ≤ i ≤ N, and the N
pairs of complex conjugate zeros of this model as zi and
z∗i , 1 ≤ i ≤ N. This interlacing property therefore sig-
nifies that ℑ(pi) < ℑ(zi) < ℑ(pi+1) for 1 ≤ i < N and
ℑ(pN) < ℑ(zN). This results in a phase response that
lies continuously between 0◦ and 180◦.

We should state that the controller developed in Sec-
tion 5 and the three controllers proposed for comparison
are robust to spillover. They are therefore derived by
taking into account the transfer function (8) with N =∞,
and the properties of collocated systems are used.

However, the dynamics of our experimental setup is
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approximated by a truncated model that includes only
four vibration modes corresponding to the four low-
est vibration frequencies. This truncated model will
be used to tune the parameters of the controllers in or-
der to attain transient specifications (although it should
be noted that spillover robustness will be guaranteed
in these controllers), and to run simulations in order to
show approximate though sufficiently accurate time re-
sponses of the closed-loop systems.

3.2. Identification
The values of the parameters of model (8) with N = 4

are obtained from an experimental identification pro-
cess which was performed on the experimental plat-
form for three different cases: a) without a payload,
b) with a payload at the tip of 0.15 kg (Jp = 0.2343 ·
10−4 Kg ·m2) and c) with a payload at the tip of 0.3
kg (Jp = 0.4686 · 10−4 Kg ·m2). Three transfer func-
tions, Gi(s), 1 ≤ i ≤ 3, were therefore estimated us-
ing the data recorded in the experiments in which the
beam was moved with any of these three payloads at-
tached to its tip. Of the different methods with which to
carry out this identification process that can be found in
scientific literature, the method described in Piersol &
Bendat (1993) has been employed in this paper because
it is easy to use and is well suited to systems with lit-
tle damping and very decoupled vibration modes. This
identification process was performed using a Chirp sig-
nal as input (Vp), which stimulated the different vibra-
tion modes. This signal has an amplitude of 0.02 volts
and a range of frequencies from 0.1 Hz to 50 Hz in 100
s. Model (8) was then fitted to the frequency responses
experimentally obtained for all the payloads. This pro-
cess yielded the values of the parameters of the model
shown in Table 2 for the three payloads. In this pro-
cess, parameter D was assumed to be the same in the
three transfer functions Gi(s). The value identified was
D = 0.038.

The magnitude of the frequency response between Vp
and Vg obtained in experimentation in the case of the
beam without a payload at the tip and the magnitude of
the frequency response of the approximated model are
shown in the upper half of Figure 3. The experimental
phase of this frequency response and that of the approx-
imated model are shown in the lower half of Figure 3.

These figures show that the frequency response of
the fitted model with four vibration modes describes the
experimental frequency response very well, and equa-
tion (8) therefore accurately captures the dynamics of
our mechanical structure. A small difference between
the model and the experimental phases, that linearly in-
creases with frequency, can be observed in the lower
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Figure 3: Identification of the platform.

half of Figure 3. This is caused by a delay of 2 ms that
is present in the dynamics of the system. The effect of
this delay is negligible in the range of frequencies con-
sidered in this study and is not therefore taken into ac-
count. Similar results were obtained in the cases of the
beam with payloads of 0.15 kg and 0.3 kg.

The Nyquist plot of transfer function (8) with the
parameters shown in Table 2 yields drawings like that
shown in Figure 4, whose phase changes between 0◦

and −180◦ for values 0 ≤ ω < ∞. The phase margins
achieved are: 41.8◦ for a payload of 0 kg, 39.5◦ for a
payload of 0.15 kg and 35.3◦ for a payload of 0.3 kg.

ω = 0

−1

φ ωc

Figure 4: Nyquist of G(s).

5



Mp = 0.0kg (G1(s)) Mp = 0.15kg (G2(s)) Mp = 0.3kg (G3(s))

i αi ξi ωi αi ξi ωi αi ξi ωi

1 0.24 0.002 6.66 0.068 0.0017 3.96 0.036 0.0012 2.89
2 8.8 0.0016 41.58 5.5 0.0015 32.87 4.5 0.0013 30.74
3 60 0.0018 116.36 55 0.0043 101.16 40 0.002 98.71
4 232 0.0018 228.1 160 0.0018 206.1 150 0.0018 202.9

Table 2: Identification

4. Three well-known controllers

This section introduces three control schemes with
which to cancel mechanical vibrations in smart struc-
tures: the IRC, PPF and MPPF controllers. Of all the
methods that can be found in scientific literature, these
three have been chosen because they have the following
properties: 1) they yield simple controllers, 2) they ef-
ficiently remove the vibrations in mechanical structures
which have collocated sensors and actuators, 3) they are
robust to spillover and 4) their stability is robust to large
variations in the plant parameters. Properties 3) and 4)
are the main issues in this paper, and these methods are
the best suited to achieving them.

The main objective of the previous control techniques
is to damp the low-frequency vibration modes of me-
chanical systems that exhibit the IPZ property. In this
section, a controller is designed for each of these con-
trol schemes. The performances of these controllers
will later be compared with the performance of the
fractional-order controller proposed in this paper.

Since no very definite criteria with which to tune the
controllers gains are provided in these methods, a clear
design criterion, common to all the controllers studied
here, is proposed in this paper. This will allow us to
carry out a fair comparison of the controllers’ perfor-
mances.

Since we have identified four vibration modes in the
system transfer function (an eighth order model), and
the first vibration mode is that which yields the vibra-
tions of greatest amplitude, the proposed design crite-
rion is to damp the first (lowest) vibration mode as much
as possible. Note that, since we are considering control
schemes that are robust to spillover, second, third and
fourth vibration modes will not unstabilize the closed-
loop control system. Moreover, these control systems
introduce some damping in modes that are higher than
the first one (although they cannot guarantee a minimum
damping in these high order modes).

Second, third and fourth vibration modes (and even
higher modes that have not been detected) will not

therefore be taken into account in the design of the con-
trollers (only in the IRC in order to attain the spillover
rejection property). These modes will be taken into ac-
count only to assess that there are no spillover effects.
All the following controllers are designed for a payload
of 0 kg at the end of the beam, which is considered to
be the nominal plant.

4.1. Integral resonant control (IRC)

The main objective of this control system is to damp
the low-frequency modes of a collocated resonant me-
chanical system with interlaced poles and zeros in the
imaginary axis. The schematic diagram of this control
technique is shown in Figure 5, where P is a disturbance
in the system.

Flexible

Df

C(s)

beam
Vg

Vp

P

Figure 5: Schematic diagram of IRC.

The design of the controller C(s) and the gain D f in
Figure 5 is explained in Aphale et al. (2007). We have
applied the IRC design procedure in the following steps:

1. Determine the required feed-through term D f that
adds a pair of complex nearly imaginary zeros at a
frequency lower than the first resonant mode of the
system. This step produces the phase inversion of
the original transfer function in such a way that the
phase of the modified transfer function again lies
between 0◦ and−180◦, but changes in the opposite
direction. In order to achieve this simultaneously
for the three tip payloads (robust design), D f is cal-
culated such that the previous effect is obtained in
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the three Gi(s), 1 ≤ i ≤ 3). The maximum damp-
ing is achieved with a value of D f = −0.0574,
which is on the border of the range of admissible
values. A value of D f =−0.0588 is therefore cho-
sen, which maintains a security margin of 2.5% of
the previous value in order to guarantee the closed-
loop stability of the system in the case of small in-
accuracies in the model identified.

2. Design the controller of the form C(s) = −γ·s
(s+q)2 ,

tuning q to be approximately a decade lower than
the frequency of the first vibration mode (q '
ω1/10) and selecting a suitable gain γ which
damps the first mode as much as possible. The
controller designed is:

C(s) =
−873.4s

(s+2.151)2 . (9)

4.2. Positive position feedback (PPF)
The main objective of this control system is to damp

the low-frequency modes of a collocated resonant me-
chanical system with the IPZ property. The schematic
diagram of this technique is shown in Figure 6. The
use of a PPF controller has the following advantages:
a) it provides quick damping for a particular mode if
the natural frequencies of the system are well known,
b) it is insensitive to spillover, c) PPF is easy to im-
plement. These advantages signify that PPF controllers
have been widely applied to flexible systems with col-
located actuator-sensor pairs in order to achieve active
damping.

2

2 22
ci f

f f

K
s s


 


 

Figure 6: Schematic diagram of PPF.

Several procedures with which to tune the parame-
ters of this controller have been proposed. For example,
Friswell & Inman (1999) stated that a PPF controller
can be formulated as an output feedback controller and
control design algorithms for output feedback systems
can therefore be used to design PPF controllers; and
McEver & Leo (2001) proposed an autonomous tuning
by using an optimal feedback compensator combined
with an on-line pole-zero identification.

The parameters of the PPF controller used in our
smart structure were tuned in such a way that the damp-
ing of the first vibration mode was maximized. The
same design approach of the IRC was therefore used in
this controller. This criterion was achieved by placing
the closed-loop poles corresponding to the first vibra-
tion mode as far as possible from the imaginary axis.

The controller designed using the aforementioned
procedure has the following parameters:

PPF(s) =
54774.72

s2 +33.1s+3247.64
(10)

4.3. Modified Positive position feedback (MPPF)

This control technique is based on the conventional
PPF and was first proposed in Nima Mahmoodi & Ah-
madian (2009). The MPPF controller is a combination
of the second order compensator used in the PPF and
a first order compensator that increases the damping of
the system. The two compensators are connected in par-
allel, as shown in Figure 7, and their gains, g and h, are
tuned to adjust the stiffness and damping of the closed
loop system. Moreover, the first order compensator was
added with the aim of lowering the steady-state error
produced by the application of persistent disturbances
P(t) Nima Mahmoodi et al. (2010).

2

2 22
f

f f f

g
s s


  


 

f

f

h
s






Figure 7: Schematic diagram of MPPF.

In order to tune this controller, the frequency and the
damping of the filters took the same value as in the case
of the PPF controller, and the gains of the two filters
where chosen by means of an optimization procedure
so that the the damping of the first vibration mode was
maximized. It will be noted that the same design ap-
proach as that of the IRC and PPF controllers has been
utilized.

The controller designed using the aforementioned
procedure has the following parameters:
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MPPF1(s) = 43820
s2+33.1s+3247.64 (11)

MPPF2(s) = 171
s+56.99 (12)

5. New fractional-order controller

The frequency specifications obtained with the pre-
vious controllers are shown in Table 3 for the differ-
ent payloads. In particular, this table shows that: 1) the
phase margin greatly changes according to the payload
in the IRC, becoming smaller (its absolute value) as the
payload mass increases - in fact, it becomes very small
for a payload of 0.3 kg - and 2) the phase margins of the
PPF and the MPPF are always very small. In this sec-
tion, our objective is therefore to create a new method-
ology in order to improve the robustness of the closed-
loop system to changes in the mass of the payload at the
tip.

5.1. Motivation for using a fractional-order integral
controller

The basic idea of our methodology is to approxi-
mately rotate the Nyquist plot shown in Figure 4 in the
direction required in order to increase the phase margin,
which implies increasing the damping and, indirectly,
reducing the settling time. We are also interested in a
controller having a proper transfer function that, more-
over, does not have a pure derivative action in its nu-
merator. This is necessary because the measurements of
strain gauges are noisy (a small level of noise remains
even after proper filtering and amplification) and, if they
are fedback, the noise may be amplified, producing ex-
cessive control signals that could saturate the piezoelec-
tric actuator, and thus deteriorating the control perfor-
mance.

Approximate rotations of the part of the Nyquist plot
which is the mapping of the path traveling up the jω
axis from 0 to j∞ can be achieved by using controllers
of the form

CCPE(s) = Kα sα (13)

This transfer function has a frequency response with a
constant phase in all the range of 0 ≤ ω < ∞, and it is
known as the constant phase element (hereafter denoted
as CPE, Cole (1933)). We should mention that other
transfer functions besides (13) can be used to implement
CPEs , see e.g., Feliu & Feliu (1997). The proper trans-
fer function condition is achieved by making α < 0 in
(13).

In order to improve the phase margin of the Nyquist
plot shown in Figure 4, it would be necessary to pro-
duce a counterclockwise rotation. This would imply us-
ing a controller (13) with α > 0, i.e., a fractional-order
derivative action, which is not permitted owing to the
reasons stated previously.

We therefore propose modifying the open-loop trans-
fer function in the same way as occurs in the IRC tech-
nique (see Figure 5), i.e., first add a negative constant
D f to the open-loop transfer function, and second mul-
tiply the result by −1.

Once the transfer function has been modified, a CPE
controller is designed. The rationale behind this proce-
dure is the following. Let us define the modified transfer
function Gu(s) =−(G(s)+D f ). Its Nyquist diagram is
shown in Figure 8. In this diagram, the phase changes
between 0◦ and +180◦ for the values 0 ≤ ω < ∞. If
a controller C′(s) that has a constant phase θ in all
0 ≤ ω < ∞ were used, the phase of the Nyquist plot of
Gu(s) ·C′(s) would change between θ ◦ and θ ◦+ 180◦

for values 0≤ ω < ∞.

ω = 0
−1

φ
ωc

Figure 8: Nyquist diagram of Gu(s).

Moreover, Figure 8 suggests that, if θ were a negative
value, the part of the Nyquist diagram that lies in the
left half-plane would move away from the point (−1,0).
What is more, the part of the diagram that lies in the
right half-plane would cross the positive real abscisa,
but this is irrelevant for relative stability purposes.

This negative constant phase controller (negative
CPE controller) can be implemented by means of the
transfer function:

C′(s) =
Kα

sα
(14)

where Kα > 0 and the fractional order α is comprised in
the interval∈ [0,2] in order to achieve the stability of the
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IRC IRC IRC PPF PPF PPF MPPF MPPF MPPF FI FI FI
(0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg)

φM(◦) -45.8 -22.26 -6.8 -2 -1.5 -1.2 -2.67 -1.84 -1.48 -113.4 -113.6 -113.9
ωc(rad/s) 5.18 3.15 2.37 3.25 2.42 2.05 3.98 2.73 2.18 4.94 2.88 2.194

Mg ∞ ∞ ∞ 1.03 1.05 1.08 1.06 1.07 1.11 ∞ ∞ ∞

ωg(rad/s) − − − 0 0 0 0 0 0 − − −

Table 3: Simulation data

closed-loop system. This is denoted as the fractional-
order integral controller (FI controller), and it produces
a clockwise rotation of −θ = 90α◦ in the Nyquist di-
agram of Gu(s) (of course, it also produces changes in
the magnitudes of the diagram). Figure 9, which rep-
resents the Nyquist plot of L(s) = Gu(s) ·C′(s) if con-
troller (14) were used, shows this effect. Moreover, this
fractional-order integral action located in the feedback
branch filters the high frequency noises produced by the
strain sensor. Note that our control scheme coincides in
practice with the scheme of the IRC shown in Figure 5,
but is implemented with a C(s) =−C′(s).

−1

φ90 α

ω = 0

Figure 9: Nyquist diagram of L(s).

Controller (14) therefore subtracts a constant phase
equal to 90α◦ from the Nyquist diagram in the entire
frequency range of 0≤ω ≤∞, thus increasing the phase
margin of the system (its absolute value).

5.2. The principal result

The properties of the aforementioned proposed con-
troller are demonstrated in the following theorem.

Theorem. Consider a collocated system that has an
infinite dimensional transfer function (8) where N = ∞.
Assume that the parameters (D,αi,ξi,ωi, 1≤ i < ∞) of
this transfer function G(s) may undergo large variations
(but always αi,ξi,ωi ≥ 0). Denote as Ω the set of all
possible infinite dimensional transfer functions allowed
by the parametric variations of G(s) (G ∈ Ω). Assume
the IRC control scheme shown in Figure 5, in which the
controller is of the form

C(s) =−Kα

sα
(15)

where Kα > 0 and 0 < α ≤ 1, and the feed-through term
verifies the condition

D f <−maxG∈ΩG(0) (16)

This control system verifies that for any G ∈ Ω: 1) the
closed-loop system is stable, 2) its phase margin is φM ≤
−90 ·α and 3) the gain margin is ∞.

Proof. The characteristic equation of this control sys-
tem is

1+
−Kα

sα

(
∞

∑
i=1

αi

s2 +2ξiωis+ω2
i
+D+D f

)
︸                                                  ︷︷                                                  ︸

L(s)

= 0 (17)

Moreover, we have that

G(0) =
∞

∑
i=1

αi

ω2
i
+D (18)

The beam transfer function can therefore be expressed
as

G(s) = G(0)− s
∞

∑
i=1

αi

ω2
i

s+2ξiωi

s2 +2ξiωis+ω2
i

(19)

and the open-loop frequency response L(ω) is

L(ω) =
Kα

( jω)α

(
−G(0)−D f +Ψ(ω)

)
(20)

where

Ψ(ω) =
∞

∑
i=1

αi

ω2
i

−ω2 + j2ξiωiω

( jω)2 +2ξiωi( jω)+ω2
i

(21)

Upon operating this expression, we obtain that
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ℑ(Ψ(ω)) =
∞

∑
i=1

2αiξiωiω

(ω2
i −ω2)2 +(2ξiωiω)2 > 0 (22)

which is clearly verified for values 0 ≤ ω < ∞. This
implies that the phase of Ψ(ω) is comprised between 0◦

and 180◦ for this frequency range, and this is therefore
also so for the phase of −G(0)−D f + Ψ(ω). Since
( jω)α = ωα e j π

2 α , we obtain that

−90α
◦ ≤ ∠L(ω)≤ 90(2−α)◦, 0 < ω < ∞, (23)

which is verified for any G ∈Ω.
Bearing in mind that limω→0 Kα Ψ(ω)/( jω)α <

∞ because α ≤ 1, the mapping through L(s) of
the Nyquist detour around the origin is given by
Kα

(
−G(0)−D f

)
/( jω)α . If D f is chosen such that

(16) is verified, then −G(0)−D f > 0 for any G ∈ Ω

and the mapping of the detour εe jθ , where ε→ 0 and θ

varying from−π/2 to π/2, through L(s) is an arc of cir-
cunference whose angle varies from απ/2 to −απ/2.
The mapping of this detour around the origin therefore
always remains in the right half of the complex plane
and the encirclement of the point (−1,0) is therefore
prevented. The infinite dimensional closed-loop system
is consequently stable and the Assertion 1 of the the-
orem is proven. Moreover, inequality (23) implies the
verification of Assertion 2. Finally, this inequality also
proves that the real negative semiaxis is never crossed
by the Nyquist plot (please recall that the mapping of the
detour of the Nyquist contour around the origin always
remains in the right half-plane) and the gain margin is
therefore infinite. Assertion 3 is therefore also proven.
�

Remark 1: on the robustness of the phase margin.
This theorem signifies that this controller, besides in-
creasing the phase margin of the system (its absolute
value) for the nominal payload case (0 kg), also sig-
nificantly increases the robustness of the closed-loop
system. Owing to the aforementioned IPZ property
of G(s), the proposed control scheme makes the phase
margin of the controlled system φ ≤−90α◦ for any pos-
sible payload at the tip of the beam (for any G∈Ω), thus
always preserving a phase margin of at least −90α◦.
It is easy to check that the lower the damping coeffi-
cients of the vibration modes of G(s) are, the closer
to −90α◦ the phase margin will be in all the possible
plants, and the lower the variations of the phase mar-
gin of the system to changes in the plants will be. The
only control system that achieves stability robustness

and moreover phase margin robustness is the fractional-
order controller proposed here. Other previous con-
trollers - such as the IRC, PPF and MPPF - only achieve
stability robustness.

Remark 2: on the spillover robustness. The theorem
has been proven for infinite dimensional transfer func-
tions. The spillover effects are therefore avoided by the
proposed controller. Note that the results of the theorem
are also valid in the case of a finite number of vibration
modes (N < ∞).

Remark 3. In the case that 1 < α < 2, it is possible
to demonstrate in a similar way to that which occurred
in the theorem that: 1) the closed-loop system is stable
and 2) the gain margin is ∞. However, now the phase
margin is not necessarily φM ≤ −90 ·α since the part
of the Nyquist plot corresponding to the mapping of the
path traveling up the jω axis from 0 to j∞ may invade
the third quadrant of the complex plane, thus yielding
a positive phase margin. In this case, it is guaranteed
that this positive phase margin φ ′M is bounded by φ ′M ≥
90(2−α)◦. Robust stability and spillover robustness
are consequently guaranteed if 1 < α < 2, for any G ∈
Ω, and the positive phase margin φ ′M is guaranteed to be
greater than 90(2−α)◦ for any G ∈Ω.

5.3. Controller design procedure
The design methodology for this new technique is ex-

plained as follows:

1. Obtain the range of values of the feed-through term
which produces the phase inversion of the original
transfer function and maintains the IPZ property
for the m transfer functions, as occurred with the
IRC technique. This is given by

D f <=−max1≤i≤mGi(0) (24)

The same value of D f = −0.0588 that was ob-
tained in the IRC controller is used here.

2. Choose the values of Kα and α which provide the
maximum damping in the first vibration mode of
the beam.

The final controller is, therefore:

C(s) =−1392.72
s1.25 (25)

which implies that the phase margin is always lower
than −90α =−112.5◦. Note that α > 1 which, accord-
ing to the Remark 3, may imply that a positive phase
margin φ ′M may appear that lowers the relative stabil-
ity of the system. During the controller design process,
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we have checked that, for the four vibration modes con-
sidered in G1(s) (the nominal plant), the phase of the
Nyquist plot corresponding to the mapping of the path
traveling up the jω axis from 0 to j∞ is always greater
than −90(2−α)◦. The phase margin is therefore neg-
ative and smaller than −90α in the case of the nominal
plant. Figure 10 shows a sketch of the Nyquist plot of
the open-loop transfer function L(s) corresponding to
the application of the FI controller to the Gi(s) plants
(the four vibration modes are considered). The points
of the Nyquist plot that cross the unity circumference
(which define the phase margin) are labeled as ”Pn” in
this figure, and the values of the phases at these points
are shown in Table 4. This table shows that the Remark
3 is verified: all the phases in all the Gi(s) are bigger
than −90(2−α)◦ =−112.5◦.

-1

P1

P3
P5

P9P7

P2
P4

P6

P8

Figure 10: Nyquist of L(s) .

6. Verification of the controllers’ performance

In this section, numerical simulations and experimen-
tal results are shown in order to prove the effectiveness
and the advantages of the proposed control to changes
in the payload at the tip. The controllers used here
were designed in the previous sections. We should state
that these three controllers were designed for the case
in which the beam has no payload at the tip, and with
the same specifications: minimize the damping coeffi-
cients of the first vibration mode. In this section, we
shall change the payload at the tip and keep the designed
controllers in order to study the robustness of the con-
trol techniques considered to tip payload variations. We
shall also check the spillover insensitivity of these con-
trollers.

6.1. Implementation of the fractional-order controller
We first outline the implementation of the fractional-

order controller (25), which is rewritten as:

C(s) =−1392.72
s1.25 =−1392.72

s2 s0.75 (26)

The fractional term of expression (26) is implemented
using the following expression:

yc(t) = T−α
s

N−1

∑
j=0

(−1) j
(−α

j

)
f (t− jTs); (27)

where f is the input to the block s0.75, yc(t) is its out-
put, N is the number of terms involved in this discrete
convolution, α = 0.75, Ts is the sampling period and
the combinatorial has been generalized in the following
respect: (

β

l

)
=

β (β +1)...(β − l +1)
l!

. (28)

Expression (27) has been obtained using the
Grünwald-Letnikov (GL) definition of the discretized
fractional operator Vinagre et al. (2000). Moreover, we
have applied the short memory approximation described
in Podlubny (1998) with N=500.

Figure 11 shows a good agreement between the fre-
quency responses of s0.75 and its discretized implemen-
tation (27) with a sampling period of Ts=0.001s, as re-
gards magnitude and phase (maximum error of 4◦) in
the range of angular frequencies ∈ [2, 250], which in-
cludes all the vibration modes (see Table 2) and the
gain crossover frequencies (see Table 3) of the differ-
ent cases.
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Figure 11: Fractional-order aproximation.
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1st mode 2nd mode 3rd mode 4th mode
Mass P1 P2 P3 P4 P5 P6 P7 P8 P9
Mass -112.20° 66.61° -112.30° 64.13° -110.30° 53.34° -100.80° 34.81° -85.45°
Mass -112.00° 66.41° -112.41° 64.95° -111.05° 43.31° -93.22° 32.82° -82.28°
Mass -111.80° 66.15° -112.46° 65.20° -111.41° 53.28° -101.53° 29.51° -81.86°

Table 4: Phase of the Nyquist plot when it crosses the unity circumference

The Pc utilized is a Dell Vostro 410 Desktop Com-
puter with an Intel(R) Core(TM) 2 Quad Q6600 Pro-
cessor running at 2.4 GHz and equipped with 3GB of
DDR2 RAM memory running under Windows XP 32
bits. In order to sample the measurements from the sen-
sors and to produce the analog signals utilized to drive
the piezoelectric amplifiers, the PC is equipped with a
PCI-6221 data acquisition card from National Instru-
ments. Since the operating system is not designed for
real-time applications, the minimum achievable sam-
pling time (even without performing any computation)
is 1ms. It is important to note that the computational
burden of the different control algorithms did not in-
crease the sampling time, signifying that they are per-
formed in a small fraction of the sampling time.

Since the sampling time achieved on the experimental
platform was constant and the combination of the G1-
Algorithm and the Short Memory Principle were uti-
lized to compute the Grünwald-Letnikov definition of
the discretized fractional operator, the implementation
of the fractional operator becomes a convolution of a
set of precomputed coefficients stored in a fixed array
of numeric values and a set of the last N inputs to the
fractional operator stored in a circular array (where N
are the number of elements utilized in the approxima-
tion of the Short Memory Principle). This signifies that
the overall complexity as regards computing this con-
trol scheme is constant in each iteration and implies N
additions and N multiplications.

The remaining control algorithms have been im-
plemented by approximating their continuous transfer
functions using the Runge-Kutta-4 method, which has
a constant complexity in each iteration of 39 additions
and 39 multiplications for the IRC controller, 38 addi-
tions and 38 multiplications for the PPF controller and,
in the case of the MPPF controller, 58 additions and 57
multiplications.

6.2. Simulation results

Numerical simulations of the closed-loop control of
the flexible beam are carried out. These use MAT-
LAB/SIMULINK and the four different control tech-
niques proposed are compared for the three different

cases: a) without a payload, b) with a payload of 0.15 kg
at the tip and c) with a payload of 0.3 kg at the tip. The
parameters of the models which are used in the simula-
tions are listed in Table 2. The system is excited using
a sinusoidal perturbation applied to the voltage of the
piezoelectric actuators. During both simulation and ex-
perimentation this signal is therefore defined as:

Vp(t) = 3.2sin(ω1t)+0.4sin(ω2t) i f t < tc.

Note that this signal is the output of the controller,
multiplied or not multiplied by −1, depending on the
technique (see Figures 5 and 6) when t ≥ tc. ω1 and ω2
are the natural frequencies associated with the first and
the second vibration mode of the link. The choice of
this perturbation was made with the intention of excit-
ing the two first modes of the link. Vp(t) will therefore
be different depending on the mass at the tip of the link
(ω1 and ω2 change). Moreover, tc is the commutation
time of the excitation and was chosen such that the sig-
nal Vp(t) is zero in this instant in order not to have dis-
continuities in the input signal when the commutation is
carried out. We chose to commute Vp(t) after three com-
plete cycles of this signal in order to excite the system
during a significant period of time. The control schemes
are disabled during the period 0 < t ≤ tc because during
this period of time the system is been excited in order to
produce a similar perturbation for each control scheme.
In this section, the results are shown after exciting the
system such that the control schemes are enabled from
the beginning.

6.2.1. Case a)
Figure 12 shows the voltages measured by the gauges

located at the base of the beam. This voltage is pro-
portional to the torque at the base of the beam. This
figure plots the responses of the different controllers de-
signed in previous sections and the response when no
control is applied (open-loop). It will be observed that
the four techniques remove the vibrations of the beam
effectively. However, it is important to stress that the
fractional-order controller removes the vibration much
faster than the other techniques.
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Figure 12: Response in the case of the beam without a payload.

Figure 13 shows the fast fourier transform (FFT) of
the previous signals in order to illustrate the damping
achieved in the first two modes by the four control tech-
niques. It again showsn that the fractional-order con-
troller has the highest efficiency.
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Figure 13: FFT in the case of the beam without a payload.

6.2.2. Case b)
Figure 14 also shows the voltage measured by the

gauges for the four different techniques but now using
the beam with a payload of 0.15 kg at the tip. The re-
sponse of the fractional-order controller is now slightly
slower than in the case of the beam without a payload at
the tip. However, the responses of the other three tech-
niques get considerably worse than in the case without
a payload. It is thus possible to state that the fractional-
order controller performs much better than the others.

Figure 15 shows the FFT of the signals of the previ-
ous figure, again showing the better vibration atenuation
provided by the fractional-order controller.

6.2.3. Case c)
Figure 16 also shows the voltage measured by the

gauges for the three different techniques but now using
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Figure 14: Response in the case of the beam with 0.15 kg.
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Figure 15: FFT in the case of the beam with 0.15 kg.

the beam with a payload of 0.3 kg at the tip. In this case,
the responses of the beam get significantly worse using
the three techniques. This is owing to the fact that the
mass of the tip payload is excessive, since it is similar to
the mass of the beam. However, even in this case, it will
be observed that the response using the fractional-order
controller is much better than the response produced by
the other techniques.
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Figure 16: Response in the case of the beam with 0.3 kg.

Figure 17 depicts the FFT of the signals of the above
figure, again showing the better attenuation effective-
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ness of the fractional-order controller.
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Figure 17: FFT in the case of the beam with 0.3 kg.

6.3. Experimental results
Experiments were carried out with the different con-

trollers. The piezoelectric actuators and the strain
gauges placed at the base were used in order to imple-
ment the control systems. Moreover, a Polytec LDV
laser sensor was used as an external sensor in order to
measure the displacement of the tip of the beam and to
assess the effectiveness of the different control schemes
in removing the vibrations. The controllers previously
designed for the case of zero payload, which were used
in the simulations, have also been used here.

6.3.1. Case a)
Figure 18 shows the displacements of the tip of the

beam measured by the Polytec LDV in the cases of us-
ing the three proposed controllers with the beam without
a payload at the tip. It will be observed that the IRC and
the fractional-order controllers remove the vibration of
the beam effectively. It will also be observed that the
fractional-order controller removes the vibration much
faster than the IRC controller. However, note that the
PPF controller reduces the vibration with regard to the
system without control, but a residual vibration remains
which is caused by the saturation that this control sys-
tem produces in the piezoelectric actuator. The satura-
tion voltage of the PEA is ±10V . Figure 19 shows the
voltages of the piezoelectric actuators for the four tech-
niques, illustrating the saturation produced by the PPF.

6.3.2. Case b)
Figure 20 shows the displacement of the tip of the

beam in the case of a payload of 0.15 kg at the tip. The
responses of the IRC and the fractional-order controllers
show that these controllers damp the vibration, but sig-
nificantly more slowly than in case a). The fractional-
order controller again removes the vibrations faster than
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Figure 18: Displacement in the case of the beam without a payload.
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Figure 19: Voltage applied to the piezoelectric actuators.

the IRC controller. The PPF controller produces a very
small damping of the vibration because it again satu-
rates the PEA.
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Figure 20: Displacement in the case of the beam with 0.15 kg.

6.3.3. Case c)
Figure 21 shows the displacement of the tip of the

beam in the case of a payload of 0.3 kg at the tip.
The responses of the IRC and the fractional-order con-
trollers show that these controllers damp the vibrations,
but more slowly than in case b). The fractional-order
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controller again removes the vibrations faster than the
IRC controller.
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Figure 21: Displacement in the case of the beam with 0.3 kg.

6.4. Discussion

The results obtained in the two previous subsections
are compared and discussed as follows.

1. The phase margins of the PPF and MPPF are very
small. The phase margin of the IRC is acceptable
for the nominal case (no payload), although it be-
comes quite small when the payload is 0.3 kg. The
phase margin of the FI is very good for all the pay-
loads.

2. The phase margin of the IRC diminishes signif-
icantly as the payload increases. However, the
phase margin of the FI is very robust, remaining
approximately constant with all the payloads.

3. The phase margin of the FI always remains lower
than −90α =−112.5◦, as was stated in the design
procedure of the FI.

4. The gain margin Mg is infinite in both the IRC and
the FI controllers, as a consequence of adding D f
to Gi(s) and multiplying the result by −1. How-
ever, the gain margin is very low in the PPF and
MPPF (it is very close to 1).

5. The gain crossover frequency ωc diminishes in all
the controllers as the payload increases, i.e., the
closed-loop system becomes slower. This reduc-
tion is similar in the IRC and the FI: the ratio be-
tween the ωc with the maximum payload and the
ωc with no payload is about 0.45 in both con-
trollers. However, ωc undergoes smaller variations
with payload changes in the case of the PPF con-
troller.

Table 5 shows the damping achieved by the proposed
controllers in the first two vibration modes. These re-
sults were obtained by calculating the damping of the
poles of the closed-loop associated with the two first vi-
bration modes. It will be observed that the controller
that attains the most damping is the FI, the second is the
PPF, the third the MPPF, and that which provides the
least damping is the IRC.

Table 6 shows the specifications of the responses ob-
tained in the experiments. This table lists the settling
time ts - defined as the time that the response needs to
enter the band of±1 mm -, the damping ξ and the max-
imum amplitude of the response AV1. This table shows
that:

1. The settling time ts of the responses increases as
the gain crossover frequency ωc diminishes.

2. The FI controller damps the vibrations much faster
than the IRC controller. In fact, the settling time
achieved with the FI is significantly smaller than
that achieved with the MPPF and IRC in all the
payload cases. The PPF is unable to reduce the
vibrations to an amplitude of 1 mm.

3. The experiments show that the FI controller attains
a damping ξ1 of approximately twice the damping
attained with the IRC. Note that the second vibra-
tion mode is very small in all the experiments, and
it was not therefore possible to estimate the damp-
ing ξ2 of this mode.

4. The experiments show that there are no spillover
effects in the IRC and FI control systems, in ac-
cordance with the properties that are theoretically
achieved with these controllers.

Finally, we should mention that since we wished to il-
lustrate that our control system is robust to spillover, we
have chosen quite a large beam such that several vibra-
tion modes could be clearly noticed. For this reason, our
beam is larger than others shown in scientific literature.
Moreover, we use a single piezoelectric patch, while
other prototypes may include several patches, which im-
plies than we can apply less torque to our beam than oth-
ers. These facts make the dynamics of our beam slower
than others and, consequently, the closed-loop dynam-
ics expected using our controller should also be slower.
For example:

1. Our beam is 1 m long, 4 vibration modes can be no-
ticed, and the settling time for the nominal payload
(0 Kg) obtained using our fractional-order con-
troller is about 1 s.
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IRC IRC IRC PPF PPF PPF MPPF MPPF MPPF FI FI FI
(0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg)

ξ1 0.166 0.0533 0.0104 0.43 0.1737 0.0707 0.284 0.125 0.0578 0.67 0.35 0.12
ξ2 0.053 0.0651 0.0622 0.724 0.72 0.626 0.869 0.827 0.69 0.347 0.62 0.75

Table 5: Dampings

IRC IRC IRC PPF PPF PPF MPPF MPPF MPPF FI FI FI
(0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg) (0kg) (0.15kg) (0.3kg)

ts(s) 1.8 5.0 8.1 − − 9.5 1.4 3.5 7.8 0.7 2.3 4.9
ξ1 0.06 0.022 0.008 0.19 0.064 0.027 0.12 0.075 0.026 0.28 0.15 0.04

AV1mm 2.2 2.1 2.7 3.5 2.0 2.9 2.5 1.8 2.8 2.5 2.1 3.0

Table 6: Experimentation

2. The beam used in Banks et al. (2002) is 0.286 m
long, 3 vibration modes are considered, and the
closed-loop settling time is about 1 s.

3. The beam used in Aphale et al. (2007) is 0.5 m
long, 3 vibration modes are considered, and the
closed-loop settling time is about 1 s.

4. The beam used in Meurer et al. (2008) is 0.047 m
long, 1 vibration mode is visible, and the closed-
loop settling time is about 20 ms. The settling time
of this control system is much lower than the others
but this beam is also much shorter.

However, the settling time achieved using our con-
troller is similar to those achieved in these examples,
which propose controllers that are applied to signifi-
cantly shorter beams, with much less rotational inertia
to be turned. This justifies that our controller is more
efficient than others. The settling time becomes longer
when a payload is added at the tip. Since no data is pro-
vided in other works about how the dynamics of their
proposed control systems are slowed by an increase in
the tip payload, the effects of tip payload changes have
been compared when all of these controllers have been
applied to the same beam (our experimental setup). Ta-
ble 5 shows that our controller damps the vibrations
faster than the other controllers.

7. Conclusions

This paper has addressed the control of vibrations in
collocated smart structures. We have shown that a very
simple fractional-order controller - a FI controller - sig-
nificantly improves the performance and robustness of
three well-known integer-order control schemes used in
smart structures, the IRC, PPF and MPPF controllers.

Improvement to the closed-loop response is achieved
by exploiting the property of CPE elements (FI con-
trollers in this paper) of adding/substracting a constant
phase to the frequency response of the plant at all fre-
quencies (0 ≤ ω < ∞). Using an FI therefore allows
the Nyquist plot to be conveniently approximately ro-
tated in such a way that the phase margin of the open-
loop transfer function is augmented. Moreover, we have
demonstrated that, by doing this in collocated smart
structures, the robustness of the system can be signif-
icantly augmented in several ways: a) the phase mar-
gin is maintained approximately constant to changes in
the payload at the tip of the beam (which implies in-
creased stability robustness and damping robustness), b)
this phase margin (or damping) is also guaranteed for
all the vibration modes, with which spillover effects are
prevented and c) the gain margin is always infinite for
any tip payload, thus achieving a very high robustness
to plant gain changes.

We should state that, in order to achieve these
frequency response features, some manipulations are
needed which are similar to those carried out in the IRC
control scheme: a negative gain must be connected in
parallel to the plant and a sign inversion is subsequently
carried out. By doing this, robustness to spillover ef-
fects and an infinity gain margin is achieved in both the
IRC and the FI. However, the FI guarantees a minimum
phase margin for any change in the tip payload, in con-
trast to the IRC.

With regard to the other control schemes, the PPF and
MPPF can effectively damp the first vibration mode.
However, if there are any uncertainties in the plant pa-
rameters, or they are time-varying owing to, for exam-
ple, the presence of a tip mass, the effectiveness of these
two controllers deteriorates. The PPF and MPPF con-
trollers are insensitive to spillover because, since they
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include a second-order low-pass filter, their frequency
responses roll off quickly at high frequencies. How-
ever, if there is a bias term in the measurement of the
sensor, the control action can saturate, as was shown in
the experimental results.

In summary, IRC, PPF, MPPF and FI controllers
share the properties (which are not fulfilled simulta-
neously by other controllers in scientific literature) of
being robust to spillover and robustly stable to large
changes in most of the parameters of the plant. More-
over, the IRC and FI controllers share the property
(which is not fulfilled by the PPF and the MPPF) of hav-
ing an infinite gain margin, which implies stability ro-
bustness to very large gain changes. Finally, the FI has
the advantage over the IRC, and also over the PPF and
the MPPF, of being robust in its phase margin (the ab-
solute value of the phase margin is always greater than
a chosen value, which is defined by the fractional or-
der of the controller) when the system undergoes large
changes in its parameters. This last feature guarantees a
minimum relative stability and a minimum damping of
the smart structure in the case of large parametric vari-
ations. We should state that this robust property is not
achieved by any other control method.

Simulated and experimental results have demon-
strated the superior performance and robustness of the
FI controller over the IRC, the PPF and the MPPF as re-
gards controlling collocated smart structures. However,
a discrepancy in the damping can be observed between
simulated and experimental results in all the four con-
trollers. Some preliminary tests show that this may be
caused by the non-negligible offset of the strain sensor
(although we attempted to minimize this prior to each
experiment) and the nonlinear effects of the hysteresis
of the piezoelectric actuator. Finding means to reduce
these effects on the fractional-order control will be the
object of our future research.
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rior Técnico, Universidade Técnica de Lisboa.
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