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Abstract
Let G = A ∗ B be a free product of freely indecomposable groups. We explicitly construct
quasimorphisms on G which are invariant with respect to all automorphisms of G. We also
prove that the space of such quasimorphisms is infinite-dimensional whenever G is not
the infinite dihedral group. As an application we prove that an invariant analogue of stable
commutator length recently introduced by Kawasaki and Kimura is non-trivial for these
groups.

Résumé
Soit G = A ∗ B un produit libre de groupes librement indécomposables. Nous construisons
explicitement des quasimorphismes sur G qui sont invariants par rapport à tous les auto-
morphismes de G. Nous prouvons également que l’espace de tels quasimorphismes est de
dimension infinie lorsque G n’est pas le groupe dièdre infini. En tant qu’application, nous
prouvons qu’un analogue invariant de longueur de commutateur stable récemment introduit
par Kawasaki et Kimura est non trivial pour ces groupes.
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1 Introduction

The study of quasimorphisms on a given group G is an important branch of geometric group
theory [6] with quasimorphisms sharing deep relationships with the underlying structure of
the group G. For free groups Fn the so called counting quasimorphisms originating from the
work of Brooks in [4] yield a wide variety of examples. His ideas have been developed further
by Calegari and Fujiwara who constructed unbounded quasimorphisms on non-elementary
hyperbolic groups [5]. For diffeomorphism groups of surfaces many important constructions
are given in [9]. There are also numerous applications in symplectic geometry originating
from work of Entov and Polterovich [7]. Another fundamental paper on the geometry of
quasimorphisms and central extensions is [1].

B Bastien Karlhofer
r01bdk17@abdn.ac.uk

1 University of Aberdeen, Aberdeen, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40316-021-00184-4&domain=pdf


476 B. Karlhofer

In this paper we construct unbounded Aut-invariant quasimorphisms on free products of
groups. To achieve this we associate tuples of natural numbers we call codes to each element
in a free product G = A ∗ B. Inspired by Brooks counting quasimorphisms on free groups
we then count these codes rather than actual elements of the free product and verify that this
indeed yields quasimorphisms on G. We call them code quasimorphisms. We make use of
an explicit description of the automorphism group of a free product found in [8] to see in
Proposition 4.11 that our code quasimorphisms are unbounded and invariant with respect to
all automorphisms of G if A and B are not infinite cyclic.

If one of the factors of G = A ∗ B is infinite cyclic, our code quasimorphism are not
necessarily invariant under a specific class of automorphisms of G which is called the class
of transvections. So, we slightly adjust the way we count codes for infinite cyclic factors
and call the resulting maps weighted code quasimorphisms. We show in Proposition 5.7 that
these are unbounded and invariant with respect to all automorphisms of G.

These two propositions together with an independent result for the free group on two
generators from [3, Theorem 2] comprise the following result in Sect. 6 which is the main
result of the paper.

Theorem 1 Let G = A ∗ B be the free product of two non-trivial freely indecomposable
groups A and B. Assume G is not the infinite dihedral group. Then G admits infinitely many
linearly independent homogeneous Aut-invariant quasimorphisms, all of which vanish on
single letters.

The infinite dihedral group does not admit any unbounded quasimorphism since all its
elements are conjugate to their inverses. As a corollary of our construction we immediately
deduce the existence of stably unboundedAut-invariant norms on free products of two factors.

Corollary 1.1 Let G = A ∗ B be the free product of two non-trivial freely indecomposable
groups and assume G is not the infinite dihedral group. Then there exists a stably unbounded
Aut-invariant norm on G.

We denote the Aut-invariant stable commutator length, which was recently introduced by
Kawasaki and Kimura in [12], by sclAut. As an application of our construction we prove the
following result in Sect. 7.

Theorem 2 Let G = A ∗ B be a free product of freely indecomposable groups and assume
that G is not the infinite dihedral group. Then there always exist elements g ∈ G with positive
Aut-invariant stable commutator length sclAut(g) > 0.

2 Preliminaries

Definition 2.1 For any group G we denote by Aut(G) the group of all automorphisms of G.
Moreover, we denote the normal subgroup of inner automorphisms by Inn(G) and define the
group of outer automorphisms of G to be the quotient Out(G) = Aut(G)/ Inn(G).

Definition 2.2 LetG be a group. Amapψ : G → R is called a quasimorphism if there exists
a constant D ≥ 0 such that

|ψ(g) + ψ(h) − ψ(gh)| ≤ D for all g, h ∈ G.

The smallest number D(ψ) with the above property is called the defect of ψ . We call a
quasimorphism homogeneous if it satisfies ψ(gn) = nψ(g) for all g ∈ G and all n ∈ Z. If
ψ(ϕ(g)) = ψ(g) for all g ∈ G, ϕ ∈ Aut(G), then ψ is called Aut-invariant.
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Aut-invariant quasimorphisms on free products 477

Definition 2.3 Let ψ : G → R be a quasimorphism. Then the homogenisation ψ̄ : G → R

of ψ is defined by ψ̄(g) = limn∈N ψ(gn)
n for all g ∈ G.

Lemma 2.4 ( [6, p.18]) The homogenisation ψ̄ of a quasimorphism ψ : G → R is a homo-
geneous quasimorphism. Moreover, it satisfies |ψ̄(g) − ψ(g)| ≤ D(ψ) for any g ∈ G.

Definition 2.5 A function ν : G → R satisfying for all g, h ∈ G:

• ν(g) ≥ 0,
• ν(g) = 0 if and only if g = 1,
• ν(gh) ≤ ν(g) + ν(h),

is called a norm on G. If in addition for all g ∈ G and ϕ ∈ Aut(G) it satisfies

• ν(ϕ(g)) = ν(g),

then it is called Aut-invariant. The supremum ν(G) = sup{ν(g) | g ∈ G} is called the
diameter of the norm ν. If ν(G) = ∞, then ν is called unbounded. If there exists g ∈ G such
that limn→∞ ν(gn)

n > 0, then ν is called stably unbounded.

Example 2.6 Let G be a group together with a generating set S. The word norm generated
by S is the norm on G defined by

νS(g) = min{n | g = s1 . . . sn where n ∈ N and si ∈ S for all i}.
If we assume additionally that the set S is invariant under Aut(G) then νS is Aut-invariant.

Lemma 2.7 Let ψ : G → R be an Aut-invariant quasimorphism with unbounded image, but
bounded on a generating set S of G. Then there exists a stably unbounded Aut-invariant norm
on G.

Proof By Lemma 2.4 we can assume that ψ is homogeneous. The word norm ‖.‖S̄ on G
associated to the generating set S̄ = {ϕ(s) | s ∈ S, ϕ ∈ Aut(G)} is clearly Aut-invariant.
Let K be a positive bound for the absolute value of ψ on S. Write g ∈ G as a product
g = ϕ1(s1) . . . ϕn(sn) for some n ∈ N where si ∈ S and ϕi ∈ Aut(G) for all i . The
calculation

|ψ(g)| = |ψ(ϕ1(s1) . . . ϕn(sn))| ≤ |ψ(ϕ1(s1))| + · · · + |ψ(ϕn(sn))| + (n − 1)D(ψ)

≤ n(K + D(ψ))

shows that ‖g‖S̄ ≥ |ψ(g)|
K+D(ψ)

for all g ∈ G. It follows that ‖gk‖S̄ ≥ k · |ψ(g)|
K+D(ψ)

for all k ∈ N,
g ∈ G. Since ψ does not vanish everywhere, ‖.‖S̄ is a stably unbounded Aut-invariant norm
on G. 	


The following examples illustrate that the converse ofLemma2.7 above is not true andfind-
ing unboundedAut-invariant quasi-morphisms ismuchmore difficult thanfinding unbounded
Aut-invariant norms.

Example 2.8 Let �∞ be the infinite symmetric group of finitely supported bijections of
the natural numbers. The cardinality of the support defines an Aut-invariant norm of infinite
diameter on�∞. However, any element g ∈ �∞ has finite order. Therefore, no Aut-invariant
norm on �∞ is stably unbounded and any homogeneous quasi-morphism vanishes on all of
�∞. Consequently, by Lemma 2.4 any quasimorphism on �∞ is bounded.
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478 B. Karlhofer

Example 2.9 Let G = Z
k for k ≥ 1. Since every g ∈ G lies in the same Aut(G)-orbit as

g−1, it follows that any homogeneous Aut-invariant quasimorphism vanishes on all of G. So
any Aut-invariant quasimorphism is bounded on G. For k = 1 the standard absolute value
defines a stably unbounded Aut-invariant norm on G, whereas for k ≥ 2 any Aut-invariant
norm on G has finite diameter.

Example 2.10 Let G be the fundamental group of the Klein bottle G = Z ∗2Z Z. Let a and
b be generators of the two infinite cyclic factors of G in its above presentation. Consider
the Aut-invariant word norm νS generated by S = {ϕ(a±1), ϕ(b±1) | ϕ ∈ Aut(G)}. To
see that this norm is unbounded on G we first note that commutator subgroup of G is a
characteristic subgroup and G/[G,G] = Z/2 × Z, where Z/2 is a characteristic subgroup
again. Consequently, the projection map p : G → Z sending p(a) = p(b) = 1 maps the
set S to the Aut-invariant set {±1} in Z, which generates a stably unbounded Aut-invariant
norm on Z. Therefore, the word norm νS generated by S on G is stably unbounded as well.

However, there is no unboundedAut-invariant quasimorphismonG. Ifψ was such a quasi-
morphism, it could be chosen to be homogeneous by Lemma 2.4. Let ϕ be the automorphism
inverting the generators a and b. Then ϕ inverts the center Z(G) = 2Z as well. Hence, ψ

vanishes on Z(G). Similarly, every element of S = {(ab)n, (ba)n, (ab)na, (ba)nb | n ∈ N}
belongs to the same Aut-orbit that its inverse belongs to. So ψ vanishes on S as well. How-
ever, every element g ∈ G can be written as a product = zs where z ∈ Z(G) and s ∈ S.
Therefore, ψ is bounded on all of G.

Definition 2.11 Let G = ∗i∈I Gi be a free product of a family of groups {Gi }i∈I for some
indexing set I . For each i the factor Gi is a subgroup of G via the canonical inclusion. An
element of G that belongs to one of the factors is called a letter of G. Any product of letters
is called a word in G. The product of any two letters belonging to the same factor in G can
be replaced by the letter that represents their product in that factor. Moreover, any identity
letters appearing in a word can be omitted without changing the element the word represents
in G. Recall that any element g ∈ G has a unique presentation as a word, where no two
consecutive letters lie in the same factor and no identity letters appear. Such a word is called
reduced.

Lemma 2.12 Let I be a set of cardinality at least two. Let Gi be a non-trivial group for all
i and G = ∗i∈I Gi be their free product. Let θ : G → R be a map whose absolute value is
bounded on all letters of G by a constant B ≥ 0. Assume that there exists a constant D ≥ 0
such that

|θ(w1w2) − θ(w1) − θ(w2)| ≤ D

holds for all reduced words w1, w2 for which their product w1w2 is a reduced word. Then
the map f : G → R defined by f (w) = θ(w) − θ(w−1) defines a quasimorphism of defect
at most 12D + 6B, which is bounded on all letters by 2B.

Proof Any element in G can be represented by a reduced word. So let w1, w2 be reduced
words. The word given by their product w1w2 is reduced if and only if the last letter from
w1 belongs to a factor different from the one that the first letter of w2 belongs to. Indeed,
otherwise those two letters could be multiplied in their common factor and replaced by their
product to shorten the number of letters appearing in the expression.

In order to bring w1 ·w2 to its reduced form we first perform all cancellations which form
a word we call c. After all cancellations have taken place the final potential reduction is to
possibly replace a non-trivial product of two letters b and d belonging to the same factor by
a non-trivial letter x representing their product in that factor. Therefore, we have two cases.
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Aut-invariant quasimorphisms on free products 479

• The reduced presentations of w1 and w2 are given by w1 = ac, w2 = c−1e and ae is the
reduced presentation for w1 · w2.

• The reduced presentations of w1 and w2 are given by w1 = abc, w2 = c−1de, where
b and d are letters belonging to the same factor. The reduced presentation of w1 · w2 is
given by axe, where x = bd is the letter representing the non-trivial product of b and d .

We calculate for the second case that

| f (w1w2) − f (w1) − f (w2)| = | f (axe) − f (abc) − f (c−1de)|
= ∣

∣θ(axe) − θ(e−1x−1a−1) − θ(abc) + θ(c−1b−1a−1) − θ(c−1de)

+θ(e−1d−1c)
∣
∣

≤|θ(a) + θ(x) + θ(e) − θ(e−1) − θ(x−1) − θ(a−1) − θ(a) − θ(b) − θ(c) + θ(c−1)

+ θ(b−1) + θ(a−1) − θ(c−1) − θ(d) − θ(e) + θ(e−1) + θ(d−1)

+ θ(c)| + 12D

=|θ(x) − θ(x−1) − θ(b) + θ(b−1) − θ(d) + θ(d−1)| + 12D

≤6B + 12D.

The first case follows analogously. Since w1, w2 were arbitrary reduced words and every
element of G can be written in its reduced form, f is a quasimorphism of defect at most
6B + 12D. Since θ is bounded on all letters by B, so is f by 2B. 	


3 Aut-invariant quasimorphisms

Definition 3.1 Wecall a groupG freely indecomposable ifG is non-trivial and not isomorphic
to any free product of the form G1 ∗ G2 where G1, G2 are non-trivial groups.

Any free product of non-trivial groups has trivial center and contains elements of infinite
order. So every abelian group and every finite group is freely indecomposable.

Lemma 3.2 Let ψ : G → R be a quasimorphism. Let {ϕi }i∈I be a set of representatives
for the elements of Out(G). If ψ is invariant under ϕi for all i , then its homogenisation
ψ̄ : G → R is invariant under all automorphisms of G.

Proof The homogenisation ψ̄ is constant on conjugacy classes [6, p.19]. By definition ψ̄

is invariant under the collection {ϕi }i∈I , since ψ is. The result follows since any element
ϕ ∈ Aut(G) can be written as the composition of some ϕ j with a conjugation. 	


Consider the free product G = G1 ∗ G2 where Gi is freely indecomposable for i = 1, 2.
Following the exposition in [8, p.116] based on results in [10] and [11] the automorphism
group Aut(G1 ∗ G2) is generated by the following types of automorphisms (1–3) if neither
G1 nor G2 is infinite cyclic:

1. Elements from Aut(G1) and Aut(G2) give rise to automorphisms of G1 ∗G2. These are
called factor automorphisms.

2. Let g ∈ Gi for some i ∈ {1, 2}. Define the map pg : G → G to be conjugation by g on
the letters of G j for j �= i and to be the identity on all letters from the group Gi . This
definition gives rise to an automorphism of G which is called a partial conjugation.

3. If G1 ∼= G2 are isomorphic, interchanging the two factors is an automorphism of G.
Such an automorphism is called a swap automorphism.
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480 B. Karlhofer

IfG1 ∼= Z is infinite cyclic and the freely indecomposable groupG2 is not, thenAut(G1∗G2)

is generated by the above automorphisms together with the following additional type of
automorphisms:

4. Let s be a generator of G1 and let a ∈ G2 be any element. Then a transvection is the
unique automorphism of G1 ∗ G2 defined to be the identity on all letters from G2 and
maps s → as or s → sa.

Following the above description of the group of automorphisms of a free product of two
factors we obtain:

Lemma 3.3 Let G1, G2 be freely indecomposable groups such that G2 is not infinite cyclic.
Then the outer automorphism group of their free product Out(G1 ∗ G2) is generated by
the images of Aut(G1), Aut(G2) in Out(G1 ∗ G2) together with a swap automorphism if
G1 ∼= G2 and the transvections if G1 ∼= Z.

Proof By the universal property of the free product of two groups any automorphism is
uniquely determined by its image on single letters. Let h ∈ G1 and denote conjugation by
h−1 on all of G by ch . Then

(ch ◦ ph)(g) =
{

h−1gh if g ∈ G1,

g if g ∈ G2.

Thus, ph and the factor automorphism given by conjugation by h−1 onG1 represent the same
element in Out(G). Similarly, in Out(G) partial conjugations on G1 by elements from G2

represent the same elements that factor automorphisms from G2 do. Finally, any two choices
of swap automorphism differ by a product of factor automorphisms. 	

Lemma 3.4 Let G be a group and H ≤ G be a characteristic subgroup with quotient projec-
tion p : G → G/H. Then for any unbounded Aut-invariant quasimorphism ψ : G/H → R

the composition ψ ◦ p : G → R is an unbounded Aut-invariant quasimorphism on G.
Moreover, linearly independent quasimorphisms on G/H give rise to linearly independent
quasimorphisms on G.

Proof Clearly, ψ ◦ p is a quasimorphism. The Aut-invariance of ψ ◦ p on G follows from
the Aut-invariance of ψ on G/H together with the fact that H is characteristic. Finally, the
statement about linear independence follows from the surjectivity of the projection to the
quotient. 	


4 Code quasimorphisms

Recall that a tuple always refers to a finite sequence and so all tuples are naturally ordered.

Definition 4.1 Let A and B be groups. Write a given element g ∈ A ∗ B in its reduced
form. We assign two tuples of non-zero natural number that we will call codes as follows.
Let (a1, . . . , ak) be the tuple of letters from A appearing in the reduced form of g. We call
(a1, . . . , ak) the A-tuple of g. Then we count how often any one letter of (a1, . . . , ak) appears
consecutively. This yields a tuple of positive numbers A-code(g) = (n1, n2, . . . , nr ) which
we call the A-code of g. Similarly, we obtain the B-tuple, which is the tuple of letters from
B appearing in the reduced form of g, and the B-code of g, denoted B-code(g), by counting
consecutive appearances of letters in the B-tuple.
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Aut-invariant quasimorphisms on free products 481

Note that A-code(g) and B-code(g) might have very different length for elements
g ∈ A ∗ B in general.

Example 4.2 Let G = A ∗ B where A = Z/5 and B is any group. Let a ∈ A, b ∈ B be
non-trivial elements. Consider g = a2bababa4baba. The A-tuple of g is (a2, a, a, a4, a, a)

and therefore A-code(g) = (1, 2, 1, 2). However, the B-tuple of g is (b, b, b, b, b) and so
B-code(g) = (5).

Remark 4.3 The code of any element g ∈ A ∗ B is clearly invariant under all factor automor-
phisms.

The following lemma is immediate.

Lemma 4.4 The A-code and B-code of g−1 are the reversed A- and B-code of g for any
g ∈ A ∗ B. That is, let A-code(g) = (n1, . . . , nk) and B-code(g) = (m1, . . . ,m�), then
A-code(g−1) = (nk, . . . , n1) and B-code(g−1) = (m�, . . . ,m1). 	


In the spirit of Brooks counting quasimorphismswewill nowdefine code quasimorphisms,
which are counting the occurrences of a string of natural numbers in the A-code and B-code
associated to an element in the free product A ∗ B.

Definition 4.5 (Code quasimorphisms) Let k ≥ 1 and let z = (n1, . . . , nk) be a tuple of non-
zero natural numbers n1, . . . , nk for some k ∈ N. LetC ∈ {A, B}. Define θCz : A∗ B → Z≥0

to count the maximal number of disjoint appearances of z as a tuple of consecutive numbers
in the C-code for all g ∈ A ∗ B. Further, define the code quasimorphism

f Cz : A ∗ B → Z by f Cz (g) = θCz (g) − θCz (g−1)

for all g ∈ A∗B. Note that θCz (g−1) = θCz̄ (g) due to Lemma4.4, where z̄ denotes the reversed
tuple (nk, . . . , n1). Consequently, f Cz (g) can also be written as f Cz (g) = θCz (g)− θCz̄ (g) for
all g ∈ G.

Example 4.6 Let G = Z/5 ∗ B and g = a2bababa4baba for non-trivial a ∈ A, b ∈ B as
in Example 4.2. For z = (1, 2) we calculate θ A

z (g) = 2 and θ A
z (g−1) = θ A

z̄ (g) = 1 and so
f Az (g) = 2 − 1 = 1.

Example 4.7 Let G = Z/5 ∗ B and g = a4bababa3bababa3 for non-trivial a ∈ A, b ∈ B.
In this case A-code(g) = (1, 2, 1, 2, 1). Then θ A

z (g) = 1 for z = (1, 2, 1) since we only
count disjoint occurrences. Similarly, θ A

z (g−1) = θ A
z̄ (g) = 1 and so f Az (g) = 0.

Lemma 4.8 Let A, B be non-trivial groups and let C ∈ {A, B}. For a non-empty tuple of non-
zero natural numbers z the map f Cz : A ∗ B → Z defines a quasimorphism that is bounded
on letters and invariant with respect to all factor automorphisms. Moreover, D( f Cz ) ≤ 30.

Proof We want to apply Lemma 2.12 to deduce that f Cz is a quasimorphism. Clearly,
|θCz (x)| ≤ 1 for all letters x ∈ A ∗ B and all z. Let w1, w2 be reduced words represent-
ing elements in A ∗ B such that their product w1w2 is reduced. That is, the last letter of w1

and the first letter ofw2 belong to different factors. Without loss of generality we can assume
C = A. Let A-code(w1) = (n1, . . . , nk) and A-code(w2) = (m1, . . . ,m�). Let x be the last
letter from A in w1 and let y be the first letter from A in w2. Then

A-code(w1w2) =
{

(n1, . . . , nk,m1, . . . ,m�) if x �= y,

(n1, . . . nk−1, nk + m1,m2, . . . ,m�) if x = y.
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482 B. Karlhofer

If x �= y, then θCz (w1w2) ∈ {θCz (w1) + θCz (w2), θ
C
z (w1) + θCz (w2) + 1} since at most

one of the disjoint occurrences of z can involve numbers that do not lie completely in the
A-code of either w1 or w2.

If x = y, then θCz (w1w2) ≥ θCz (w1)+θCz (w2)−2 since nk andm1 can each be contained
in at most one occurrences of z in the A-code of w1 and w2. Moreover, if an occurrence of
z in the A-code of w1w2 involves nk + m1, then all other occurrences are fully contained in
either the A-code of w1 or w2. Thus, θCz (w1w2) ≤ θCz (w1) + θCz (w2) + 1.

In both cases we conclude

|θCz (w1w2) − θCz (w1) − θCz (w2)| ≤ 2,

and it follows from Lemma 2.12 that f Cz is a quasimorphism of defect D( f Cz ) ≤ 30.
Moreover, by Remark 4.3 the maps θCz are invariant under all factor automorphisms of

A ∗ B. Consequently, f Cz = θCz − θCz̄ is invariant under factor automorphisms as well. 	

Definition 4.9 A tuple of non-zero natural numbers z = (n1, . . . , nk) is called generic if z̄
does not appear as a tuple of k adjacent numbers in z2 = (n1, . . . , nk, n1, . . . nk).

Example 4.10 Let z = (n1, . . . , nk). If k ≤ 2, z is not generic. If k ≥ 3 and the ni are pairwise
distinct, then z is generic. E.g. for z = (1, 2, 3) we have z̄ = (3, 2, 1) does not appear in
z2 = (1, 2, 3, 1, 2, 3).

Proposition 4.11 Let A ∗ B be a free product of two freely indecomposable groups A and
B, neither of which is infinite cyclic. Then for any generic tuple of natural numbers z the
following holds:

1. if A � B and C ∈ {A, B} is such that C � Z/2, then the homogenisation f̄ Cz of the
quasimorphism f Cz is an unbounded Aut-invariant quasimorphism on A ∗ B;

2. if A ∼= B � Z/2, then the sum f̄ Az + f̄ Bz is an unbounded Aut-invariant quasimorphism
on A ∗ B.

In both cases the space of homogeneous Aut-invariant quasimorphisms on A ∗ B that vanish
on letters has infinite dimension.

Proof First, consider the case A � B. Since A ∗ B is not the infinite dihedral group, at least
one of the factors is not isomorphic to Z/2. Without loss of generality we assume A � Z/2.
Let z be generic. By Lemma 4.8 the map f Az defines a quasimorphism invariant under all
factor automorphisms. According to Lemma 3.3 this means that f Az is invariant under a full
set of representatives for Out(A ∗ B). Therefore, the homogenisation f̄ Az is invariant under
all automorphisms of A ∗ B by Lemma 3.2. It remains to check that f̄ Az is unbounded, which
is equivalent to checking that f Az itself is unbounded by Lemma 2.4.

Since A � Z/2, it satisfies |A| ≥ 3 and we can choose two distinct non-trivial elements
a1, a2 ∈ A. Furthermore, choose a non-trivial element b ∈ B. Let z = (n1, . . . , nk) and
choose m ∈ N to be non-zero and distinct from all ni ∈ N. We set

w0 = (a1b)
n1(a2b)

n2(a1b)
n3(a2b)

n4 . . . (asb)
nk ,

where s = 1 if k is odd and s = 2 if k is even. Set

w =
{

w0 if k is even,

w0(a2b)m if k is odd.
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Aut-invariant quasimorphisms on free products 483

The A-code of w is given by

A-code(w) =
{

(n1, . . . , nk) = z if k is even,

(n1, . . . , nk,m) = (z,m) if k is odd.

Since w starts and ends with letters from different groups, the reduced expression of w�

is the �-fold product of the word w for all � ∈ N. Moreover, because the first letter from A
in w is a1 and the last letter from A is a2, the A-code of w� is

A-code(w�) =
{

(z, z, . . . , z) if k is even,

(z,m, z,m, . . . , z,m) if k is odd.

Since m is distinct from all ni , m can never appear in any occurrence of z or z̄ in the
A-code of w�. So θ A

z (w�) = �, whereas θ A
z̄ (w�) = 0 since z is generic. Consequently,

f Az (w�) = θ A
z (w�) − θ A

z̄ (w�) = �,

which shows that f Az is unbounded.
Second, consider the case A ∼= B and fix a choice of isomorphism. Let z be generic.

It holds that |A| = |B| ≥ 3 since A ∗ B is not the infinite dihedral group. Consider the
swap isomorphism s interchanging the factors A and B, where we use the fixed isomorphism
from before to identify A and B with each other. Then the application of s to any element g
interchanges the A-code and B-code of g with each other. This implies that the sum θ A

z + θ B
z

is invariant under s and consequently the sum f Az + f Bz is invariant under s as well. Again, by
Lemma 4.8 f Az and f Bz define quasimorphisms invariant under all factor automorphisms and
so does their sum f Az + f Bz . According to Lemma 3.3 this means that f Az + f Bz is invariant
under a full set of representatives for Out(A ∗ B). Again, by Lemma 3.2 we see that the
homogenisation f̄ Az + f̄ Bz is invariant under all automorphisms of A ∗ B. It remains to verify
unboundedness.

For this let a1, a2 ∈ A and b1, b2 ∈ B be non-trivial such that a1 �= a2 and b1 �= b2. Pick
a non-zero number m ∈ N distinct from all ni ∈ N, where z = (n1, . . . , nk). As before, we
set

w0 = (a1b1)
n1(a2b2)

n2(a1b1)
n3(a2b2)

n4 . . . (asbs)
nk ,

where s is 1 or 2 depending on whether k is odd or even. We set

w =
{

w0 if k is even,

w0(a2b2)m if k is odd.

Then the A-code and B-code of w agree and are given by

A-code(w) = B-code(w) =
{

(n1, . . . , nk) = z if k is even,

(n1, . . . , nk,m) = (z,m) if k is odd.

Since m is distinct from all ni , m can never appear in any occurrence of z or z̄ in the
A-code and B-code of w�. As in the first case, θ A

z (w�) = θ B
z (w�) = �, whereas θ A

z̄ (w�) =
θ B
z̄ (w�) = 0 since z is generic. Consequently,

f Az (w�) + f Bz (w�) = θ A
z (w�) + θ B

z (w�) − θ A
z̄ (w�) − θ B

z̄ (w�) = 2�,

which shows that f Az + f Bz is unbounded and therefore its homogenisation is the desired
unbounded Aut-invariant quasimorphism on A ∗ B.
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Finally, let us verify that the space of homogeneous Aut-invariant quasimorphisms on
A ∗ B that vanish on letters is infinite-dimensional. Let r ∈ N and let z1, . . . , zr be generic
tuples. Choose zr+1 be a 3-tuple whose entries are distinct non-zero natural numbers and do
not appear in any of the zi ; then zr+1 is generic. It follows from the above construction of the
word w for zr+1 in both cases that any linear combination of the associated quasimorphisms
f Az1 + f Bz1 , . . . , f Azr + f Bzr vanishes on all powers of w. It follows that the same holds for any
linear combination of their homogenisations f̄ Az1 + f̄ Bz1 , . . . , f̄ Azr + f̄ Bzr . Thus, f̄

A
zr+1

+ f̄ Bzr1 is not
contained in the subspace spanned by the first r quasimorphisms. Clearly, the homogenisation
of any code quasimorphism vanishes on all letters of A ∗ B. Since r ∈ N was arbitrary, it
follows that the space of homogeneous Aut-invariant quasimorphisms on A ∗ B that vanish
on letters cannot have finite dimension. 	


5 Weighted code quasimorphisms

If one of the factors of a free product A ∗ B of freely indecomposable groups happens to be
infinite cyclic, the code quasimorphisms above are in general not Aut-invariant since they are
not necessarily invariant with respect to transvections. Thus, we need to modify our original
construction to deal with infinite cyclic factors. Afterwards we will follow steps similar to
the previous section in order to establish their Aut-invariance.

Lemma 5.1 Let B be a non-trivial group and let w be any word in Z ∗ B such that w only
contains letters of the same sign from Z and starts and ends with a non-zero letter from Z.
Then its unique reduced form w′ starts and ends with a letter from Z with that given sign.
Moreover, the sum over all letters in w belonging to the factor Z remains the same in its
reduced form w′.

Proof Anyword in the free product is brought to its reduced form by successively eliminating
trivial letters and replacing two adjacent letters from the same factor by their product in that
factor. The sum of all letters from Z stays the same because any two adjacent letters of Z are
always replaced by their sum throughout the reduction process. The only way to encounter
an elimination of the first letter a1 ∈ Z or the last letter an ∈ Z during the reduction process
would be by the occurrence of −a1 or −an . This is not possible since a1 and an are non-zero
and all letters have the same sign by assumption. 	

Definition 5.2 (Weighted Z-code) Let B be freely indecomposable and B � Z. Write
g ∈ Z∗B in reduced form. Let (a1, . . . , ak) be theZ-tuple of g.We define a tuple (x1, . . . , x�)

of non-zero natural numbers as follows. Consider the successive subsequences of maximal
length in (a1, . . . , ak) consisting of integers all of the same sign. For the i-th such sequence,
we define xi to be the absolute value of the sum of integers in that sequence. We call the tuple
(x1, . . . , x�) the weighted Z-code of g.

Example 5.3 Let B be a non-trivial group and let bi ∈ B be non-trivial elements. Then the
reduced word

w = 7b1(−2)b2(−4)b3(−1)b49b52b6(−3)

has the Z-tuple (7,−2,−4,−1, 9, 2,−3) which yields the weighted Z-code (7, 7, 11, 3).

Definition 5.4 (Weighted code quasimorphisms) Let z = (n1, . . . , nk) be a tuple of non-zero
natural numbers. We set θZz : Z ∗ B → Z≥0 to count the number of disjoint appearances of
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z as a tuple of consecutive numbers inside the weighted Z-code of g ∈ Z ∗ B. Define the
weighted code quasimorphism

f Zz : Z ∗ B → Z by f Zz (g) = θZz (g) − θZz (g−1)

for all g ∈ Z ∗ B. Note that we again have θZz (g−1) = θZz̄ (g) for all g.

Lemma 5.5 Let z be a non-empty tuple of non-zero natural numbers. Then the counting
function θZz : Z ∗ B → Z≥0 satisfies

1. θZz (g−1) = θZz̄ (g) for all g ∈ Z ∗ B,

2. |θZz (w1w2) − θZz (w1) − θZz (w2)| ≤ 2 for all reduced words w1, w2 in Z ∗ B for which
w1w2 is a reduced word.

Moreover, f Zz : Z ∗ B → Z defined for all g ∈ Z ∗ B by f Zz (g) = θZz (g) − θZz (g−1) is a
quasimorphism of defect D( f Zz ) ≤ 30.

Proof First, recall that the reduced form of g−1 is obtained by inverting the reduced form
of g, which amounts to reversing the order and inverting all letters. This means to obtain
the weighted Z-code of g−1 one needs to reverse the one of g. Consequently, counting the
number of disjoint occurrences of z in the weighted Z-code of g−1 amounts to counting the
disjoint occurrences of the reversed tuple z̄ in the weighted Z-code of g itself. This proves
the first part.

Second, let w1, w2 be written as reduced words with Z-tuples given by (n1, . . . , nk) for
w1 and (m1, . . . ,m�) for w2 for integers ni ,m j . Let (x1, . . . , xk′) and (y1, . . . , y�′) be the
weighted Z-codes of w1 and w2. By assumption there is no cancellation or reduction in the
product of their reduced expressions representing w1w2. That means that the last letter ofw1

and the first letter of w2 belong to different factors. Then

weighted Z-code(w1w2) =
{

(x1, . . . , xk′ , y1, . . . , y�′) if sgn(nk) �=sgn(m1),

(x1, . . . , xk′−1, xk′ +y1, y2, . . . , y�′) if sgn(nk)=sgn(m1).

If sgn(nk) �= sgn(m1), then θZz (w1w2) ∈ {θZz (w1)+θZz (w2), θ
Z
z (w1)+θZz (w2)+1} since

at most one of the disjoint occurrences of z can involve numbers that do not lie completely
in the weighted Z-code of either w1 or w2.

If sgn(nk) = sgn(m1), then θZz (w1w2) ≥ θZz (w1)+θZz (w2)−2 since only one occurrence
of z in the weighted Z-code of w1 and w2 can involve the first or last number respectively.
Moreover, if an occurrence of z in the weighted Z-code of w1w2 involves xk′ + y1, then
all other occurrences are fully contained in the weighted Z-code of either w1 or w2. Thus,
θZz (w1w2) ≤ θZz (w1) + θZz (w2) + 1.

In both cases we conclude that

|θZz (w1w2) − θZz (w1) − θCz (w2)| ≤ 2.

It follows from Lemma 2.12 that f Zz is a quasimorphism of defect at most 30. 	

Lemma 5.6 For all non-empty tuples z the weighted code quasimorphism f Zz : Z ∗ B → Z

is invariant under factor automorphisms and transvections.

Proof It is immediate from the definition that the weighted Z-code of any element in the free
product is invariant under factor automorphisms. Let x be a generator of the infinite cyclic
factor in Z ∗ B. Any transvection is defined to be the identity on letters from B and maps
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x → xy or x → yx for some non-trivial element y ∈ B. Let us consider the transvection ϕ

uniquely specified by x → xy and show that the weighted Z-code of any element in Z ∗ B
is invariant under ϕ. Then it immediately follows that θZz and f Zz are invariant under ϕ. The
argument for transvections of the second kind will follow analogously to the one we present
now.

Let w ∈ Z ∗ B be a reduced word such that its weighted Z-code has length one. This
means that all letters from Z in the reduced expression of w have the same sign and the
weighted Z-code is given by the image of w under the factor projection Z ∗ B → Z. Note
that this factor projection is invariant with respect to ϕ and so the weighted Z-code of ϕ(w)

agrees with the one of w. There cannot be any cancellations of letters from Z occurring.
Let us do a preliminary calculation to visualise the general case more easily. Let k, � be

non-zero natural numbers and b ∈ B non-trivial. Then

ϕ(xkbx−�)=ϕ(x)kbϕ(x)−� =(xy)kb(y−1x−1)� = xy. . .xyxyby−1x−1y−1x−1 . . . y−1x−1,

ϕ(x−kbx�) = ϕ(x)−kbϕ(x)� = (y−1x−1)kb(xy)� = y−1x−1 . . . y−1x−1bxy . . . xy.

This shows that the letter from B separating the positive and negative powers of x either
remains b or is a conjugate of b in B after applying ϕ.

Letw ∈ Z∗B be a reduced word with weightedZ-code of length k ≥ 2. Inw we formally
gather all consecutive occurrences of powers of x of the same sign and call these sub-words
wi for i = {1, . . . , k}. That is, we write the reduced wordw uniquely as a product of reduced
words as

w = w1b1w2b2 . . . wk−1bk−1wk,

where the bi ∈ B are non-trivial and the wi are of of maximal length such that all letters
from Z inside any wi have the same sign. Moreover, in this decomposition w1 ends with a
letter from Z, wn starts with a letter from Z and all other wi start and end with letters from
Z. By the maximality of wi all letters from Z occurring in wi have different signs from the
ones occurring in wi+1 for all i .

We apply ϕ to w and obtain an a priori not necessarily reduced word, which we rewrite
in the previous block form as

ϕ(w) = ϕ(w1)b1ϕ(w2)b2 . . . ϕ(wk−1)bk−1ϕ(wk) = w′
1b

′
1w

′
2b

′
2 . . . w′

k−1b
′
k−1w

′
k,

where b′
i = yby−1 if the letters from Z change sign from positive to negative at bi and

b′
i = bi if they change from negative to positive. Moreover, all letters from Z inside any w′

i
have the same sign again, w′

1 ends with a letter from Z, w′
n starts with a letter from Z and all

other w′
i start and end with letters from Z.

We observe that when bringing ϕ(w) to its reduced form there cannot be any cancellations
of the letters b′

i . This is because by Lemma 5.1 the letters that are adjacent to bi will always
remain letters fromZ after the reduction procedure of allw′

i . Indeed, replacing allw
′
i by their

reduced forms w′′
i we see that the product

w′′ = w′′
1b

′
1w

′′
2b2 . . . w′′

k−1b
′
k−1w

′′
k

is the reduced representative of ϕ(w) since the letters adjacent to the b′
i are always letters

fromZ. Consequently, no cancellations in between letters of different signs fromZ can occur
when bringing ϕ(w) to its reduced form. The reduced words w′′

i have the same weighted
Z-code as the original wi for all i . Therefore, the weighted Z-code of ϕ(w) agrees with the
weighted Z-code of w. 	
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Proposition 5.7 Let B be a freely indecomposable group which is not infinite cyclic. Then
for any generic tuple of natural numbers z the homogenisation f̄ Zz : Z ∗ B → R of the
quasimorphism f Zz is an unbounded Aut-invariant quasimorphism on Z ∗ B. Moreover, the
space of homogeneous Aut-invariant quasimorphisms on Z ∗ B that vanish on letters has
infinite dimension.

Proof By Lemma 5.5 f Zz is a quasimorphism, which is invariant under factor automorphisms
and transvections according to Lemma 5.6. Images of these automorphisms generate the outer
automorphism group Out(Z ∗ B) by Lemma 3.3. Thus, f Zz is invariant under a full set of
representatives of all outer automorphisms and so by Lemma 3.2 the homogenisation f̄ Zz is
invariant under Aut(Z ∗ B). It remains to check that it is unbounded, which is equivalent to
f Zz itself being unbounded.
Since z is generic, z = (n1, . . . , nk) for some k ≥ 3 where all ni ∈ N are non-zero.

Let b ∈ B be non-trivial and m a strictly positive integer number distinct from all ni . Set
w ∈ Z ∗ B to be

w =
{

n1b(−n2)bn3b(−n4) . . . b(−nk)b if k is even,

n1b(−n2)bn3b(−n4) . . . b(−nk)bmb if k is odd.

The weighted Z-code of w is given by

weighted Z-code(w) =
{

(n1, . . . , nk) = z if k is even,

(n1, . . . , nk,m) = (z,m) if k is odd.

Since w starts and ends with letters belonging to different factors, the reduced expression
of w� is the �-fold product of the word w for all � ∈ N. Moreover, since the first and last
letter from Z in w have different signs the weighted Z-code of w� is

weighted Z-code(w�) =
{

(z, z, . . . , z) if k is even,

(z,m, z,m, . . . , z,m) if k is odd.

Sincem is distinct from all ni ,m cannot appear in any occurrence of z or z̄ inside theweighted
Z-code of w�. So θZz (w�) = �, whereas θ A

z̄ (w�) = 0 since z is generic. Consequently,

f Zz (w�) = θZz (w�) − θZz̄ (w�) = �,

which shows that f Zz is unbounded.
Finally, let us verify that the space of homogeneous Aut-invariant quasimorphisms on

Z ∗ B that vanish on letters is infinite-dimensional. Let r ∈ N and let z1, . . . , zr be generic
tuples. Choose zr+1 be a 3-tuple whose entries are distinct non-zero natural numbers and do
not appear in any of the zi ; then zr+1 is generic. It follows from the above construction of the
wordw for zr+1 that any linear combination of f Zz1 , . . . , f Zzr vanishes on all powers of thisw. It
follows that the same holds for any linear combination of their homogenisations f̄ Zz1 , . . . , f̄ Zzr .
Thus, f̄ Zzr+1

is not contained in the subspace spannedby thefirst r quasimorphisms.Clearly, the
homogenisation of any weighted code quasimorphism vanishes on all letters of Z∗ B. Since,
r ∈ N was arbitrary, it follows that the space of homogeneous Aut-invariant quasimorphisms
on Z ∗ B that vanish on letters cannot have finite dimension. 	

Remark 5.8 Proposition 5.7 does not hold for B = Z. Indeed, f̄ Zz does no longer need to
be invariant under Aut(Z ∗ B) since the weighted Z-code is in general not invariant under
transvections of the factor B.
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For example, consider z = (4, 3, 2, 1) and denote the standard generators of Z ∗ B by
x ∈ Z and y ∈ B. Following the proof of Proposition 5.7 the elementw = x4yx−3yx2yx−1y
with weighted Z-code of (4, 3, 2, 1) satisfies f Zz (w�) = � for all � ∈ N. Let ϕ ∈ Aut(Z ∗ B)

be the transvection of the second factor defined by ϕ(x) = x and ϕ(y) = x3y. Then
ϕ(w) = x7y2x5yx2y. So the weighted Z-code of ϕ(w) is the tuple with a single entry equal
to 14. Thus, f Zz (ϕ(w�)) = f Zz (ϕ(w)�) = 0 for all � ∈ N. So f̄ Zz evaluates non-trivially on
w, but trivially on ϕ(w), which means that f̄ Zz is not invariant under Aut(Z ∗ B).

Moreover, this example can be used to show that the sum of the two weighted code
quasimorphisms f̄ Zz + f̄ Bz is not necessarily invariant underAut(Z∗B) either, which contrasts
the situation of free factors that are not infinite cyclic in Propostion 4.11 (2).

6 Applications of code quasimorphisms

Proof of Theorem 1 By [3, Theorem 2] the space of homogeneous Aut-invariant quasimor-
phisms on Z ∗ Z is infinite-dimensional. Inverting both generators of the factors defines an
automorphismwhich inverts all letters inZ∗Z. So any homogeneousAut-invariant quasimor-
phism on Z ∗ Z vanishes on all letters. For all other free products of two factors Proposition
4.11 and Proposition 5.7 imply the existence of infinitely many linearly independent homo-
geneous Aut-invariant quasimorphisms, all of which vanish on letters. 	

Proof of Corollary 1.1 Let A ∗ B be a free product of two freely indecomposable groups
which is not the infinite dihedral group. By Theorem 1 there exist unbounded Aut-invariant
quasimorphisms on A ∗ B that are bounded on all letters. Since A ∗ B is generated by letters,
the result follows from Lemma 2.7. 	

Remark 6.1 If neither A nor B is infinite cyclic, then Corollary 1.1 can also be deduced from
the result given in [13, Lemma 4.4] together with the explicit description of the automorphism
group given in Sect. 3.

Corollary 6.2 Let G = ∗i∈I Gi be a free product of finitely many freely indecomposable
groups Gi . Assume there exist free factors G j and Gk with j �= k such that no free factor Gi

for i /∈ { j, k} is isomorphic to G j or Gk or is infinite cyclic. Moreover, assume that G j , Gk

are not both equal to Z/2. Then any unbounded Aut-invariant quasimorphism on G j ∗ Gk

gives rise to an unbounded Aut-invariant quasimorphism on G. In particular, the space of
homogeneous Aut-invariant quasimorphisms on G is infinite-dimensional.

Proof We claim that the projection p : G → G j ∗ Gk is Aut-equivariant, i.e. any automor-
phism ofG descends via p to an automorphism ofG j ∗Gk . This is equivalent to ker(p) being
a characteristic subgroup of G. Once this is established, we apply Theorem 1 to G j ∗Gk and
conclude the proof by applying Lemma 3.4.

Let us now show that any automorphism of G indeed descends to G j ∗ Gk . By [8]
Aut(G) is generated by factor automorphisms, swap automorphisms, partial conjugations and
transvections since inner automorphisms can be written as products of factor automorphisms
and partial conjugations. It is clear that all factor automorphisms and all partial conjugations
of G descend to automorphisms of G j ∗ Gk via p. By our assumption there are no swap
automorphisms permuting any other free factors in G with G j and Gk , so these descend to
the quotient as well. It only remains to check the transvections if G j or Gk happen to be
infinite cyclic. So let G j be infinite cyclic generated by x and let a be a letter from a different
factorG�. If � = k, then any transvection ϕa defined by ϕa(x) = ax or ϕa(x) = xa descends
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via p to the same transvection on G j ∗ Gk . If � �= k, any such transvection descends to
the identity on G j ∗ Gk . In particular, it always descends via p. Since a generating set of
Aut(G) descends to automorphisms of the quotient G j ∗ Gk , any element of Aut(G) does
so. Consequently, the map p is Aut-equivariant. 	

Corollary 6.3 Let H → G → A∗B bean extensionof a free product of freely indecomposable
groups A and B by a group H. Assume that H is a characteristic subgroup of G and A∗ B is
not the infinite dihedral group. Then the space of homogeneousAut-invariant quasimorphisms
on G is infinite-dimensional.

Proof The space of homogeneous Aut-invariant quasimorphisms on A ∗ B is infinite-
dimensional by Theorem 1. Therefore, the result follows from Lemma 3.4. 	

Corollary 6.4 Let G1∗H G2 be a free product of groups G1,G2 amalgamated over a common
subgroup H which is proper and central in both G1 and G2. If G1/H and G2/H are
freely indecomposable and not both equal to Z/2, the space of homogeneous Aut-invariant
quasimorphisms on G1 ∗H G2 is infinite-dimensional.

Proof By assumption H �= G1 and H �= G2 and so H equals the center of G1 ∗H G2.
As such it is a characteristic subgroup of G1 ∗H G2. Furthermore, G1∗HG2

H
∼= G1

H ∗ G2
H . By

assumption G1
H ∗ G2

H is not isomorphic to the infinite dihedral group and the result follows
from Corollary 6.3 above. 	

Example 6.5 For q ≥ 3, the Hecke groups Hq ∼= Z/2 ∗ Z/q admit infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms by Theorem 1.

Example 6.6 By Corollary 6.4 the space of homogeneous Aut-invariant quasimorphisms on
SL(2, Z) is infinite-dimensional, since SL(2, Z) is the amalgamated product Z/4 ∗Z/2 Z/6.

Example 6.7 The braid group B3 admits infinitely many linearly independent homogeneous
Aut-invariant quasimorphism as well by Corollary 6.3. Indeed, B3 is the universal central
extension of PSL(2, Z) = Z/2 ∗ Z/3 by Z.

Example 6.8 Let Gp,q = Z ∗Z Z be the free product of two copies of the integers amal-
gamated over inclusions ι1, ι2 : Z → Z which are multiplication by p and q . For coprime
choices of p and q these are the so called knot groups Kp,q arising as the fundamental group
of the complement of torus knots. Then Gp,q admits infinitely many linearly independent
homogeneous Aut-invariant quasimorphisms if min{|p|, |q|} ≥ 2 and max{|p|, |q|} ≥ 3.We
have seen in Example 2.10 that this is no longer true for p = q = 2.

Example 6.9 B3∗ZB3, the free product of B3 with itself amalgamated over their common cen-
ter generated by the Garside element, admits infinitely many linearly independent unbounded
Aut-invariant quasimorphisms. To prove this we cannot apply Corollary 6.4 directly since
B3/Z is not freely indecomposable. The center of B3 ∗Z B3 is again generated by the Garside
element of each of the factors. This fits into the short exact sequence

Z → B3 ∗Z B3 → (B3/Z) ∗ (B3/Z).

Finally, (B3/Z) ∗ (B3/Z) = PSL(2, Z) ∗PSL(2, Z) = Z/2 ∗ Z/3 ∗ Z/2 ∗ Z/3. So Corollary
6.2 applies with G j = Gk = Z/3. Then the statement for B3 ∗Z B3 follows from Lemma
3.4.
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7 Aut-invariant stable commutator length

For any group G let clG denote the commutator length on [G,G], which is defined to be
the minimal number of commutators required to write a given element of the commutator
subgroup. Let sclG(x) = limn

cl(xn)
n denote the stable commutator length of x ∈ [G,G]. It

shares a deep relationship with quasimorphisms on G through the so called Bavard duality
[6]. We now define the Aut-invariant (stable) commutator length; this is a special case of the
so called Ĝ-invariant (stable) commutator length defined in [12] for groups Ĝ in which G is
a normal subgroup.

Definition 7.1 Let G ≤ Ĝ be a normal subgroup. Consider the subgroup [Ĝ,G] ≤ G
generated by commutators of the form [F, g] and their inverses where F ∈ Ĝ and g ∈ G.
Then for x ∈ [Ĝ,G] the Ĝ-invariant commutator length clĜ,G(x) is defined to be theminimal
length of an expression of x as a product of commutators [F, g] and their inverses where
F ∈ Ĝ and g ∈ G. The Ĝ-invariant stable commutator length sclĜ,G for x ∈ [Ĝ,G] is
defined by sclĜ,G(x) = limn

clĜG (xn)
n .

Given any groupG, its inner automorphism group Inn(G) is a normal subgroup of Aut(G)

and so the above definition applies to Inn(G). If G has trivial center, G can be identified with
Inn(G). In this case we simplify the notation by denoting the Aut(G)-invariant commutator
length simply as clAut and the Aut(G)-invariant stable commutator length simply as sclAut.

Setting Ĝ = Aut(G) the following lemma is proven in [12, Lemma 2.1].

Lemma 7.2 Let G be a group with trivial center so that G = Inn(G). Let φ be an homoge-
neous Aut-invariant quasimorphism on G. Then any x ∈ [Aut(G),G] ≤ G satisfies

sclAut(x) ≥ 1

2

|φ(x)|
D(φ)

.

	

In fact, according to [12, Theorem 1.3] Ĝ-invariant quasimorphisms satisfy an analogue of

the Bavard duality theorem if [Ĝ,G] = G. All free products A∗ B of freely indecomposable
groups A and B have trivial center and so the notions clAut and sclAut apply. However, free
products often fail to satisfy [Aut(G),G] = G. We will use a constructive approach rather
than relying on an invariant analogue of Bavard’s duality in the following.

Example 7.3 For D∞ = Z/2 ∗Z/2 it holds that sclAut ≡ 0. To see this denote the generators
of the Z/2 factors by a and b and let s be the automorphism of D∞ interchanging a and b.
Then we calculate [s, a] = sas−1a−1 = s(a)a−1 = ba and [s, b] = ab = (ba)−1. Since
the total number of letters appearing in any expression of the form [ f , x] is always even
where f ∈ Aut(D∞) and x ∈ D∞, it holds that [Aut(D∞), D∞)] ∼= Z generated by ba. In
fact, any power (ba)k for k ∈ Z can be written as a single commutator [s, w], where w is
one of the two words of length |k|. Thus, clAut is equal to one for any non-trivial element in
[Aut(D∞), D∞)] and sclAut vanishes.
Example 7.4 Consider G = PSL(2, Z) = Z/3∗Z/2. Then Aut(G) is generated by the set C
consisting of the non-trivial factor automorphism of Z/3 and conjugations by letters of Z/3
and Z/2, since both free factors are abelian groups. Consequently, [Aut(G),G] is normally
generated by commutators of the form [c, g] = cgc−1g−1 = c(g)g−1 for c ∈ C and g ∈ G.
In all expressions [c, g] the letter b representing the non-trivial element of the factor Z/2
arises an even number of times. Therefore, b /∈ [Aut(G),G] and the latter is not the full
group G.
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Lemma 7.5 Let G = A ∗ B be a free product of freely indecomposable groups where at least
one of the factors is infinite cyclic. Then [Aut(G),G] has index at most two in G. Therefore,
any unbounded quasimorphism on G is unbounded when restricted to [Aut(G),G].
Proof If an unbounded quasimorphism q is bounded on a finite index subgroup H ≤ G, its
homogenisation q̄ vanishes on H . Then q̄ descends to a map of sets on the finite set G/H
implying that the image of q̄ is bounded and so was the image of q to begin with. Therefore,
any quasimorphism q with unbounded image cannot be bounded on H . So, it remains to
show that the index of [Aut(G),G] in G is at most two to prove the lemma.

First, consider the case where A and B are both infinite cyclic and so G can be identified
with F2, the free group of rank 2. Let x and y be standard generators. Consider the auto-
morphism ϕ of F2 defined by ϕ(x) = yx and ϕ(y) = y. Then [ϕ, x] = ϕ(x) · x−1 = y. So
〈y〉 ≤ [Aut(F2), F2]. By symmetry of the generating set it holds that 〈x〉 ≤ [Aut(F2), F2]
as well and it follows that [Aut(F2), F2] = F2.

Second, consider the case where only one of the factors is infinite cyclic. Without loss
of generality assume A = Z. Let x denote a generator of A. For any b ∈ B we can define
the transvection ϕb on x by ϕb(x) = bx and by ϕb(b′) = b′ for all b′ ∈ B. Then ϕb is an
automorphism and satisfies [ϕb, x] = ϕb(x)·x−1 = b for all b ∈ B. Thus, B ≤ [Aut(G),G].
Moreover, denoting the non-trivial factor automorphism of A = Z by f we compute [ f , x] =
f (x) · x−1 = x−2 and deduce that 2Z ≤ [Aut(G),G]. Therefore, 2Z ∗ B ≤ [Aut(G),G].
Since [Aut(G),G] is a normal subgroup, it holds that N ≤ [Aut(G),G] where N is the
normal closure of 2Z ∗ B. However, G/N ≤ Z/2 and so [Aut(G),G] has at most index 2 in
G. 	

Proof of Theorem 2 If one of the factors is infinite cyclic, Theorem 1 implies the existence
of an unbounded Aut(G)-invariant homogeneous quasimorphism, which is unbounded on
[Aut(G),G] according to Lemma 7.5. The statement then follows from Lemma 7.2.

Assume from now on that neither A nor B is infinite cyclic. We will prove the theorem by
explicitly constructing an element in [Aut(G),G] together with homogeneous Aut-invariant
quasimorphism which is non-trivial on that element.

The only non-trivial group with no non-trivial automorphisms is Z/2. Thus, one of the
factors has to have a non-trivial automorphism since A ∗ B is not the infinite dihedral group.
Without loss of generality we assume that |Aut(A)| ≥ 2. Let a1 ∈ A such that
f (a1) = a2 �= a1 for some f ∈ Aut(A). Then we compute that [ f , a1] = a2a

−1
1 is a

non-trivial element in [Aut(G),G]. Since [Aut(G),G] is normal, it holds for any h ∈ B that
ha2a

−1
1 h−1 ∈ [Aut(G),G]. Thus, (a2a−1

1 ha2a
−1
1 h−1)k ∈ [Aut(G),G] for any k ∈ N and

h ∈ B.
First, assume that A and B are not isomorphic. Since |Aut(A)| ≥ 2, it holds that |A| ≥ 3

and we can choose a non-trivial a �= a2a
−1
1 and fix some non-trivial h ∈ B. We define for

n1, . . . , n� ∈ N the word

w =
�

∏

i=1

([a, h](a2a−1
1 ha2a

−1
1 h−1)ni

) ∈ [Aut(G),G].

We calculate

A-code(w) =
{

(1, 1, 2n1, 1, 1, 2n2, . . . , 1, 1, 2n�) if a−1 �= a2a
−1
1 ,

(1, 2n1 + 1, 1, 2n2 + 1, . . . , 1, 2n� + 1) if a−1 = a2a
−1
1 .

Set z = A-code(w). For all n ∈ N it holds that A-code(wn) = (z, . . . , z). Choose � ≥ 3
togetherwith large anddistinctn1, . . . , n� ∈ N,which implies that z is generic. It follows from
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Proposition 4.11 that f̄ Az is an Aut-invariant quasimorphism. By construction f Az satisfies
f Az (wn) = n for all n ∈ N and so f̄ Az (w) > 0 for our choice of w ∈ [Aut(G),G]. The
statement then follows from Lemma 7.2.

Second, assume A ∼= B. Let s denote a swap automorphism. Set bi = s(ai ) for i ∈ {1, 2}.
Then the element [s f s−1, b1] = b2b

−1
1 ∈ [Aut(G),G] is non-trivial and belongs to the factor

B. Set b = s(a). Then a−1 = a2a
−1
1 is equivalent to b−1 = b2b

−1
1 . For n1, . . . , n� ∈ N we

define the word

w =
�

∏

i=1

([a, b](a2a−1
1 b2b

−1
1 )ni

) ∈ [Aut(G),G].

Observe, that A-code(w) = B-code(w). As in the previous case,

A-code(w) =
{

(1, 1, n1, 1, 1, n2, . . . , 1, 1, n�) if a−1 �= a2a
−1
1 ,

(1, n1 + 1, 1, n2 + 1, . . . , 1, n� + 1) if a−1 = a2a
−1
1 .

Set z = A-code(w) as before and choose � ≥ 3 and n1, . . . , n� ∈ N large enough and
distinct, so that z is generic. Again, we calculate f Az (wn) = n = f Bz (wn), which implies
that ( f̄ Az + f̄ Bz )(w) > 0. Proposition 4.11 implies that f̄ Az + f̄ Bz is an homogeneous Aut-
invariant quasimorphism and so applying Lemma 7.2 concludes the proof. 	


We will now give a few more examples of free products G where [Aut(G),G] = G and
therefore the notions of Aut-invariant (stable) commutator length are defined on all elements
of G.

Example 7.6 For a product G = A ∗ B of two freely indecomposable perfect groups
A and B it holds that [Aut(G),G] = G. Indeed, since A perfect, it holds that A =
[A, A] ≤ [Aut(G),G]. Similarly, B ≤ [Aut(G),G] and A and B generate G it follows
that [Aut(G),G] = G.

Example 7.7 G=Z/p∗Z/q satisfies [Aut(G),G]=G for p, q≥3 prime. Letm : Z/p→Z/p
be multiplication by 2, which is a factor automorphism. Consider the standard generator
1p ∈ Z/p. It holds that [m, 1p] = m(1p) − 1p = 1p . Thus, Z/p ≤ [Aut(G),G]. Similarly,
Z/q ≤ [Aut(G),G] and so [Aut(G),G] = G.

Example 7.8 Let k, � ≥ 2. Then G = Ak ∗ B� satisfies [Aut(G),G] = G for all non-trivial
abelian groups A and B. For simplicity of notation consider the case k = 2. Let φ be the
factor automorphism defined by φ(a, 0) = (a, a) and φ(0, a) = a for all a ∈ A. Then
[φ, (a, 0)] = φ(a, 0) − (a, 0) = (0, a) for all a ∈ A. Thus, A × 0 ≤ [Aut(G),G].
Analogously, 0 × A ≤ [Aut(G),G]. Since these factors generate A2 it follows that
A2 ≤ [Aut(G),G]. Similarly, B� ≤ [Aut(G),G] and so [Aut(G),G] = G.

Example 7.9 In all of the above examples for G = A ∗ B the equality [Aut(G),G] = G
is always derived by showing that both factors A and B form subgroups of [Aut(G),G].
Thus, any combination of free factors appearing in the three examples above still satisfies
this equality, for example A = Z/p for p ≥ 3 prime and B any freely indecomposable
perfect group.
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