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Abstract:
Low permeability reservoirs account for an increasing proportion of oil production.
Threshold pressure gradient is an important factor that governs the flow in low permeability
porous media. The 1-D seepage governing equation (SGE) for low permeability porous
media can be derived from the 1-D core flooding experimental rule. In the literature, for
isotropic porous media, the SGE with a threshold pressure gradient (TPG) in Cartesian and
cylinder coordinate systems are incompatible to each other. In addition, irrational results
were found in simulation using SGEs in the Cartesian coordinate system.

In this study, 3-D SGEs with a TPG in the Cartesian coordinate system and for radial
flow in the cylindrical coordinate system are derived from the vector form of the seepage
velocity in 3-D domain which is transformed from the 1-D seepage velocity vector. The 1-
D equation degenerated from the 3-D SGE of low permeability media is in accordance with
the 1-D SGE. The derived SGE of low permeability porous media in Cartesian coordinate
systems is consistent with that in cylindrical coordinate systems. So, the contradiction of
SGEs with a TPG in literature is resolved.

For anisotropic reservoirs with a TPG, with the assumption that the impeding of a TPG
to flow in porous media occurs in the opposite direction of the seepage velocity vector, the
general seepage initiation condition for anisotropic porous media with a TPG is derived.
The SGEs for anisotropic porous media with a TPG under a specific condition in Cartesian
coordinate systems and for radial flow in cylindrical coordination the systems are derived,
and then are degenerated to isotropic cases. It is found that a simple form of the SGE
anisotropic porous media with a TPG can only be derived when the flow is radial. So, it
is suggested that numerical simulations for anisotropic porous media with a TPG should
use the equation set composed by the pressure and seepage velocity vector. The analysis
also indicates that a TPG of anisotropic reservoirs is a two-order tensor, and cannot be
represented by a vector. However, the current form of effective pressure gradient requires
further investigation.

1. Introduction
Along with high quality oil/gas reserves’ gradual exhaus-

tion, low-permeability reservoirs contribute to a large propor-
tion of current petroleum production. However, amount of
experimental studies have shown that low-permeability reser-
voirs, unlike conventional reservoirs, have non-linear perme-
ability characteristics between flow rate and pressure gradient
and there is a threshold pressure gradient (TPG) to archive
effective seepage (Thomas et al., 1968; Prada and Civan,
1999; Zeng et al., 2010; Zeng et al., 2012). The existence
of a TPG makes the flow of liquid through low permeability
reservoirs have many special properties. Based on a number

of experimental studies on low permeability cores (Li et al.,
2008; Xiong, 2009; Ding et al., 2014), a variety of constitutive
relationships between pressure gradients and seepage rates
have been proposed (Dudgeon, 1966; Prada and Civan, 1999;
Li et al., 2016; Wang and Sheng, 2017). Combining with the
specific conditions of oil and gas reservoirs, various governing
equations with a TPG were established. These governing
equations are widely used in reservoir engineering, including
well testing analysis (Sun et al., 2010; Guo et al., 2012; Zhao
et al., 2013, 2015a, 2015b; Escobar et al., 2015; Diwu et al.,
2018), productivity evaluation (Zhu et al., 2011; Wu et al.,
2014; Song et al., 2015; Tian et al., 2018), and rate transient
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analysis (Zeng et al., 2016, 2018). Due to the presence of
a TPG, the boundary of flow in low permeability reservoirs
changes over time, i.e., the moving boundary (Liu et al., 2012,
2016; Wang et al., 2015). Within the moving boundary, oil
and gas could flow. So, there exists an initiation condition
for seepage. At present, the governing equations used in the
studies were mainly for one-dimensional linear flow and radial
flow. Although 2-dimensional or 3-dimensional governing
equations with TPGs are used in reservoir simulations (Xu et
al., 2012; Civan, 2013, 2017; Liu and Wu, 2015; Liu, 2017),
their correctness has not been validated.

It is observed that the general seepage governing equation
(SGE) with a TPG in Cartesian coordinate systems reported in
the literature cannot be transformed into its form in cylindrical
coordinate systems for radial flow (see Section 5.1 for details).
Chen (2011) claimed that the TPG of linear flow cannot
be used for planar radial flow. As Bingham fluids have a
TPG, Liu (2013) used the commercial simulation software
CMG’s Bingham module to simulate well productions in an
isotropic homogeneous reservoir with a TPG, and found that
the pressure distribution is not radially symmetric which does
not conform to physical laws. Therefore, for the SGE with
a TPG in 2-dimensional and 3-dimensional cases, it is not
completely clear, and it needs further investigations.

At present, researches on flow in low-permeability reser-
voirs with a TPG is primarily focused on isotropic reservoirs.
However, the actual reservoir permeability may be anisotropic,
and it is essential to study the SEG for anisotropic low-
permeability reservoirs with a TPG.

Based on the representation of a TPG in 3-dimensional
domain, the SGEs for isotropic and anisotropic reservoirs
in Cartesian and cylindrical coordinate systems are derived.
Then, the consistency of SEGs for isotropic reservoirs, the
form of the SEGs and the representation of a TPG are
discussed. At last, the SEGs of the anisotropic and isotropic
reservoirs are compared.

2. Flow in low-permeability porous media
A large number of experiments have shown that the relation

between a flow velocity and a pressure gradient in low
permeability cores does not follow Darcy’s law, namely it
is not a straight line through the origin of coordinates (Fig.
1). This figure illustrates that the flow velocity vs pressure
gradient curves’ x-axis (Pressure Gradient) intersection not
equals to zero, and the corresponding pressure gradient is
named as TPG (see point A). It is also shown that the
relationship between seepage velocities and pressure gradients
is not linear at small pressure gradient. It becomes linear
when the pressure gradient increases, while the extension of
the straight line does not pass through the origin, and the
intersection point B is the pseudo-threshold pressure gradient
(PTPG). A distinction between a TPG and a PTPG will not
be made in the following sections. There are many equations
for describing low-permeability seepage laws, including power
law functions, exponential functions, linear functions with a
single parameter, linear functions with multi-parameters, etc
(Diwu et al., 2018). For one-dimensional core flooding exper-

Fig. 1. Schematic plot of non-Darcy flow for low-permeability cores.

iments, the following form of linear equation is normally used
to describe the relationship between flow rates and pressure
gradients (Prada et al., 1999):

V =

−
K
µ

J
(

1− λ

|J|

)
|J|> λ

0 |J|< λ

(1)

It should be noted that the bold symbols V, J, K, and
λ represent the velocity vector, pressure gradient vector,
permeability tensor, and TPG tensor in 3-dimensional do-
main, respectively, and the un-bold symbols indicate their 1-
dimensional domain Scalar.

The direction of a flow velocity is not necessarily consis-
tent with the coordinate axis in 3-dimensional domain, and
thus it is worth to revisit the SGE. For convenience, the
influence of gravity is neglected in Eq. (1). If including gravity
affect and assuming it acts downward along the z-coordinate,
the pressure gradient in z-coordinate, ∂ p/∂ z, should be re-
placed with ∂ p/∂ z + ρg. It has to be noted that the one-
dimensional form of seepage Eq. (1) is based on the direction
consistency of the seepage velocity vector, the pressure gradi-
ent vector, and the spatial axis. When the direction of a seepage
velocity vector is not parallel to any axis, the seepage velocity
vector and the pressure gradient vector can be written in a 3-
dimensional form. For isotropic reservoirs, the direction of a
seepage velocity vector is consistent with that of the pressure
gradient vector. When the pressure gradient is greater than the
TPG, the velocity vector in 3-dimensional coordinates can be
obtained from Eq. (1) (Dou et al., 2014):

V =

Vx

Vy

Vz

=−K
µ
J

(
1− λ

|J |

)

=−K
µ



∂ p
∂x
∂ p
∂y
∂ p
∂ z


1− λ√(

∂ p
∂x

)2
+
(

∂ p
∂y

)2
+
(

∂ p
∂ z

)2


(2)
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This equation is only a result of the coordinate transforma-
tion of the seepage velocity vector Eq. (1) . The permeability
of anisotropic reservoirs is a second-order tensor, and the
general form in the Cartesian coordinate system (x, y, z) is
(Kong, 2010):

K =

 Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 (3)

For ease of analysis, assuming the axes coincides with the
three principal axes of the tensor, respectively, then, Eq. (3)
becomes (Kong, 2010):

K =

 Kxx 0 0

0 Kyy 0

0 0 Kzz

 (4)

When Kxx = Kyy = Kzz, it is the permeability tensor for
isotropic reservoirs. For permeability of anisotropic reservoirs,
the TPG can also be represented by a second-order tensor
(discussed in detail in Section 5.4). Also assuming its major
axes are consistent with these of the permeability tensor, for
simplicity, the following Eq. (5) uses the linear form of the
TPG.

λ=

 λx 0 0

0 λy 0

0 0 λz

 (5)

For isotropic reservoirs, λx = λy = λz = λ . In one-
dimensional low-permeability core experiments, the impeding
effect of a TPG on the seepage flow points in its negative
direction. In the 3-dimensional domain, it is assumed that
the impeding effect of the anisotropic reservoir TPG tensor
is similar as in the 1D case. So the effective pressure gradient
for seepage in the 3-dimensional domain is:

Je = J−
(
−λ · V

|V|

)
= J+λ · V

|V|

(6)

Therefore, the 3-dimensional domain seepage velocity is:

V =−K
µ
·
(

J+λ · V
|V|

)

=− 1
µ




Kx

∂ p
∂x

Ky
∂ p
∂y

Kz
∂ p
∂ z

+

 λxKxVx

λyKyVy

λzKzVz

 1√
V 2

x +V 2
y +V 2

z


(7)

This equation could be reformulated as:



µ +
λxKx√

V 2
x +V 2

y +V 2
z

Vx

µ +
λyKy√

V 2
x +V 2

y +V 2
z

Vy

µ +
λzKz√

V 2
x +V 2

y +V 2
z

Vz


=−


Kx

∂ p
∂x

Ky
∂ p
∂y

Kz
∂ p
∂ z

 (8)

Eq. (8) is then written as:

1 =

(
Kx

∂ p
∂x

)2

(
µ

√
V 2

x +V 2
y +V 2

z +λxKx

)2

+

(
Ky

∂ p
∂y

)2

(
µ

√
V 2

x +V 2
y +V 2

z +λyKy

)2

+

(
Kz

∂ p
∂ z

)2

(
µ

√
V 2

x +V 2
y +V 2

z +λzKz

)2

(9)

The seepage flow occurs only when the pressure gradient
is greater than the TPG. It implies

√
V 2

x +V 2
y +V 2

z > 0. So,
the following can be written as:(

1
λx

∂ p
∂x

)2

+

(
1
λy

∂ p
∂y

)2

+

(
1
λz

∂ p
∂ z

)2

> 1 (10)

Eq. (10) is the general form of seepage initiation condition
for an anisotropic reservoir with a TPG. Eq. (10) could be
simplified as the same seepage initiation as shown in Eq. (1)
for isotropic reservoirs.

3. Governing equations with a TPG for isotropic
reservoirs

In the Cartesian coordinate system (x, y, z), the z-axis is the
direction of gravity. Then the seepage flow rate (2) is written
in another form as:



Vx =−
K
µ

(
∂ p
∂x
−λλx

)
Vy =−

K
µ

(
∂ p
∂ z
−λλy

)
Vz =−

K
µ

(
∂ p
∂ z
−λλ z

)
√(

∂ p
∂x

)2

+

(
∂ p
∂y

)2

+

(
∂ p
∂ z

)2

> λ

(11)
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where



λλx =
λxKx

∂ p
∂x√(

Kx
∂ p
∂x

)2
+
(

Ky
∂ p
∂y

)2
+
(

Kz
∂ p
∂ z

)2

λλy =
λyKy

∂ p
∂y√(

Kx
∂ p
∂x

)2
+
(

Ky
∂ p
∂y

)2
+
(

Kz
∂ p
∂ z

)2

λλ z =
λzKz

∂ p
∂ z√(

Kx
∂ p
∂x

)2
+
(

Ky
∂ p
∂y

)2
+
(

Kz
∂ p
∂ z

)2

(12)

Note that for permeability of isotropic reservoirs, Kxx = Kyy
= Kzz and λx = λy = λz = λ in the above equation. It should
be noted that λλx, λλy and λλ z are not the components of the
TPG in the x, y, and z directions, respectively, but are simply
the symbols introduced for writing concisely.

Here, the fluid compressibility (c f ) and the pore compress-
ibility (cr) are defined as:

c f =
1
ρ

dρ

d p
(13)

cr =
1
φ

dφ

d p
(14)

And the total compressibility can be defined as:

ct = cr + c f (15)

Substituting velocity Eq. (11) into the continuity Eq. (16):

∂ (φρ)

∂ t
+∇ · (ρV) = ρq (16)

It yields Eq. (17) in the x direction:

∂ (ρVx)

∂x
=−K

µ

∂

∂x

(
ρ

∂ p
∂x
−ρλλx

)

=−Kρ

µ

[
c f

(
∂ p
∂x

)2

+
∂ 2 p
∂x2 −

∂λλx

∂x
− c f λλx

∂ p
∂x

]
(17)

When deriving the SGEs, it is generally assumed that the
quadratic term of the pressure gradient can be ignored. This
hypothesis is also adopted here. Substituting Eq. (12) into Eq.
(17), it yields:

∂ (ρVx)

∂x
=

− ρK
µ



∂ 2 p
∂x2

1− λ√(
∂ p
∂x

)2
+
(

∂ p
∂y

)2
+
(

∂ p
∂ z

)2


+

∂ p
∂x

λ[(
∂ p
∂x

)2
+
(

∂ p
∂y

)2
+
(

∂ p
∂ z

)2
] 3

2
×

(
∂ p
∂x

∂ 2 p
∂x2 +

∂ p
∂y

∂ 2 p
∂x∂y

+
∂ p
∂ z

∂ 2 p
∂x∂ z

)



(18)

Similar results can be derived for the y and z directions,
which are not explicitly written here. Also, the first item of
the left side of the continuity Eq. (16) can be transformed as:

∂ (ρφ)

∂ t
= ρ

dφ

d p
∂ p
∂ t

+φ
dρ

d p
∂ p
∂ t

= ρφcr
∂ p
∂ t

+ρφc f
∂ p
∂ t

= φρct
∂ p
∂ t

(19)

Assuming that the source or sink term q is 0 and there is
a second order continuous derivative with respect to x, y, and
z for the pressure, the governing equation is:

(
∂ 2 p
∂x2 +

∂ 2 p
∂y2 +

∂ 2 p
∂ z2

)1− λ√(
∂ p
∂x

)2
+
(

∂ p
∂y

)2
+
(

∂ p
∂ z

)2



+
λ[(

∂ p
∂x

)2
+
(

∂ p
∂y

)2
+
(

∂ p
∂ z

)2
] 3

2


(

∂ p
∂x

)2
∂ 2 p
∂x2 +

(
∂ p
∂y

)2
∂ 2 p
∂y2 +

(
∂ p
∂ z

)2
∂ 2 p
∂ z2

+2
∂ p
∂x

∂ p
∂y

∂ 2 p
∂x∂y

+2
∂ p
∂x

∂ p
∂ z

∂ 2 p
∂x∂ z

+2
∂ p
∂y

∂ p
∂ z

∂ 2 p
∂y∂ z

=
φ µct

K
∂ p
∂ t

√(
∂ p
∂x

)2

+

(
∂ p
∂y

)2

+

(
∂ p
∂ z

)2

> λ

(20)

Eq. (20) is the 3-dimensional SGE for permeability
isotropic reservoirs with a TPG in Cartesian coordinate sys-

tems. Their form for radial flow in cylindrical coordinate
systems is shown in Appendix 1.
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4. Governing equations with a TPG for
anisotropic reservoirs

4.1 Cartesian coordinate system

It is easy to find out from Eq. (8) that the solution of the
general form of seepage velocity components requires solving
a unary six order equation. Obtaining the analytical solution
of this equation is difficult. To obtain a simple SGE, an
assumption is made here. The assumption is that the direction
of the seepage velocity with a TPG is the same as that without
a TPG, i.e.,

V
|V|

=− KJ
|KJ|

(21)

With the assuption Eq. (21), the SGE and seepage initiation
condition for anisotropic reservoirs with a TPG in Cartesian
coordinate systems can be obtained. The specific derivation
and results can be found in Appendix 2.1. At the same time,
it can be found that this equation requires Kxλx = Kyλy =
Kzλz.

4.2 Cylindrical coordinate system

In the cylindrical coordinate system (r, θ , z), the rela-
tionship between its base vector and that of the Cartesian
coordinate system is represented as:

er = cosθ ēx + sinθ ēy

eθ =−sinθ ēx + cosθ ēy

ez = ēz

(22)

According to the theory of tensor analysis (Huang et al.,
2003), the permeability tensor in the cylindrical coordinate
system can be obtained from the permeability tensor Eq. (4)
in the Cartesian coordinate system using Eq. (22) as:


Kxcos2θ +Kysin2

θ (Ky−Kx)cosθ sinθ 0

(Ky−Kx)cosθ sinθ Kxsin2
θ +Kycos2θ 0

0 0 Kz

 (23)

Similarly, the TPG tensor in the cylindrical coordinate
system can be obtained from the TPG tensor Eq. (5) in the
Cartesian coordinate system as follow:


λxcos2θ +λysin2

θ (λy−λx)cosθ sinθ 0

(λy−λx)cosθ sinθ λxsin2
θ +λycos2θ 0

0 0 λz

 (24)

While considering the general SGE, the calculation will
become complicated. SEGs are much simpler for the axis-
symmetrical condition, but the equations are also very com-
plicated because of the seepage velocity in the z-direction.
The radial flow governing equation is commonly used in
well testing. Here, only the radial flow governing equation is
derived. The results of the derivation are shown in Appendix
2.2. This governing equation requires Kxλx = Kyλy.

5. Discussion

5.1 The consistency of governing equations in differ-
ent coordinate systems

In the case of a 1-dimensional flow, the governing Eq. (20)
in the Cartesian coordinate systems can be simplified into:

∂ 2 p
∂x2 =

φ µct

K
∂ p
∂ t

(25)

Eq. (25) is consistent with that in the literature (Liu et al.,
2012), which demonstrates the credibility of the derivation
above. Also, it can be seen that any item in the governing
Eq. (20) cannot be ignored. The following equation for low-
permeability reservoirs in Cartesian coordinate systems ap-
pears in the literature (Kong, 2010; Lu, 2012, 2014):

∂ 2 p
∂x2 +

∂ 2 p
∂y2 +

∂ 2 p
∂ z2 =

φ µct

K
∂ p
∂ t

(26)

And governing equations in cylindrical coordinate systems
(Kong, 2010; Zhao et al., 2015) is presented as:

∂ 2 p
∂ r2 +

1
r

∂ p
∂ r
∓ λ

r
=

φ µct

K
∂ p
∂ t∣∣∣∣∂ p

∂ r

∣∣∣∣> λ

(27)

The negative sign preceding the last item on the left of the
Eq. (27) corresponds to a production well, and the positive
sign corresponds to an injection well.

The governing equation in the cylindrical coordinate sys-
tems for radial flow could also be derived from Eq. (26) as:

∂ 2 p
∂ r2 +

1
r

∂ p
∂ r

=
φ µct

K
∂ p
∂ t

(28)

It is observed that Eq. (28) is inconsistent with Eq. (27),
and it lacks of a term corresponding to the TPG. Thus it is
questionable. Also, it can be seen that the Eq. (20) and Eq.
(28) in Cartesian coordinate systems are different from each
other. While the governing equations Eqs. (A1-6) and (27) in
the cylindrical coordinate systems are consistent.

Eq. (20) for low-permeability reservoirs in Cartesian co-
ordinate systems is derived from Eq. (17) by ignoring the
quadratic terms of the pressure gradient, which gives Eq. (29):

∂ (ρVx)

∂x
=−Kρ

µ

[
∂ 2 p
∂x2 −

∂λλx

∂x
− c f λλx

∂ p
∂x

]
(29)

While considering radial flow:

λλx =
λ∣∣∣ ∂ p
∂ r

∣∣∣ ∂ p
∂ r

cosθ =
λ∣∣∣ ∂ p
∂ r

∣∣∣ ∂ p
∂ r

x
r (30)

and,

∂λλx

∂x
=

λ∣∣∣ ∂ p
∂ r

∣∣∣ ∂ p
∂ r

∂

∂x

(x
r

)
=

λ∣∣∣ ∂ p
∂ r

∣∣∣ ∂ p
∂ r

y2

r3 (31)
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and it results in:

λλx
∂ p
∂x

+λλy
∂ p
∂y

=
λ∣∣∣ ∂ p
∂ r

∣∣∣
(

∂ p
∂ r

x
r

∂ p
∂x

+
∂ p
∂ r

y
r

∂ p
∂y

)

=
λ∣∣∣ ∂ p
∂ r

∣∣∣ ∂ p
∂ r

(
∂ p
∂x

cosθ +
∂ p
∂y

sinθ

)
=

λ∣∣∣ ∂ p
∂ r

∣∣∣
(

∂ p
∂ r

)2

= λ

∣∣∣∣∂ p
∂ r

∣∣∣∣
(32)

Substituting Eqs. (30) and (32) into Eq. (29) and taking
into account the similarity of equations in the y-direction and
x-direction and ignoring the quadratic terms, will result in
Eqs. (A1-6). Therefore, unlike Eq. (26), the SGE Eq. (20) for
low permeability reservoirs in Cartesian coordinate systems is
consistent with that in cylindrical coordinate systems.

Derivation of the above Eq. (26) in the literature (Kong,
2010) is based on the seepage velocity in each direction as
follows: 

Vx =−
K
µ

∂ p
∂x

1− λx∣∣∣ ∂ p
∂x

∣∣∣
 ,

∣∣∣∣∂ p
∂x

∣∣∣∣> λx

Vy =−
K
µ

∂ p
∂y

1−
λy∣∣∣ ∂ p
∂y

∣∣∣
 ,

∣∣∣∣∂ p
∂y

∣∣∣∣> λy

Vz =−
K
µ

∂ p
∂ z

1− λz∣∣∣ ∂ p
∂ z

∣∣∣
 ,

∣∣∣∣∂ p
∂ z

∣∣∣∣> λz

(33)

Note that λx, λy and λz are the three components of
the TPG λ = (λx, λy, λz) along the coordinates x, y, and
z, respectively. When considering radial flow, the seepage
velocity is given as:

Vr =−
K
µ

∂ p
∂ r

1− λ∣∣∣ ∂ p
∂ r

∣∣∣


∣∣∣∣∂ p
∂ r

∣∣∣∣> λ

(34)

This equation is prerequisite for deriving Eq. (27). It has
to be noted that Eq. (33) for seepage velocity in Cartesian
coordinate systems is inconsistent with Eq. (2). When it is
radial flow, the velocity in Eq. 34 is consistent with the
velocity in Eq. (2). So the equation derived in this study
is consistent with Eq. (27) but inconsistent with Eq. (26).
However, Eq. (33) is problematic for decomposition of the
TPG. For isotropic reservoirs, the TPG is a second-order
isotropic tensor like permeability. It cannot be decomposed as
vectors. It shows directionality due to its impediment to fluid
flow, which changes with the direction of the seepage velocity.
When it is 1-dimensional flow (including radial flow), there is
only one pair of directions, which makes the Eq. (34) correct.

5.2 The form simplicity of governing equations

When Kxλx 6= Kyλy in Eq. (A2.2-3), it yields:



∂ p
∂ r

(Ky−Kx)cosθ sinθ +
1
r

∂ p
∂θ

(
Kxsin2

θ +Kycos2
θ
)
+

Vr

|Vr|
(Kyλy−Kxλx)cosθ sinθ = 0

Vr =−
1
µ



∂ p
∂ r

[
Kxcos2θ +Kysin2

θ

Kxλxcos2θ +Kyλysin2
θ
−

Ky−Kx

Kyλy−Kxλx

]

+
∂ p
r∂θ

[
(Ky−Kx)cosθ sinθ

Kxλxcos2θ +Kyλysin2
θ
−

Kxsin2
θ +Kycos2θ

(Kyλy−Kxλx)cosθ sinθ

]

(
Kxλxcos2

θ +Kyλysin2
θ
)

∂ p
∂ z

= 0

(35)

For ease of writing, define:

A =
(
Kxλxcos2

θ +Kyλysin2
θ
)( Kxcos2θ +Kysin2

θ

Kxλxcos2θ +Kyλysin2
θ
−

Ky−Kx

Kyλy−Kxλx

)

=
KxKy (λy−λx)

Kyλy−Kxλx

B =

[
(Ky−Kx)cosθ sinθ

Kxλxcos2θ +Kyλysin2
θ
−

Kxsin2
θ +Kycos2θ

(Kyλy−Kxλx)cosθ sinθ

](
Kxλxcos2

θ +Kyλysin2
θ
)

=
KxKy

(
λxcos2θ +λysin2

θ
)(

Kxλxcos2θ +Kyλysin2
θ
)
(Kyλy−Kxλx)cosθ sinθ

(36)
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Substituting Eq. (36) into the radial flow governing Eq.
(A1-2), and ignoring the source or sink terms and quadratic
pressure gradient terms, the SGE Eq. (37) can be obtained.

A
∂ 2 p
∂ r2 +

B
r

∂ 2 p
∂ r∂θ

+
A
r

∂ p
∂ r

= φ µct
∂ p
∂ t

(37)

It can be seen that the governing equation is not only
related to the pressure gradient in the r-direction but also to
that in the θ -direction. Unlike the governing Eq. (A2.2-6), Eq.
(37) requires Kxλx 6= Kyλy. Combining with the governing
Eq. (A2.2-6), it can be known that when it is a radial flow, a
relatively simple form of a SGE with a TPG for anisotropic
reservoirs can be obtained.

The isotropic low permeability SGE Eq. (20) in the Carte-
sian coordinate systems is very complex. Although many
assumptions have been made in the derivation of equations
for anisotropic low-permeability reservoirs, its form in the
Cartesian coordinate systems is still complex. The general
form of SGEs for an anisotropic reservoir with a TPG becomes
more complicated. Therefore, in general, the SGEs for low
permeability reservoirs with a TPG are not suitable for simula-
tions and analysis. When performing numerical simulations, it
is more appropriate to use equation sets including the seepage
velocity and pressure as variables.

5.3 Comparisons of anisotropic and isotropic govern-
ing equations

When Kx = Ky = Kz and λx = λy = λz, the governing Eqs.
(A2.1-6) and (A2.2-6) degenerate into the SGE for isotropic
reservoirs with a TPG in the Cartesian coordinate systems
and the SGE for radial flow in cylindrical coordinate systems,
respectively. They are consistent with the results obtained by
Eq. (20) and Eq. (A1-6), respectively. Therefore, the SGEs for
an anisotropic reservoir with a TPG are justified here.

It can be verified that the condition of seepage initiation
in Eq. (A2.1-6) and equation Eq. (A2.2-6) is a special case
of the general initiation condition Eq. (10) for seepage with
a TPG, which looks like an ellipsoidal equation. When Kx =
Ky = Kz and λx = λy = λz, the seepage initiation condition for
isotropic reservoirs can be obtained from Eq. (10).

For anisotropic reservoirs, when there is a TPG, it can
be seen from the previous derivation that, in general, the
direction of seepage velocity in anisotropic reservoirs is not
only inconsistent with the direction of the pressure gradient
but also inconsistent with the direction of the seepage velocity
without a TPG. This nature is not the same as that of isotropic
reservoirs. Only when Kxλx = Kyλy = Kzλz, it can be ensured
that the direction of seepage velocity with a TPG is consistent
with that without a TPG. For radial flow, since the velocity in
the z-direction is 0, and thus it only requires Kxλx = Kyλy.

5.4 Representation of a TPG

A scalar cannot represent a TPG of anisotropic reservoirs.
As the name TPG contains “pressure gradient”, it is easy to
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Fig. 2. The directions of the pressure gradient and the TPG.

misunderstand it as a vector. While it works just similar to
a vector, and thus previously a vector is used to express a
TPG (Kong, 2010). However, this representation would bring
inadequacy. In Section 5.1, the contradiction between the SGE
with a TPG in Cartesian coordinate systems and cylindrical
coordinate systems is discussed. This could be explained by
considering a TPG as a vector.

Assuming that a TPG is a vector and thus it has a direction.
A TPG is often written into three component quantities (λx, λy,
λz), which can be transformed into (λx, 0, 0) by a coordinate
transformation (Kong, 2010). Therefore, a coordinate system
may be established as shown in Fig. 2 so that the positive
x-axis direction coincides with the direction AB of the TPG
vector λ . When the reservoir pressure gradient is along PT1
(PT1 and AB are in the same direction), it should meet the
following condition: ∣∣∣∣∂ p

∂x
−λx

∣∣∣∣< ∣∣∣∣∂ p
∂x

∣∣∣∣ (38)

Eq. (38) shows that the TPG acts as a hindrance, which is
consistent with the general understanding. When the reservoir
pressure gradient is along PT2 (PT2 and AB are in the opposite
direction), the following holds:∣∣∣∣∂ p

∂x
−λx

∣∣∣∣> ∣∣∣∣∂ p
∂x

∣∣∣∣ (39)

Eq. (39) shows that the TPG promotes the seepage. It
means that when there is no pressure gradient, the fluid will
also flow in the direction AB. When the reservoir pressure
gradient is along PT3 or PT4 (parallel to the y-axis), the
following holds: ∣∣∣∣∂ p

∂y
−λy

∣∣∣∣= ∣∣∣∣∂ p
∂y

∣∣∣∣ (40)

Eq. (40) shows that the TPG does not work. It is unrea-
sonable. Therefore, it is not suitable to express a TPG with a
vector.

To avoid this contradiction, in the literature, the absolute
value of pressure gradients is used when the governing equa-
tion is written in the component form, as described in Section
5.1, but it could still not avoid the contradiction between the
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governing equations in Cartesian and cylindrical coordinate
systems. The reason for this problem is that the direction of a
TPG is fixed by the vector representation (using the absolute
value, it is reasonable when the pressure gradient is along PT1
and PT2, but the above situation still occurs along PT3 and
PT4). The effect of a TPG is a vector that changes with the
direction of the seepage velocity or pressure gradient. So the
key is to determine how this vector changes with the seepage
velocity or pressure gradient.

Additionally, the SGEs of anisotropic reservoirs must be
able to degenerate into that for isotropic reservoirs. It requires
that a TPG under anisotropic conditions can degenerate into
that under isotropic conditions. This cannot be achieved except
for a zero vector. If the TPG is a zero vector, that means there
is no TPG.

A scalar and vectors are 0th order and first order tensors,
respectively. They cannot represent a TPG of anisotropic
reservoirs. If a second-order tensor can represent a TPG of
anisotropic reservoirs, it is perfect from the point of mathe-
matical simplicity view. When a TPG and permeability are an
isotropic second-order tensor, the SGEs for anisotropic reser-
voirs with a TPG can be degenerated into that for isotropic
reservoirs. This can be easily verified from Eq. (A2.1-6) and
Eq. (A2.2-6).

As discussed above, it is assumed that a TPG hinders the
seepage flow along its negative direction when a second-order
tensor is used to express the TPG. Although there are amount
of debates about the nature of the TPG, it is no doubt that
this obstruction changes with the direction of the seepage
velocity. Otherwise, there will be problems like the vector
representation. As a TPG in different directions act as a vector,
according to the tensor identification theorem (Huang et al.,
2003), it is a second-order tensor. It should be noted from
Eq. (8) that when a TPG is represented by a second-order
tensor proposed in this paper, it always acts as a barrier to
seepage flow. Therefore, the assumption in this article is valid.
However, this hypothesis is not the final solution. Of course,
other assumptions can also be made. For example, it can be
assumed that the effective pressure gradient under a TPG is:

Je = J−λ · K ·J
|K ·J|

(41)

In fact, this assumption is also taken in the derivation of
some preceding cases, but it is required to be true simultane-
ously with the hypothesis Eq. (6). Only using the hypothesis
Eq. (41), a SGE can also be obtained, and the corresponding
seepage initiation condition is written as follows:



√(
Kx

∂ p
∂x

)2

+

(
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∂ p
∂y

)2

+

(
Kz

∂ p
∂ z

)2

> λxKx√(
Kx

∂ p
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)2

+

(
Ky

∂ p
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+

(
Kz

∂ p
∂ z
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> λyKy√(
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∂ p
∂x

)2

+

(
Ky

∂ p
∂y

)2

+

(
Kz

∂ p
∂ z

)2

> λzKz

(42)

It can also be assumed that the effective pressure gradient
under a TPG tensor is:

Je = J−λ · J
|J|

(43)

The corresponding seepage initiation condition is:

√(
∂ p
∂x

)2

+

(
∂ p
∂y

)2

+

(
∂ p
∂ z

)2

> λx√(
∂ p
∂x

)2

+

(
∂ p
∂y

)2

+

(
∂ p
∂ z

)2

> λy√(
∂ p
∂x

)2

+

(
∂ p
∂y

)2

+

(
∂ p
∂ z

)2

> λz

(44)

It can be verified that both assumptions (41) and (43)
ensure that the TPG always acts as a barrier to seepage flow
and that both can be degenerated into isotropic reservoir cases.
As for which assumption is more reasonable, it needs further
investigations. We hope this article can play an essential role
in attracting valuable opinions.

5.5 Prospect

The TPG for a single-phase fluid flow in porous media is
controversial. This controversy mainly focused on the flow of
low-viscosity crude oil in low permeability reservoirs. High
viscous heavy oils containing amount of bitumen and tar are
generally considered to be Bingham fluids, and their constitu-
tive equations can be appropriately simplified to be consistent
with the constitutive equations with a TPG mentioned herein
(Wang et al., 2013). Therefore, the equations presented in this
study can be used in this case (Liu, 2013).

It has already been mentioned that the 2-dimensional or 3-
dimensional SGEs with a TPG are generally very complicated.
We propose to solve the equation sets with pressure and
seepage velocity instead of the SGEs. Due to the existence
of seepage initiation conditions, this is a moving boundary
problem. Their numerical solution is not easy. Currently, the
numerical methods are mainly used to solve its 1-dimensional
problem. For 2-dimensional or 3-dimensional problems, the
numerical solution method will be much difficult and requires
further study.

The current measurement of a TPG assumes that the reser-
voir is isotropic (Ding et al., 2014; Tian et al., 2018). When
reservoirs are anisotropic, this actually tests the projection of
the TPG in one direction. For anisotropic reservoirs, measure-
ment of its TPG has not been reported. If it is possible to
determine its three principal axes from geology, core analysis,
or geophysics tests, the difficulty of tests will be reduced. It
can found from Eq. (11) that if the pressure gradient is along a
principal axis, the seepage velocity expression in this direction
is the same as that for isotropic reservoirs. Therefore, a feasible
scheme is to sample in the direction of the three principal axes
and test the TPG in the same way as isotropic reservoirs in
each direction. When the directions of the principal axes are
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impossible to be determined, since a TPG has 9 components,
it is necessary to sample at least in 9 directions. A viable
scheme is to sample at 60◦ intervals in each coordinate plane
and ensure that the 9 directions are completely different. If
only one principal axis can be determined, the scheme is to
sample along the principal axis and take 4 samples at 45◦

intervals in the plane perpendicular to the principal axis. Each
sample is tested according to the method for isotropic reservoir
samples. Using the TPGs in each direction, the TPG tensor can
be obtained according to the coordinate transformation law of
a tensor. It can be concluded that determining permeability
principal axes is the key to determining the TPG of anisotropic
reservoirs. Otherwise, it will be very difficult. The method
proposed here is only an idea, and it requires future practical
work.

6. Conclusions
In this paper, the reservoir SGEs with a TPG are studied,

and the SGEs for isotropic and anisotropic low-permeability
reservoirs are obtained in Cartesian, cylindrical coordinate
systems. Then, the results are discussed extensively, and the
following conclusions are obtained:

1) A TPG can not be represented by a vector, but a second-
order tensor. The form of the effective pressure gradient
for anisotropic reservoirs requires further investigation.

2) The equations of isotropic low-permeability reservoirs in
Cartesian coordinate systems derived here are consistent
with these in cylindrical coordinate systems, and the
inconsistency in the literature between the two is solved.

3) The SEGs for anisotropic reservoirs with a TPG derived
here can be degenerated into isotropic conditions.

4) The condition of seepage initiation for anisotropic reser-
voirs with a TPG is derived under the general case.
According to different assumptions, specific initiation
conditions will be obtained from it.

5) The SGE for low-permeability with a TPG is very com-
plicated in Cartesian and cylindrical coordinate systems.
Only in the case of radial flow, a simple form of a SGE
with a TPG in cylindrical coordinate systems is obtained.

6) In general, the SGEs with a TPG are very complex and
are not suitable for numerical simulation analysis. It is
recommended to use the equation set with the seepage
velocity and pressure as the variables for simulations.

Nomenclature
Latin

p = pore pressure, Pa
K, K = permeability tensor and permeability scalar (for

1-D or isotropic), respectively, m2

Ki j = component of the permeability tensor, subscript i and
j are x, y or z, m2

V , V = seepage velocity vector and seepage velocity (for
1-D), respectively, m/s
J , J = pressure gradient vector and pressure gradient (for

1-D), respectively, Pa/m
Je = effective pressure gradient vector, Pa/m

Vx, Vy = components of seepage velocity in x, y directions,
respectively, m/s

Vr, Vθ = components of seepage velocity in r, θ directions,
respectively, m/s

Vz = component of seepage velocity in z direction in
cylindrical or Cartesian coordinate systems, m/s

ct = total compressibility, 1/Pa
cr = pore compressibility, 1/Pa
c f = fluid compressibility, 1/Pa
q = source or sink item, m3/(m3·s)
x,y = coordinates of Cartesian coordinate systems, m
r = coordinate of cylindrical coordinate systems, m
z = coordinate of cylindrical or Cartesian coordinate sys-

tems, m
ei, ēi = unit basis vector in cylindrical coordinate systems

and Cartesian coordinate systems, respectively, subscript i
denotes r, θ , z or x, y, z

Greek

λ, λ = TPG tensor and TPG scalar (for 1-D or isotropic),
respectively, Pa/m

λ x, λ y, λ z = components of TPG tensors in x, y, z-direction,
respectively, Pa/m

φ = porosity, %
µ = fluid viscosity, Pa·s
ρ = fluid density, kg/m3

θ = coordinates of cylindrical coordinate systems
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Appendix 1: Governing equations with a TPG for isotropic reservoirs in a Cylindrical coordinate
system

According to Eq. (2), in the cylindrical coordinate system (r, θ , z), the seepage velocity has a general form of:
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(A1-1)

The general form of the SGE in the cylindrical coordinate system can also be derived similar to the derivation of that in the
Cartesian coordinate system. For simplicity, the SGE is derived for radial flow without any source or sinks term, considering
that the radial SGE is widely used in well test analysis. Thus, the continuity Eq. (16) can be written as:

∂ (φρ)

∂ t
+

1
r

∂

∂ r
(ρrVr) = 0 (A1-2)

Only considering the radial velocity, Eq. (A1-1) can be simplified as:

Vr =−
K
µ

∂ p
∂ r

1− λ∣∣∣ ∂ p
∂ r
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 (A1-3)

Substituting Eq. (A1-3) into continuity Eq. (A1-2), it yields:
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Ignoring the quadratic term of the pressure gradient similar to general treatments, it yields:
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Therefore, the SGE for radial flow with a TPG in the cylindrical coordinate system can be written as:
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Appendix 2: Governing equations with a TPG for anisotropic reservoirs

Appendix 2.1: Cartesian coordinate system

Using Eqs. (21) and (7), the seepage velocity of anisotropic reservoir with a TPG in the Cartesian coordinate system can
be written as:

V =− 1
µ




Kx

∂ p
∂x

Ky
∂ p
∂y

Kz
∂ p
∂ z

−


λxK2
x

∂ p
∂x

λyK2
y

∂ p
∂y

λzK2
z

∂ p
∂ z


1√(

Kx
∂ p
∂x

)2
+
(

Ky
∂ p
∂y

)2
+
(

Kz
∂ p
∂ z

)2


(A2.1-1)
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It also can be written as follows:

Vx

Vy

Vz

=− 1
µ



1− λxKx√(
Kx

∂ p
∂x

)2
+
(

Ky
∂ p
∂y

)2
+
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Kz
∂ p
∂ z

)2

Kx
∂ p
∂x

1−
λyKy√(

Kx
∂ p
∂x

)2
+
(

Ky
∂ p
∂y

)2
+
(

Kz
∂ p
∂ z

)2

Ky
∂ p
∂y

1− λzKz√(
Kx

∂ p
∂x

)2
+
(

Ky
∂ p
∂y

)2
+
(

Kz
∂ p
∂ z

)2

Kz
∂ p
∂ z



(A2.1-2)

If Eqs. (21) and (A2.1-2) holds, then the relational expression Kxλx = Kyλy = Kzλz holds. Eq. (A2.1-2) can also be written
in another form as:



Vx =−
Kx

µ

(
∂ p
∂x
−λλx

)

Vy =−
Ky

µ

(
∂ p
∂ z
−λλy

)
,

√(
Kx

∂ p
∂x

)2

+

(
Ky

∂ p
∂y

)2

+

(
Kz

∂ p
∂ z

)2

> Kxλx = Kyλy = Kzλz

Vz =−
Kz

µ

(
∂ p
∂ z
−λλ z

) (A2.1-3)

For the continuity Eq. (16) in the x direction, the following holds:

∂ (ρVx)

∂x
=−Kx

µ

∂

∂x

(
ρ

∂ p
∂x
−ρλλx

)
=−Kxρ

µ

[
c f

(
∂ p
∂x

)2

+
∂ 2 p
∂x2 −

∂λλx

∂x
− c f λλx

∂ p
∂x

]
(A2.1-4)

Ignoring the quadratic term of the pressure gradient, and then substituting Eq. (12) into Eq. (A2.1-4), it yields:

∂ (ρVx)

∂x
=−ρKx

µ
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∂x

∂ 2 p
∂x2 +K2
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∂y

∂ 2 p
∂x∂y

+K2
z

∂ p
∂ z

∂ 2 p
∂x∂ z

)



(A2.1-5)

Similar results can be obtained in y and z directions, which are not explicitly written here. Assuming that the source or
sink term is 0 and second order continuous derivatives with respect to x, y and z exist, the governing equation can be written
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as:

(
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(A2.1-6)

Eq. (A2.1-6) is a SGE for permeability anisotropic reservoirs with a TPG and its initiation condition in the Cartesian
coordinate system when Kxλx = Kyλy = Kzλz.

Appendix 2.2: Cylindrical coordinate system

When the flow is radial, the seepage velocity vector in cylindrical coordinate systems could be expressed as:

V =

Vr

Vθ

Vz

=

Vr

0

0

 (A2.2-1)

The pressure gradient in the cylindrical coordinate system is:

J =


∂ p
∂ r

1
r

∂ p
∂θ

∂ p
∂ z

 (A2.2-2)

Therefore, the 3-dimensional domain seepage velocity vector is:

V =−K
µ
·
(

J+λ · V
|V|

)
=

− 1
µ
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(A2.2-3)
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The same assumptions are made as in the case of derivation in Cartesian coordinate system that the direction of seepage
velocity with a TPG is the same as that of without a TPG, i.e., Kyλy = Kxλx. Therefore, Eq. (A2.2-3) can be rewritten as:Vr

0

0

=− 1
µ


∂ p
∂ r

(
Kxcos2θ +Kysin2

θ
)
+ 1

r
∂ p
∂θ
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r
∂ p
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(
Kxsin2

θ +Kycos2θ
)

Kz
∂ p
∂ z

 (A2.2-4)

From Eq. (A2.2-4), the seepage velocity (Vr) can be written as:

Vr =−
1
µ

∂ p
∂ r

 KxKy

Kxsin2
θ +Kycos2θ

−
Kyλy∣∣∣ ∂ p
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∣∣∣


∂ p
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∣∣∣∣∂ p
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(
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θ
)

(A2.2-5)

Substituting Eq. (A2.2-5) into the continuity Eq. (A1-2) for radial flow without considering the source or sink term q and
ignoring the quadratic term of the pressure gradient, it yields:

∂ 2 p
∂ r2

KxKy

Kxsin2
θ +Kycos2θ

+
1
r

∂ p
∂ r

 KxKy
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−
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∂ t∣∣∣∣∂ p

∂ r
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Kx

(
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θ +Kycos2
θ
) (A2.2-6)

Eq. (A2.2-6) is the SGE with a TPG for the radial flow of anisotropic reservoirs when Kxλx = Kyλy.


