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ABSTRACT
Background: Poor growth in early childhood has been associated
with increased risk of mortality and morbidity, as well as long-term
deficits in cognitive development and economic productivity.
Objectives: Data from the MAL-ED cohort study were used to
identify factors in the first 2 y of life that are associated with height-
for-age, weight-for-age, and body mass index z-scores (HAZ, WAZ,
BMIZ) at 5 y of age.
Methods: A total of 1017 children were followed from near birth
until 5 y of age at sites in Bangladesh, Brazil, India, Nepal,
Peru, South Africa, and Tanzania. Data were collected on their
growth, environmental enteric dysfunction (EED), micronutrient
status, enteric pathogen burden, illness prevalence, dietary intake,
and various other socio-economic and environmental factors.
Results: EED biomarkers were related to size at 5 y. Mean
lactulose:mannitol z-scores during the first 2 y of life were negatively
associated with all of the growth measures (HAZ: −0.11 [95% CI:
−0.19, −0.03]; WAZ: −0.16 [95% CI: −0.26, −0.06]; BMIZ: −0.11
[95% CI: −0.23, 0.0]). Myeloperoxidase was negatively associated
with weight (WAZ: −0.52 [95% CI: −0.78, −0.26] and BMIZ:
−0.56 [95% CI: −0.86, −0.26]); whereas α-1-antitrypsin had a
negative association with HAZ (−0.28 [95% CI: −0.52, −0.04]).
Transferrin receptor was positively related to HAZ (0.18 [95% CI:
0.06, 0.30]) and WAZ (0.21 [95% CI: 0.07, 0.35]). Hemoglobin
was positively related to HAZ (0.06 [95% CI: 0.00, 0.12]), and
ferritin was negatively related to HAZ (−0.08 [95% CI: −0.12,
−0.04]). Bacterial density in stool was negatively associated with
HAZ (−0.04 [95% CI: −0.08, 0.00]), but illness symptoms did not
have any effect on size at 5 y.
Conclusions: EED markers, bacterial density, and iron markers are
associated with growth at 5 y of age. Interventions to reduce bacterial
burden and EED may improve long-term growth in low-income
settings. Am J Clin Nutr 2019;110:131–138.
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Introduction
Attained size at 5 y of age represents the summation of

factors influencing growth in utero and early childhood (1).
Small size at birth, inadequate dietary intake, and morbidity
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lead to growth faltering during the first 2 y of life, and this
faltering may not be recovered over the preschool period (1–4).
Indeed, persistent stunting is a worldwide problem profoundly
affecting functioning throughout life (5). More recent longitu-
dinal studies from low- and middle-income countries (LMICs)
involving follow-up beyond 2 y have identified socio-economic
status, parental education, and maternal height as factors that
influence longer-term outcomes for children living in poverty
today (6).

In 1991, Lunn et al. (7) reported that intestinal permeability
and mucosal injury contributed to growth faltering in Gambian
infants. Over time, this area of research has expanded as
investigators have considered how the impacts of repeated enteric
infections and poor diet impact the functional capacities of the
gut, and the role of what is now called environmental enteric
dysfunction (EED) in the etiology of stunting (8, 9). There
are multiple pathways through which EED may affect growth
faltering and stunting (9, 10), including increased intestinal and
systemic inflammation, and increased intestinal permeability,
which can result in reduced absorptive capacity and altered
nutrient status. Few studies have so far evaluated whether early
markers of gut dysfunction are related to growth over the long
term (11).

The "Etiology, Risk Factors, and Interactions of Enteric
Infections and Malnutrition and Consequences for Child Health
and Development (MAL-ED)" birth cohort study aimed to
evaluate the relations among EED, enteric pathogens, inadequate
dietary intake, growth, and cognitive development of children
in LMICs (12). Infants were enrolled near birth in 8 LMICs
and followed to characterize feeding, morbidity, enteropathogen
exposure, and EED over the first 2 y of life. Previous papers from
this study highlighted subclinical enteropathogen infection and
the complementary feeding diet as influential factors affecting
growth velocity and the development of stunting; the associations
between EED biomarkers and linear growth were detectable but
small in 1 analysis (8), and nondetectable or inconsistent in
others (13, 14). The EED biomarkers are along the hypothesized
pathway between enteropathogen exposure and growth, and
prior analyses demonstrated stronger associations with bacterial
pathogen exposures (8). We followed up the MAL-ED children
with an assessment of attained size at 5 y of age to evaluate the
influence of factors in the first 2 y of life on attained stature and
size at age 5, with the goals of identifying early life factors with
persistent influence on growth outcomes and re-evaluating the
effect of EED on growth over the long-term.

Methods
The MAL-ED study was conducted in Dhaka, Bangladesh;

Fortaleza, Brazil; Vellore, India; Bhaktapur, Nepal; Loreto, Peru;
Naushero Feroze, Pakistan; Venda, South Africa; and Haydom,
Tanzania. Overall, 2145 infants were enrolled, and the initial 24-
mo study was implemented from November 2009 until February
2014, with extended follow-up from November 2014 until
February 2017. Enrolled infants were less than 17 d old, born
singleton with a birth weight >1500 g, without serious illnesses,
to a mother at least 16 y of age, and to a family intending to stay
in the community for at least 6 mo. The methods for original
data collection are published elsewhere (15–18), but relevant
details informative to this work are provided below, as well as
the methods for follow-up at 5 y of age.

Ethical approval

Each site obtained ethical approval from their respective
institutions, and written consent was obtained from participants
for the original study and subsequently for the follow-up.

Growth measures

Trained field personnel measured the height and weight of
the children upon enrollment, monthly during the first 2 y of
life, and on their 5th birthday (60 mo ± 1 mo). Previously,
we reported problems with the early anthropometric measures
from Naushero Feroze, Pakistan, (13), and so we have excluded
Naushero Feroze, Pakistan, data from this analysis. We converted
observations to height-for-age (HAZ), weight-for-age (WAZ),
weight-for-height (WHZ), and body mass index (BMIZ) z-scores
using the WHO growth standards (19). The primary outcomes
were HAZ, WAZ, and BMIZ, with WHZ considered a secondary
outcome. Maternal height and weight were measured at 2 mo
postpartum.

Illness and microbiology

During the first 2 y of life, caregivers were visited in their
homes twice a week and asked whether the child had been ill or
had experienced various symptoms each day since the last visit
(15, 20). For these analyses, children had to contribute at least
700 d of illness surveillance in the first 2 y of life. Illnesses (i.e.,
diarrhea, acute lower respiratory infections, fever, maternal report
of nonspecific illness) were summarized as the percentage of days
with the illness during the first 2 y of life.

Enteropathogen burden from nondiarrheal stools collected
monthly in the first year of life and quarterly in the second
year was characterized as the mean number of pathogens per
stool sample (16, 21). Children were required to have at least
8 fully tested stool samples in order to be included. Pathogens
were also classified as bacterial, viral, or parasitic, and were
included as the proportion of nondiarrheal stool samples that
were positive for each. Specific pathogens were also tested as
the proportion of nondiarrheal stool samples that were positive
for each pathogen. Quantitative PCR using TaqMan Array Cards
(ThermoFisher, Carlsbad, CA) was used to re-analyze stool
samples (22); a sensitivity analysis was performed using the
TaqMan data, comparing the results with those derived using
traditional microbiologic methods.

Biomarkers of EED

The lactulose:mannitol (L:M) test is utilized to evaluate
intestinal permeability and was administered at 3, 6, 9, and 15
mo (17). Urinary excretion of lactulose (%) and mannitol (%)
was determined, as well as their ratio, expressed as standardized
L:M z-scores (LMZ) (23). Children with at least 3 L:M tests
were included in the final data set, and these observations
were averaged for each child. We considered both averaged and
individual LMZ measures, as well as the individual measures of
lactulose and mannitol in the analyses.

Fecal measures of gut inflammation and permeability were
characterized in nondiarrheal stool samples collected monthly
during the first year of life and quarterly in the second year
using myeloperoxidase (MPO), neopterin, and α-1-antitrypsin
(AAT) (8). Children with at least 8 assessments were included
in the model. A regression for each of the log-transformed
fecal biomarkers was used to detrend for age, recent maternally
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reported fever and breast milk consumption, stool consistency,
and the time between collection and sample testing (24).
Residuals from these models were averaged for each child.

Early infant feeding and child diet

Breastfeeding was characterized for each child by the duration
of exclusive breastfeeding and the duration of any breastfeeding
from twice-weekly interviews during the first 2 y of life. Non-
breast milk food intake was quantified using a 24-h recall monthly
implemented by trained personnel in the caregivers’ homes from
9 to 24 mo of age (18). The usual energy, macronutrient, and
micronutrient intakes were calculated by averaging at least 11
observations. Nutrient densities were calculated by adjusting
nutrient intakes for energy using a residual model having
normalized intakes (Box-Cox) and creating a standard normal z-
score, by site, from the nutrient residuals (25). Overall protein
density was found to be representative of a higher-quality diet
based on analyses of the correlation structure among individual
nutrients.

Micronutrient status

Venous blood samples were collected at 7, 15, and 24 mo to
characterize the status of vitamin A (plasma retinol), zinc (plasma
zinc), and iron (plasma ferritin, transferrin receptor [TfR]), as
well as systemic inflammation (plasma α-1-acid glycoprotein
[AGP]). A finger-prick blood sample was obtained to determine
hemoglobin concentration. Concentrations of both TfR and
ferritin were adjusted for inflammation using the Biomarkers
Reflecting Inflammation and Nutritional Determinants of Anemia
(BRINDA) method (26, 27), by age and site, and hemoglobin
concentration was adjusted for altitude where appropriate.
Children were required to have at least 1 observation, and 92% of
children had more than 1 observation, which were averaged. TfR
and ferritin concentrations were transformed using a square root
function.

Socio-economic status

At 6, 12, 18, and 24 mo of age, families were asked about
household assets and income, type of sanitation, source of
drinking-water, hand-washing behaviors, and maternal educa-
tion. The MAL-ED study developed a socio-economic index
referred to as the Water, Assets, Maternal education, and
household Income (WAMI) index to provide a cross-site measure
of socio-economic status (28). The mean of the WAMI index from
6–24 mo was used to adjust for differences in socio-economic
status across children.

Sample size

Of the 1868 infants enrolled in the study at the 7 sites,
1498 (80%) remained in the study at 24 mo (Table 1 and
Supplemental Figure 1). Of these, 1188 (79%) had anthro-
pometric measurements taken at 5 y. The sample size was
reduced to 1131 (95% of those in the follow-up cohort) based
on the criteria for data completeness (illness, microbiology, and
diet), and then finally to 1017 children (86% of those with 5-y
anthropometry) based on data completeness for other exposure
variables (maternal height, gut inflammation and permeability,
and micronutrient status). We compared the children enrolled

in the cohort with those who were included in the 5-y analysis.
Overall, children included in the analysis had mothers with less
education, households with lower WAMI scores, and worse WAZ
and weight-for-length z-score at enrollment than children who
were not included (Supplemental Table 1), but these differences
were rarely statistically significant at the site level.

Statistical analyses

Multivariable linear regression was used to evaluate exposures
in the first 2 y of life with 5-y growth outcomes in 4 different
models: HAZ, WAZ, BMIZ, and WHZ. Candidate variables
were evaluated that represented the domains of illness and
pathogen burden, breastfeeding, dietary intake from nonbreast
milk foods, EED, micronutrient status, and child and household
characteristics (Supplemental Table 2). The final set of variables
reflected explicit evaluation of our research questions, biological
rationale, and stepwise selection (optimizing the Akaike Informa-
tion Criterion). Sites were included as dummy variables. Because
we were explicitly interested in evaluating whether aspects of
EED mediate the relations between diet and/or pathogen burden
and growth, models were run separately with either the EED
variables or diet and pathogen burden variables, and then a
combined (final) model. Univariate model results are included in
Supplemental Table 3. Analyses were performed with R 3.4.3
(Foundation for Statistical Computing) using the lm and ggplot
packages.

Results
The mean HAZ of the children declined from enrollment to 5

y of age at 6 of the 7 sites (Table 2). In Fortaleza, Brazil, the mean
length-for-age z-score was −0.8 at enrollment, but increased to
−0.2 HAZ at 5 y of age. With the exception of Venda, South
Africa, and Haydom, Tanzania, the mean WHZ increased slightly
over time. Selected measures of the early child environment are
provided for each site in Table 2.

HAZ outcome

Child, household, and maternal characteristics, as well as
measures of iron status, bacterial density, and EED, were
associated with HAZ at 5 y of age (Table 3, Figure 1,
Supplemental Tables 4–7). Socio-economic status (WAMI),
length-for-age z-score at enrollment, and maternal height were
each positively associated with HAZ at 5 y of age. Sex, energy
intake, and protein density did not have statistically significant
associations with HAZ at 5 y of age. Mean hemoglobin and TfR
concentrations were each positively associated with HAZ at 5
y of age (0.06 [95% CI: 0.00, 0.12] and 0.18 [95% CI: 0.06,
0.30], respectively), whereas mean ferritin concentration was
negatively associated (−0.08 [95% CI: −0.12, −0.04]). Bacterial
density was negatively associated with 5-y HAZ (−0.04 HAZ
per 10% increase in bacteria positive samples [95% CI: −0.08,
0.00]), as were mean LMZ and mean detrended log fecal AAT
concentration in the first 2 y of life (−0.11 [95% CI: −0.19,
−0.03] and −0.28 [95% CI: −0.52, −0.04], respectively). In
separate models, individual measures of LMZ showed no trend in
association with HAZ (Supplemental Table 5); further, although
not statistically significant, lactulose excretion was negatively
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TABLE 1 Subjects included in the analysis, from enrollment to final number with complete data, n (%)1

Southern Asia Latin America Sub-Saharan Africa
Total

BGD INV NEB BRF PEL SAV TZH

Enrolled 265 251 240 233 303 314 262 1868
Follow-up to 2 y2 213 (80) 228 (91) 228 (95) 169 (73) 208 (69) 237 (75) 215 (82) 1498 (80)
Anthropometry at 5 y3 193 (91) 213 (93) 128 (56) 131 (78) 164 (79) 183 (77) 176 (82) 1188 (79)
Complete illness, pathogen history, and

complementary diet data during early
childhood4

193 (100) 212 (99) 127 (99) 111 (85) 154 (94) 164 (90) 170 (97) 1131 (95)

Complete data on other variables5 186 (96) 207 (97) 122 (95) 99 (76) 145 (88) 132 (72) 126 (71) 1017 (86)

1Sites: BGD: Bangladesh—Dhaka; INV: India—Vellore; NEB: Nepal—Bhaktapur; BRF: Brazil—Fortaleza; PEL: Peru—Loreto; SAV: South
Africa—Venda; TZH: Tanzania—Haydom.

2Children with follow-up to 2 y included in analyses of 2-y growth outcomes (percentage of those enrolled).
3Children with height and weight at 5 y of age (percentage of those still in study at 2 y). In SAV (4) and NEB (99), children were older than 62 mo when

funding (SAV) or ethical clearance (NEB) was obtained.
4Children with at least 700 d of illness surveillance, 11 measures of dietary intake from 9 to 24 mo, 8 stool samples to detect enteropathogens and fecal

biomarkers of gut inflammation (percentage of those in the follow-up study).
5Children with data on maternal height, micronutrient status and L:M test results (percentage of those in the follow-up study).

associated, whereas mannitol excretion was positively associated
with HAZ (Supplemental Tables 6 and 7). Adding EED variables
reduced the effect size and statistical significance of the energy
intake variable and MPO, but did not have a meaningful impact

on the bacterial density interpretation (Supplemental Table 4).
The bacterial density measured by the TaqMan assay was also
associated with lower HAZ at 5 y of age (−0.06 [95% CI: −0.1,
−0.02]) (Supplemental Figure 2).

TABLE 2 Mean attained size at 5 y of age and selected characteristics measured during the first 2 y of life by site (mean [SD] unless otherwise specified)1

Southern Asia Latin America Sub-Saharan Africa

BGD INV NEB BRF PEL SAV TZH

n 186 207 122 99 145 132 126
Outcomes

HAZ at 60 mo − 1.6 (0.9) − 1.5 (0.9) − 1.3 (0.9) − 0.2 (1.0) − 1.3 (0.8) − 0.9 (1.0) − 1.9 (0.9)
WAZ at 60 mo − 1.5 (1.0) − 1.6 (0.9) − 1.0 (0.8) 0.3 (1.4) − 0.5 (1.0) − 0.8 (1.1) − 1.4 (0.8)
BMIZ at 60 mo − 0.8 (1.0) − 0.9 (0.9) − 0.3 (0.8) 0.6 (1.5) 0.5 (1.0) − 0.4 (1.4) − 0.3 (1.0)
WHZ at 60 mo − 0.9 (1.0) − 1.0 (1.0) − 0.3 (0.9) 0.6 (1.5) 0.4 (1.1) − 0.4 (1.4) − 0.4 (1.0)

Contributing factors
LAZ at enrollment − 1.0 (1.0) − 1.0 (1.1) − 0.7 (1.0) − 0.8 (1.2) − 1.0 (0.9) − 0.8 (1.0) − 1.0 (1.2)
WAZ at enrollment − 1.3 (0.9) − 1.3 (1.1) − 0.9 (1.0) − 0.1 (1.1) − 0.7 (0.9) − 0.4 (1.0) − 0.2 (1.0)
WLZ at enrollment − 1.1 (1.0) − 1.2 (1.1) − 0.9 (1.1) 0.5 (1.3) − 0.0 (1.0) 0.1 (1.3) 0.7 (1.2)
WAMI 0.5 (0.1) 0.5 (0.1) 0.7 (0.1) 0.8 (0.1) 0.5 (0.1) 0.8 (0.1) 0.2 (0.1)
Males, % 91 (49) 113 (55) 66 (54) 41 (41) 66 (46) 63 (48) 65 (52)
Maternal height, cm 149 (5.0) 151 (5.0) 150 (4.9) 155 (6.7) 150 (5.4) 159 (6.6) 156 (5.9)
Days of maternally reported

illness per year
193 (57) 152 (65) 61 (39) 19 (15) 21 (13) 16 (12) 38 (21)

Energy from complementary
feeding, kcal/d

357 (130) 751 (220) 436 (168) 987 (198) 742 (170) 878 (185) 1009 (182)

Protein intake from
complementary feeding, g/d

10 (4) 22 (8) 12 (5) 41 (9) 20 (5) 28 (6) 29 (6)

Hemoglobin, g/dL 11.4 (1.2) 10.9 (0.9) 10.4 (1.0) 11.4 (1.3) 11.1 (0.9) 11.0 (1.1) 11.1 (1.2)
Transferrin receptor, mg/L 6.6 (2.8) 4.5 (2.0) 8.8 (2.8) 9.7 (2.4) 7.3 (2.0) 4.0 (2.0) 4.6 (1.9)
Ferritin, μg/L 15.6 (9.9) 13.9 (11.5) 13.0 (10.4) 19.8 (8.8) 23.5 (18.0) 22.9 (16.1) 16.4 (11.1)
Pathogen density (number of

pathogens per monthly stool
sample)

1.1 (0.3) 1.1 (0.4) 0.8 (0.3) 1.2 (0.4) 0.9 (0.4) 0.7 (0.3) 1.4 (0.4)

Bacterial density (proportion of
stool samples with bacteria)

0.6 (0.2) 0.6 (0.2) 0.5 (0.2) 0.6 (0.2) 0.4 (0.2) 0.4 (0.1) 0.7 (0.2)

Lactulose:mannitol z-score 0.3 (0.5) 0.5 (0.5) 0.0 (0.5) − 0.0 (0.6) 0.6 (0.4) 0.6 (0.9) 0.4 (0.7)
α-1-Antitrypsin, ng/mL 0.4 (0.1) 0.4 (0.1) 0.4 (0.1) 0.3 (0.1) 0.4 (0.2) 0.2 (0.1) 0.3 (0.2)
Myeloperoxidase, ng/mol 4380 (1834) 7866 (3959) 4166 (1880) 3008 (2394) 7950 (3878) 4614 (1750) 5511 (2520)
Neopterin, nmol/L 1060 (471) 1772 (653) 1598 (459) 1596 (541) 2400 (858) 3859 (1086) 875 (500)

1Sites: BGD: Bangladesh—Dhaka; INV: India—Vellore; NEB: Nepal—Bhaktapur; BRF: Brazil—Fortaleza; PEL: Peru—Loreto; SAV: South
Africa—Venda; TZH: Tanzania—Haydom.
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TABLE 3 Multivariable linear regression model results considering early childhood factors associated with growth
at 5 y of age

HAZ1 WAZ1 BMIZ1 WHZ1

LAZ at enrollment 0.28 (0.02)∗∗∗ — 0.06 (0.03) —
WAZ at enrollment — 0.27 (0.03)∗∗∗ — —
WLZ at enrollment — — — 0.19 (0.03)∗∗∗
WAMI 0.10 (0.02)∗∗∗ 0.11 (0.03)∗∗∗ 0.07 (0.03)∗ 0.08 (0.03)∗
Sex (boys 0, girls 1) 0.04 (0.05) − 0.05 (0.06) − 0.18 (0.07)∗ − 0.05 (0.07)
Maternal height, cm 0.03 (0.00)∗∗∗ 0.03 (0.01)∗∗∗ 0.00 (0.01) 0.01 (0.01)
Energy intake2 0.03 (0.03) 0.05 (0.03) 0.03 (0.04) 0.04 (0.04)
Protein density2 0.03 (0.03) 0.00 (0.03) − 0.03 (0.03) − 0.03 (0.03)
Hemoglobin 0.06 (0.03)∗ 0.02 (0.03) − 0.01 (0.03) − 0.03 (0.04)
Transferrin receptor3 0.18 (0.06)∗∗ 0.21 (0.07)∗∗ 0.14 (0.08) 0.13 (0.08)
Ferritin3 − 0.08 (0.02)∗∗∗ − 0.05 (0.02)∗ 0.02 (0.03) 0.01 (0.03)
Bacterial density − 0.04 (0.02)∗ − 0.02 (0.02) 0.01 (0.02) 0.01 (0.02)
Lactulose:mannitol z-score − 0.11 (0.04)∗∗ − 0.16 (0.05)∗∗∗ − 0.11 (0.06)∗ − 0.14 (0.06)∗
α-1-Antitrypsin4 − 0.28 (0.12)∗ − 0.20 (0.15) 0.06 (0.17) − 0.00 (0.17)
Myeloperoxidase4 − 0.19 (0.11) − 0.52 (0.13)∗∗∗ − 0.56 (0.15)∗∗∗ − 0.60 (0.16)∗∗∗
Adj. R2 0.41 0.38 0.23 0.26
Number of observations 1017 1017 1017 1015

∗ P < 0.05, ∗∗P < 0.01, ∗∗∗ P < 0.001.
1Height-for-age (HAZ), weight-for-age (WAZ), body mass index z-score (BMIZ), and weight-for-height z-score

(WHZ). Values are coefficient (SE). The models include site as a fixed effect (results not shown).
2Variables have been standardized; the beta estimates represent the difference in 1 SD change in the variable.
3Variables have been adjusted for inflammation and normalized by taking the square root.
4Mean log concentration (detrended).

WAZ outcome

Similar to the HAZ model, child, household, and maternal
characteristics, as well as markers of iron status and EED were as-
sociated with WAZ at 5 y of age (Table 3, Supplemental Figure
3, and Supplemental Table 8). Socio-economic status (WAMI),
WAZ at enrollment, and maternal height were all positively
associated with WAZ at 5 y of age. Mean TfR concentration in the
first 2 y of life was positively associated with WAZ (0.21 [95%
CI: 0.07, 0.35]), and mean ferritin was negatively associated
with WAZ (−0.05 [95% CI: −0.09, −0.01]). Mean LMZ in the
first 2 y of life was again negatively associated with WAZ at
5 y of age (−0.16 [95% CI: −0.26, −0.06]), but the relation
with AAT was not statistically significant. However, mean MPO
concentration was negatively associated with WAZ (−0.52 [95%
CI: −0.78, −0.26]). EED variables reduced the effect size of
diet and bacterial density variables, and, in the case of energy
intake, statistical significance. Sex, energy intake, protein density,
hemoglobin, bacterial density, and AAT were not found to be
significantly associated with WAZ at 5 y of age in the final model.

BMIZ outcome

Overall, BMIZ at 5 y of age was associated with socio-
economic status (WAMI) (0.07 [95% CI: 0.01, 0.13]), sex of
the child (−0.18 [95% CI: −0.32, −0.04]), LMZ (−0.11 [95%
CI: −0.23, 0.0]), and mean MPO concentration (−0.56 [95%
CI: −0.86, −0.26]) (Table 3, Supplemental Figure 4, and
Supplemental Table 9). In contrast to the results of the HAZ
model, none of the iron status biomarkers were significantly
related to BMIZ at 5 y of age. The association between maternal
height and BMIZ was not significant. The BMIZ model was the
only model in which sex was a significant factor—girls had lower

BMIZ scores than boys. Energy intake, protein density, AAT, and
bacterial density during the first 2 y of life were not significantly
associated with BMIZ at 5 y of age.

Also presented in Table 3 are the results for WHZ; as shown
for HAZ and WAZ, the mean LMZ and mean MPO concentration
were each negatively associated with WHZ, but as shown for
BMIZ, no associations with iron status measures were detected.

Discussion
Our findings provide new evidence that EED in early

childhood is associated with reduced stature, weight, weight-for-
height, and BMI at 5 y of age. Intestinal permeability, assessed
by LMZ, was negatively associated with each of these measures,
adjusting for multiple covariates and potentially confounding
factors. The mean concentrations of 2 fecal biomarkers were
also negatively related to growth, the mean AAT concentration
with HAZ, and the mean MPO concentration with each of the
weight-associated outcomes. Importantly, and related to these
measures (8, 24), a child’s exposure to bacterial enteropathogens
in nondiarrheal stools was associated negatively with HAZ
alone. Bacterial density was found to have a negative effect on
growth outcomes at 5 y, whereas viral and parasitic pathogen
densities did not. Overall, these results indicate that bacterial
burden and EED during the first 2 y of life can negatively
affect growth to age 5 y. Harper et al. (29) recently conducted
a review of EED and stunting, and concluded that EED path-
ways involving intestinal and systemic inflammation had more
consistent support than did pathways involving permeability and
mucosal damage, but our results provide empirical support for
both pathways. Describing these relations is important because,
although diarrhea is an important cause of morbidity and
mortality in low-income countries (30), studies have noted that
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FIGURE 1 Multivariable linear regression models were used to identify factors in early childhood that were associated with height-for-age z-scores (HAZ)
at 5 y of age. The overall model (in black) includes site as a fixed effect. Site-specific models were run, and the coefficients from those models are plotted in color.
Sites: BGD: Bangladesh—Dhaka; INV: India—Vellore; NEB: Nepal—Bhaktapur; BRF: Brazil—Fortaleza; PEL: Peru—Loreto; SAV: South Africa—Venda;
TZH: Tanzania—Haydom.

diarrheal incidence and mortality have declined more strongly
over time than has the prevalence of stunting (30–33). Our
results indicate that pervasive but clinically overlooked EED
and pathogen burdens have long-term consequences for child
growth and may provide some explanation for these global
trends.

Previously, we used linear splines to explore the relations
between many of the variables included here and growth up to
24 mo of age (13). In that analysis, we found that pathogen
density was negatively associated with HAZ at 24 mo of age,
and this corresponds well to our more specific finding in the
current manuscript that bacterial density in the first 2 y of life
is associated with lower HAZ at 60 mo of age. Conversely,
although we found that higher-quality complementary feeding
was associated with linear growth in the first 2 y of life,
this finding was not supported in the current manuscript.
Although both mean energy intake and protein density in the
first 2 y of life were positively associated with 60-mo HAZ
in the univariate models (Supplemental Table 3), inclusion
of other variables in the model resulted in positive, but not
statistically significant, findings. Potential factors associated with
the discrepancy between the 2- and 5-y results include that the
complementary feeding practices during the first 2 y of life may

not necessarily represent later dietary intake, or that other factors
potentially play a larger role in height attainment in the 3–5-y
period. Consistent with our analysis of growth velocity in the first
2 y of life (13), we found no evidence of a long-term association
between illness symptoms (diarrhea, respiratory infections, etc.)
in the first 2 y of life and size at 5 y of age. Although very different
methods were used in the initial 2-y analysis, many of the findings
were similar when looking at the 5-y growth outcomes, indicating
that the factors associated with growth at 2 y of age either have
a long-term effect on the growth of children or represent factors
that continue to diminish the growth of these children in these
environments.

We found that the mean hemoglobin and TfR concentrations
(at 7, 15, and 24 mo) were each positively related, whereas
mean ferritin concentrations were negatively related, to HAZ
at age 5; TfR was uniquely and positively also associated
with WAZ. Interpreting these findings is difficult because
the measures are interrelated, and because they are affected
by multiple physiologic processes, involving rapid growth,
erythropoiesis, and developmental changes in the regulation of
iron metabolism. Iron stores (e.g., as indicated by higher plasma
ferritin) must be adequate for erythropoiesis (34), and ferritin and
hemoglobin are positively correlated. TfR is generally elevated
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with iron-deficient erythropoiesis, but it is also elevated with
cellular proliferation (35) and, here, may be more reflective
of variability in erythropoiesis across children. The findings
that anemia and iron deficiency are not associated with growth
outcomes support this interpretation. Both ferritin and TfR
concentrations were elevated in response to inflammation, but
we adjusted the concentrations using AGP before analyses (26,
27). Our small negative associations between mean ferritin
concentration and HAZ at 5 y may reflect incomplete adjustment
for systemic inflammation, or inflammation-induced binding of
hepcidin to ferroportin, which would trap iron within cells,
rendering it unavailable to support the rapid erythropoiesis
characteristic of early childhood (36). Research is needed to
delineate how these processes lead to detectable differences in
growth.

Strengths of the study include the harmonized protocol
across 7 sites and intensity of the follow-up with detailed
assessments of morbidity, enteropathogen exposure, and diet,
as well as measures of multiple pathways through which EED
would affect growth outcomes. The results of the analyses were
fairly consistent across sites (Supplemental Figures 2–4). We
conducted sensitivity analyses to better understand our LMZ and
fecal biomarkers and demonstrated that our results regarding
bacterial density are robust across assay methodologies. Our
ability to follow up these children is another strength, limited
by time delays to obtain ethical clearance once funding was
secured at some sites; however, the loss of children over the
5-y period was a limitation, mostly due to movement out
of the catchment area. Another limitation of the study was
the break in funding for follow-up, which led to inconsistent
collection of data after 2 y of age among the sites, which
limited our ability to include data from 24–57 mo in a multisite
model.

In summary, bacterial pathogen exposure in early childhood
and longitudinal measures of EED are associated with reduced
growth outcomes at age 5. Environmental interventions to reduce
bacterial burdens and hence EED may have implications for long-
term growth. Exposure to enteropathogens and EED (primarily
through inflammation) in early childhood affect risk of obesity
and cardiometabolic risk factors beyond the preschool period
(11, 37–39), which underscore the need for prevention and
management in early childhood. Further research is needed to
understand erythropoiesis and regulation of iron homeostasis
during infancy in settings with EED and low intakes of iron to
fully interpret our findings. Further follow-up of these children
may provide additional evidence toward understanding the
importance of early life events that affect the functioning of the
gut on outcomes in later life.
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