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Abstract
Estimating the demographic parameters of contemporary populations is essential to 
the success of elasmobranch conservation programmes, and to understanding their 
recent evolutionary history. For benthic elasmobranchs such as skates, traditional 
fisheries- independent approaches are often unsuitable as the data may be subject 
to various sources of bias, whilst low recapture rates can render mark- recapture pro-
grammes ineffectual. Close- kin mark- recapture (CKMR), a novel demographic model-
ling approach based on the genetic identification of close relatives within a sample, 
represents a promising alternative approach as it does not require physical recap-
tures. We evaluated the suitability of CKMR as a demographic modelling tool for the 
critically endangered blue skate (Dipturus batis) in the Celtic Sea using samples col-
lected during fisheries- dependent trammel- net surveys that ran from 2011 to 2017. 
We identified three full- sibling and 16 half- sibling pairs among 662 skates, which were 
genotyped across 6291 genome- wide single nucleotide polymorphisms, 15 of which 
were cross- cohort half- sibling pairs that were included in a CKMR model. Despite 
limitations owing to a lack of validated life- history trait parameters for the species, 
we produced the first estimates of adult breeding abundance, population growth rate, 
and annual adult survival rate for D. batis in the Celtic Sea. The results were com-
pared to estimates of genetic diversity, effective population size (Ne), and to catch 
per unit effort estimates from the trammel- net survey. Although each method was 
characterized by wide uncertainty bounds, together they suggested a stable popula-
tion size across the time- series. Recommendations for the implementation of CKMR 
as a conservation tool for data- limited elasmobranchs are discussed. In addition, the 
spatio- temporal distribution of the 19 sibling pairs revealed a pattern of site fidelity 
in D. batis, and supported field observations suggesting an area of critical habitat that 
could qualify for protection might occur near the Isles of Scilly.
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1  |  INTRODUC TION

Estimating contemporary population demographic parameters such 
as census size (Nc) is fundamental to understanding a species' recent 
evolutionary history, and is essential for effective conservation of 
endangered species. The status of marine fish populations is often 
assessed by estimating their relative abundance based on catch per 
unit effort (CPUE), obtained from data on commercial landings and/
or fisheries- independent surveys. However, CPUE estimates can be 
biased by misreporting of catches and variations in catchability of 
the animals with different sampling gears (Maunder & Piner, 2015). 
Data limitations are particularly pertinent to elasmobranchs, assess-
ments of which are often hindered by taxonomic confusion (Iglésias 
et al., 2010) and insufficient knowledge of their biology (ICES, 2020; 
IUCN, 2015). These data limitations represent a major conservation 
concern; many elasmobranchs have suffered population declines 
and local extinctions as a result of fishing pressure over the past 
century, and many are still caught as bycatch despite landing bans 
(ICES, 2020; Simpson & Sims, 2016).

Alternatively, mark- recapture approaches can be used to esti-
mate absolute abundance (Cormack, 1964; Jolly, 1965; Seber, 1965), 
with the added benefit that they can reveal patterns of animal 
movement and habitat use. As a result, mark- recapture has been a 
popular approach to study elasmobranch species (Biais et al., 2017; 
Corrigan et al., 2018; Neat et al., 2015). However, applications to 
benthic elasmobranchs such as batoids have generally suffered from 
low animal recapture and tag recovery rates (Bendall et al., 2018; 
Bird et al., 2020). For elasmobranch populations facing method-
ological constraints such as these, novel approaches are urgently 
needed to estimate recent population trends and inform conserva-
tion decisions.

Rapid advances in molecular genetic approaches in the last 
few decades have provided novel means of assessing population 
trends. Close- kin mark- recapture (CKMR) has recently emerged as 
a method of estimating demographic parameters such as absolute 
abundance, population growth rates, and survival rates (Bravington, 
Skaug, et al., 2016). CKMR builds on traditional mark- recapture ap-
proaches by making use of genetic data obtained from small biop-
sies (e.g. muscle or fin clips) to identify closely related individuals 
within a population; here, genotypes can be considered as ‘tags’ and 
individuals' relatives in a sample can be considered as ‘recaptures’ 
based on the principles of Mendelian inheritance. The principles of 
mark- recapture are conserved in CKMR, in that a higher proportion 
of recaptures reflects a smaller population size. Since the method 
requires only a single capture of individuals, circumventing the need 
for physical recaptures and the additional stress this would inflict on 

the animals, it represents a promising approach requiring less time at 
sea to assess a critically endangered elasmobranch population.

The idea behind CKMR is by no means new. Skaug (2001) and 
Nielsen et al. (2001) initially proposed that individual genotypes can 
function as genetic tags from which abundance can be estimated. 
However, genotyping and identifying close kin among large popu-
lations has only become feasible following recent advances in se-
quencing technologies, such as next- generation sequencing (NGS), 
which have enabled the genotyping of large numbers of samples 
across the many loci (several thousand) required to accurately iden-
tify close kin. Thus far, CKMR has been successfully applied to pop-
ulations of only a handful of species, including southern bluefin tuna 
Thunnus maccoyii (Bravington, Grewe, et al., 2016), a few salmonids 
(Prystupa et al., 2021; Ruzzante et al., 2019; Wacker et al., 2021), 
white shark Carcharodon carcharias (Hillary et al., 2018), grey nurse 
shark Carcharias taurus (Bradford et al., 2018) and thornback ray Raja 
clavata (Trenkel et al., 2022).

In addition to facilitating a novel demographic modelling ap-
proach, the identification of close kin can provide insights on elas-
mobranch behaviour and habitat use, which can reveal areas that 
may qualify for additional protective measures. For example, the 
identification of cross- cohort siblings of speartooth sharks Glyphis 
glyphis across three Australian river systems revealed patterns of 
adult movement and breeding behaviour (Feutry et al., 2017), while 
the high degree of genetic relatedness within aggregations of bask-
ing sharks Cetorhinus maximus in the North- East Atlantic revealed 
kin- associated behaviour and identified potentially important migra-
tory corridors for this species (Lieber et al., 2020).

The blue skate Dipturus batis (Linnaeus, 1758) is a large- bodied 
rajid with a patchy distribution across the North- East Atlantic Ocean, 
occurring in higher densities in the Celtic Sea and Rockall (Frost 
et al., 2020). D. batis was only recently differentiated from its larger 
congener, the flapper skate D. intermedius, following recent mor-
phological and genetic investigations (Griffiths et al., 2010; Iglésias 
et al., 2010). Much of the presumed knowledge on both species is 
being re- assessed and still lacks detail, and as a result, management 
will continue on the basis of a single common skate complex (D. batis 
complex) until species- specific assessments improve (ICES, 2020). 
At present, both species are classed as Critically Endangered by the 
IUCN (Dulvy et al., 2006). Current management implies a total land-
ing ban on common skate in EU waters since 2009, though post- 
ban landings and bycatch are still reported (ICES, 2020; Simpson & 
Sims, 2016).

Anecdotal reports indicate high rates of common skate bycatch 
in the Celtic Sea, an important conservation and socio- economic 
concern in the context of a multi- species fishery. Initial surveys 

K E Y W O R D S
abundance estimation, blue skate, close- kin mark- recapture, conservation, elasmobranch, 
fisheries

 17524571, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13474 by U

niversity O
f A

berdeen T
he U

ni, W
iley O

nline L
ibrary on [21/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  463DELAVAL et al.

identified that common skate bycatch in the Celtic Sea is dominated 
by D. batis (Bendall et al., 2018). In an effort to evaluate current man-
agement regimes, longitudinal fisheries- dependent surveys have 
been initiated in collaboration with British (Bendall et al., 2018) and 
French (Barreau et al., 2016) fishing fleets in order to develop de-
mographic models and identify biologically important sites for the 
species. Initial results from these surveys suggest the occurrence of 
juveniles and adults in the area, displaying a high degree of site fidel-
ity, while population genomic analysis has identified the occurrence 
of siblings in the area and limited gene flow with offshore popula-
tions (Delaval et al., 2022). Altogether, these findings suggest that 
the Celtic Sea may host important reproductive and/or nursery sites 
for D. batis.

The Celtic Sea D. batis population represents a unique oppor-
tunity to test the suitability of CKMR as a demographic modelling 
tool for a data- deficient benthic elasmobranch; the apparently site- 
attached nature of D. batis in the Celtic Sea, the occurrence of close 
kin and the longitudinal samples available from standardized surveys 
make it an ideal candidate for CKMR. In this study, we applied a 
genome- wide genotyping approach (DArTseq™, Kilian et al., 2012) 
on samples collected during fishery- dependent surveys in the Celtic 
Sea between 2011 and 2017 to identify half- siblings and generate 
the first estimates of the number of breeding adults (N), adult pop-
ulation growth rate and adult survival rate for the population using 
CKMR. To evaluate the suitability of CKMR as applied to this popu-
lation, these estimates were compared to molecular estimates of Ne 
(the evolutionary analogue of N, see Waples et al., 2018) and genetic 
diversity, and to relative abundance estimates (CPUE) obtained from 
the survey. In addition, the spatio- temporal distribution of close kin 

would allow us to evaluate skate movements and identify potential 
areas of biological interest that may qualify for additional protection.

2  |  METHODS

2.1  |  Sample collection and genotyping

Fishery- dependent common skate surveys were performed in the 
Celtic Sea in collaboration with the fishing industry in 2011, and 
from 2014 to 2017. The surveys, which ran in early autumn (August– 
October), sampled using fixed trammel nets along a transect of sta-
tions running 12- 80 NM to the south and west of Newlyn, Cornwall, 
UK (Figure 1). Additional exploratory stations outside the transect 
area were also surveyed to assess the extent of D. batis' distribu-
tion. Further details on the sampling protocol are described in 
Bendall et al. (2018). Across survey years, biopsies (fin or muscle 
clips) were taken from 1140 individuals and stored in 96% ethanol or 
RNAlater®. Skates were also sexed and measured (total length, cm). 
A pilot study was performed to determine the power of relation-
ship inference using DArTseq™ genotyping, and the probability of 
obtaining parent- offspring or half- sibling pairs among the samples 
(Appendix S1). The results revealed that parent- offspring pairs were 
unlikely to be found, as samples mostly comprised young adults, 
whereas half- sibling pairs (HSPs) could be identified with high lev-
els of precision. Based on these results, we opted for a HSP CKMR 
approach.

Due to cost considerations, we were unable to genotype all sam-
ples. Of those available, 683 were selected for genotyping, of which 

F I G U R E  1  Sampling locations of all 
Dipturus batis in this study (black points), 
full- siblings (red squares), and half- sibling 
pairs (orange and yellow triangles). 
Straight lines are drawn between full- 
sibling (red) and half- sibling (orange) pair 
capture locations. Half- siblings captured 
in the same haul are indicated by yellow 
triangles. Latitude and longitude are in 
decimal degrees.
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387 had already been genotyped by Delaval et al. (2022) using the 
same method. Samples primarily consisted of juveniles and young 
adults, but spanned as wide a size range as possible to maximize the 
number of cohorts included in the model. Genomic DNA was ex-
tracted using a DNeasy® Blood & Tissue kit (Qiagen), quantified on 
a Qubit fluorometer (Thermo Fisher Scientific) and adjusted to 10– 
60 ng/μl prior to sequencing. To assess the suitability of the DNA 
for restriction enzyme digestion, we performed a mock sample di-
gest in CutSmart® Buffer (New England Biolabs) for 2 h at 37°C, and 
resolved all samples on 0.8% TAE electrophoresis gels. In addition, 
33 samples were visualized on a Genomic DNA ScreenTape® for a 
more detailed visualization of DNA quality. DNA was then sent to 
Diversity Arrays Technology (DArT) Pty. Ltd. for genotyping using 
DArTseq™ technology.

Genotyping was performed following standard protocols as de-
scribed in Kilian et al. (2012). DArTseq™ combines complexity reduc-
tion methods and NGS platforms, and is optimized for each organism. 
Based on tests of several enzyme combinations for complexity re-
duction, DArT Pty. Ltd. applied the restriction enzyme combination 
PstI and SphI on the samples, which were sequenced (single read) 
on an Illumina® HiSeq® 2500, generating approximately 1.5 million 
sequences per individual. Sequences were processed using propri-
etary DArT Pty. Ltd. analytical pipelines, generating data for 25,131 
sequences of 69 bp length, each containing a single nucleotide poly-
morphism (SNP).

2.2  |  SNP filtering

Single nucleotide polymorphisms were filtered based on a call rate 
of 95%, and when duplicate loci were present, only that locus with 
the highest call rate was retained. After this step, the proportion 
of scored loci per sample was assessed; all samples had a suffi-
ciently high score rate (≥90%) to be retained. Monomorphic loci 
and those with low minor allele frequencies (MAF < 0.05) were 
identified using adegenet (v 2.1.2, Jombart, 2008; Jombart & 
Ahmed, 2011), as implemented in R (v 3.6.2, R Core Team, 2019), 
and subsequently removed. Next, we tested for conformation of 
loci to Hardy– Weinberg proportions using the R package pegas 
(v 0.12, Paradis, 2010), performing an exact test based on Monte 
Carlo permutation of alleles (Guo & Thompson, 1992) with 1000 
replicates. After applying the false discovery rate correction 
method of Benjamini and Hochberg (1995), loci were removed 
if they deviated significantly from Hardy– Weinberg equilibrium 
(at a significance threshold of α = 0.05). We then tested for link-
age disequilibrium (LD) among loci using the R package snpStats 
(v 1.36.0, Clayton, 2020) and removed one locus from each pair 
of loci for which R2 > 0.80. Because human error could lead to 
sampling an individual multiple times or to contamination during 
molecular laboratory work, we looked for duplicate samples based 
on a threshold of 629 mismatching loci (roughly 10% of remain-
ing loci) using the R package CKMRsim (Anderson, https://doi.
org/10.5281/zenodo.3519358). Where duplicates were found (i.e. 

>90% genetically identical), only the sample with the highest score 
rate was retained. Following these filtering steps, summarized in 
Table S1, the resulting dataset contained 662 individuals geno-
typed at 6291 loci (Table 1, Figure 1).

2.3  |  Identification of kin- pairs

Related individuals were identified using CKMRsim, which simulates 
related pairs of individuals based on observed allele frequencies 
using a Monte Carlo approach. CKMRsim calculates the false posi-
tive and false negative rates at different log- likelihood thresholds for 
pairwise hypothesis tests involving different relationship categories 
(e.g. parent- offspring PO, full- sibling FS, half- sibling HS, first- cousin 
FC, and unrelated U). Due to the large number of pairwise compari-
sons in relationship testing (662 samples imply 218,791 pairwise 
tests), this approach enables the user to identify an appropriate log- 
likelihood threshold, given the corresponding error rates, when per-
forming the relationship tests. Details about the CKMRsim analysis 
are provided in Appendix S3. For the sake of comparison with other 
relatedness- finding methods, we also searched for related pairs 
using ML- relate (Kalinowski et al., 2006) and calculated pairwise re-
latedness (r) using the Wang estimator in the R package related (v. 1, 
Pew et al., 2015).

2.4  |  Close- kin mark- recapture

Close- kin mark- recapture builds upon traditional mark- recapture 
(MR) abundance estimation by integrating information on the re-
latedness of individuals. In short, CKMR consists of determining 
the relationship (in this case as half- siblings or not) of all pairs of 
individuals in a sample and comparing these to the prior probability 
of relatedness, given the life- history parameters. Calculating these 
prior probabilities amounts to building a population dynamics model. 
The life- history parameters, if known for the species, can include 
sex- specific growth rates, age at maturity, and fecundity- at- age. This 
component of the model is flexible and can be adapted to the spe-
cies in question by the addition or removal of life- history parameters 
(Bravington, Skaug, et al., 2016). Models for data- deficient species 
are by necessity simplified, requiring a number of assumptions to be 
made. After accounting for the observed related and unrelated pairs 
inferred from the genetic data, the population dynamics model then 
feeds into a demographic model from which initial population size 
and population growth rate can be estimated. In a HSP model, adult 
survival rates can also be estimated using information on the time 
interval between siblings' birth years, inferred from their estimated 
ages.

The HSP approach requires knowledge of the age of the individ-
uals at the time of sampling. When sampling non- lethally in the field, 
this implies estimating an individual's age based on its size. The data- 
deficient nature of D. batis means little is known of its life- history 
traits. Through a mark- recapture experiment, Barreau et al. (2016) 
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were able to use a sclerochronological approach using vertebral 
growth readings to propose an age- at- length model for D. batis, using 
the von Bertalanffy (1938) growth equation (Equation 1), which is 
commonly used to model fish size at age. We estimated the age (in 
years t) of each individual based on their length (in cm L) using this 
equation, rounding down to the year (Barreau et al., 2016).

We recognize that the parameters of this equation still require 
validation from further recaptures (Barreau et al., 2016), and that 
they lack defined uncertainty bounds that should ideally be in-
cluded in a CKMR model. However, they offer the best method 
currently available to estimate age- at- length for D. batis. In order 
to assess the sensitivity of our CKMR model to erroneous age 
estimates, we repeated the CKMR analysis described below in a 
(less computationally demanding) maximum- likelihood framework 
after re- assigning ages to individuals according to their size (see 
Appendix S5). Owing to a lack of further available life- history 
data, we opted for a sex-  and age- aggregated population dynam-
ics model (Equation 2). That is, we assumed equal growth rates 
for both males and females, and constant adult survival rates over 
time. This approach is similar to that applied to other elasmo-
branchs to date (Bradford et al., 2018; Hillary et al., 2018), which 
also lacked precise life- history parameters.

In our HSP population dynamics model (Equation 2), the prob-
ability that the relationship K between any two individuals i and j 
is half- sibship (HSP), given their respective birth years (b) and that 
j was born after i, is dependent on the number of potential parents 
(i.e. number of breeding adults N) in the year of j's birth and on the 
adult survival rate (φ)

The rationale behind this formula, which is adapted from Hillary 
et al. (2018), is firstly that the probability that i's mother (Mi, say) sur-
vives from bi to bj is �bj−bi, and secondly, the probability that j is the 
offspring of Mi is 2∕Nbj

. The latter follows because there are Nbj
∕2 can-

didate mothers at time bj. Finally, the factor 2 comes from also taking 
the father into account.

The fact that j is Mi’s offspring with probability 2∕Nbj
 builds on 

the assumptions that the population is closed. Indeed, the closed 

population assumption may be valid, given that migration in and 
out of the Celtic Sea is apparently limited based on genetic (Delaval 
et al., 2022) and tagging (Bendall et al., 2018) data. Regarding the 
issue of differential probability of capture across space and time, the 
distribution of D. batis in the Celtic Sea is characterized by biological 
hotspots and spatially variable CPUE (Bendall et al., 2018). To mini-
mize any potential bias, we selected samples randomly across survey 
stations and years.

In the demographic model (Equation 3), the number of adults in 
any given year t (Nt) is dependent on the number of adults in the 
initial model year (t = 0, i.e. the birth year of the first cohort in the 
sample set) and the annual population growth rate (r).

Our aim was to estimate initial adult breeding abundance (Nt=0), pop-
ulation growth rate (r), and annual adult survival rates (�), and use this 
information to estimate abundance across the time series (Nt). We 
used a Bayesian approach, allowing us to set biologically meaningful 
constraints for each parameter and to visualize the credible intervals 
a- posteriori. We implemented a Metropolis- Hastings Markov- Chain 
Monte Carlo (MCMC) model in R, whereby the posterior probability 
was calculated as follows:

where the proportionality symbol ∝ is used because we omit 
the normalization constant in Bayes' formula. Further, the term 
P
(
Nt=0

)
P(r)P(�) is a non- informative prior on the parameters 

Nt=0, r and �. Finally, 
∏

i<jP
�
Kij ∣ Nt=0, r,𝜑

�
 is a product across all 

pairs (i, j) of individuals in the data. For half- siblings the probability 
P
(
Kij = HSP ∣ Nt=0, r,�

)
 is given by Equation (2), while for unrelated 

individuals it is 1 − P
(
Kij = HSP ∣ Nt=0, r,�

)
. Note that the parame-

ter Nt=0 enters into Equation (2) through Equation (3). Because the 
set of pairwise relationships Kij are not statistically independent (e.g. 
individuals i and j occur multiple times) unless a small portion of the 
population has been sampled, Equation (4) is not the exact posterior 
distribution, but corresponds instead to the pseudo- likelihood of 
Bravington, Skaug, et al. (2016).

The Bayesian machinery requires priors to be assigned to all 
parameters, and in terms of r  and �, we used the priors to restrict 
the range of the parameters to ones that are biologically feasi-
ble (i.e. between −1 and 1 for r  and between 0 and 1 for �). We 

(1)Lt = 149
[
1 − e−0.18(t+0.49)

]

(2)P
[
Kij = HSP| bi , bj ; bi < bj

]
=

4

Nbj

× φ(bj−bi)

(3)Nt = Nt=0 × ert

(4)P
(
Nt=0, r,φ|Kij; i < j

)
∝ P

(
Nt=0

)
P(r)P(φ)

∏

i< j

P
(
Kij ∣ Nt=0, r,φ

)

Year sampled
Sample size (male, 
female)

Mean length in cm 
(range)

Mean estimated age 
(range)

2011 158 (69, 89) 122 (75, 148) 9 (3, 27)

2014 155 (84, 71) 121 (75, 147) 9 (3, 23)

2015 204 (109, 95) 115 (66, 146) 8 (2, 21)

2017 145 (66, 79) 113 (69, 142) 8 (2, 16)

Total 662 (328, 334) 118 (66, 148) 8 (2, 27)

TA B L E  1  Final panel of 662 Dipturus 
batis from the Celtic Sea incorporated into 
a close- kin mark- recapture model
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experimented with modelling parameters using short runs of 
100,000 iterations, evaluating the performance of the models in 
Tracer (v 1.7.1, Rambaut et al., 2018) by assessing the distribution 
of parameter estimates ‘sampled’ by the Markov chain, and assess-
ing the effective sample size for each parameter. The final MCMC 
was run for 1 million iterations, sampling every 100th iteration, 
and discarding the first 100,000 iterations as burn- in. New vari-
ables for Nt=0, r  and � were proposed using a Metropolis- Hastings 
sampler, and accepted based on the posterior acceptance ratio 
approach. Further details regarding the MCMC computation are 
provided in Appendix S4.

2.5  |  Genetic diversity and effective 
population size

Population-  and locus- wide summary statistics were obtained using 
GenAlEx (v 6.5, Peakall & Smouse, 2006, 2012). We estimated ef-
fective population sizes (Ne) using the LD estimator (Hill, 1981; 
Waples, 2006; Waples & Do, 2010) in NeEstimator (v 2.1, Do 
et al., 2014). Ne is a theoretical estimator of population size that 
reflects the degree of genetic drift and, thereby, the evolution-
ary potential of wild populations; conservation thresholds of Ne 
have generally been set to 500 or 5000 individuals to mitigate the 
loss of genetic diversity and inbreeding depression, though these 
thresholds are debated (reviewed in Allendorf et al., 2013). The LD 
estimate assumed random mating, and we report the results when 
setting a critical value (i.e. MAF at which alleles should be excluded) 
of 0.05. Confidence intervals were obtained using the Jackknife- 
over- individuals method. Ne was calculated for the samples overall, 
and for each sampling year.

2.6  |  Catch per unit effort

In order to contextualize our estimates of population size and growth 
trends obtained from CKMR, we estimated relative total abundance 
(i.e. reflecting abundance of all individuals in the population, not just 
the breeders) by calculating CPUE, a metric that is more familiar to 
fisheries management.

We calculated annual CPUE rates from D. batis captured during 
fishery- dependent common skate surveys performed in the Celtic 
Sea by CEFAS in collaboration with the fishing industry from 2014 to 
2017, described in Bendall et al. (2018). All D. batis caught during the 
survey were counted and measured. Individual weights 𝑊𝑇 (g) were 
estimated from the parameters given by Silva et al. (2013):

Fishing effort was defined as kilometre- hours (km h) of net 
soaked:

Catch per unit effort was calculated for each station, as abun-
dance (individuals km−1 h−1) and biomass (kg km−1 h−1), based on the 
number of individuals 𝑁𝑇 and summed weights WT converted to kg 
respectively:

 

For each year surveyed, mean abundance and biomass were cal-
culated for (a) all stations fished, and (b) for prime stations that were 
fished each year (2014– 2017, see Bendall et al., 2018). Where four 
stations were fished multiple times, the average was calculated for 
the four stations prior to averaging across the four stations.

3  |  RESULTS

3.1  |  Identification of kin- pairs

Using CKMRsim, we identified three full- sibling pairs and 16 HSPs 
among the 662 genotyped individuals. When comparing the three 
kin- finding approaches, CKMRsim, ML- relate, and related, the results 
were largely consistent. However, ML- relate was less conservative, 
identifying eight additional HSPs. On assessing the relatedness 
values (r) among these additional pairs of samples, we noticed the 
additional related individuals from ML- relate generally had lower r 
values than the rest (Table S3). By including tests for first- cousins 
in CKMRsim, we identified 196 pairs of individuals that were likely 
to be distant relatives (e.g. third- order relatives such as cousins). As 
ML- relate does not test for third- order relatives, it may have falsely 
identified a number of third- order relatives as half- siblings. A con-
servative approach was adopted, whereby the three full- sibling and 
16 HSPs identified using CKMRsim were retained for downstream 
analysis.

Of the 19 sibling- pairs identified, in four cases the pair of indi-
viduals were captured in the same haul. The other sibling pairs were 
captured between two and 94 km apart (Figure 1, Table 2). Two indi-
viduals were each involved in multiple sibling pairs. The majority of 
sibling pairs involved at least one individual captured just west of the 
Isles of Scilly (Figure 1). These results suggest a pattern of site fidel-
ity that might violate the assumptions of CKMR, in that they could 
lead to spatially biased sampling (Conn et al., 2020). Indeed, compar-
ing the geographic distance between half- siblings with that between 
all potential pairs suggested that half- siblings were more likely to be 
found in closer proximity than expected by chance (Kolmogorov– 
Smirnov test, D = 0.40, p = 0.01; Figure S5). However, given that 
our sampling protocol was systematic rather than opportunistic, and 
covered an area of the Celtic Sea believed to capture most of the 
range of the population, we considered any spatial sampling bias to 
be negligible (Conn et al., 2020).

(5)WT = 0.0038 × LT
3.1201

(6)Unit effort = Length of net (km) × Soak time (hours)

(7)Abundance =
NT

Unit effort

(8)Biomass =

∑
WT

Unit effort
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468  |    DELAVAL et al.

3.2  |  Close- kin mark- recapture

We identified 16 HSPs that could be used for the CKMR model, 
which was fewer than the 21 we expected based on the results 
of a pilot study (Appendix S1). The age of the samples, estimated 
using the von Bertalanffy growth parameters proposed by Barreau 
et al. (2016), ranged from 2 to 27 years of age. The equation gen-
erated significant uncertainty when estimating the age of larger 
individuals, whereas the majority of samples (N = 656) were esti-
mated at between two and 15 years of age, the six largest individuals 
(length 142– 148 cm) were estimated at between 16 and 27 years of 
age. The oldest skate involved in a HSP was estimated at 15 years 
of age. Therefore, in order to minimize bias and imprecision in our 
CKMR model while retaining as much pairwise relatedness informa-
tion as possible, we excluded the six individuals older than 15 years 
from our analyses. One HSP involved two individuals from the same 
cohort (i.e. same estimated birth year). Because same- cohort pairs 

violate the assumption of independent samples (Bravington, Skaug, 
et al., 2016), we excluded this HSP and other unrelated same- cohort 
pairs from the analysis. The final analysis involved 197,466 pairwise 
comparisons, down from the original 218,791, of which 15 were 
HSPs. The cohorts (and hence the modelled years) spanned 1996 
(
Nt=0

)
 to 2015 (Nt=19).

As a result of finding relatively few HSPs, the estimates in-
volved fairly large credible intervals (Figure 2, Table S4). The na-
ture of CKMR models is such that abundance estimates have the 
largest uncertainty at the beginning and end of the time series; 
the highest precision in our model occurred in the year 2005 
(
Nt=10 = 25,582; 95%CI = 10,484−52,644

)
. The high uncertainty in 

growth rate estimate precluded us from drawing conclusions on the 
population trend, though the mean estimate suggested an increasing 
population trend (r = 0.071; 95%CI = − 0.119 to 0.259). The annual 
adult survival rate (�) was estimated at 0.828 (95%CI = 0.637−0.984 ). 
We underscore that, due to the preliminary age- at- length key for the 

F I G U R E  2  Mean (red line) and 95% 
credible intervals (black lines) adult 
breeding abundance of Dipturus batis in 
the Celtic Sea, estimated using CKMR in a 
Bayesian MCMC framework. 100 random 
iterations from the model are shown (grey 
lines). Estimates for the modelled cohorts 
(solid lines) and years following the last 
cohort in the model (dotted lines) are 
shown. Note that the mean tends upwards 
towards the beginning and end of the 
time- series, which is an artefact occurring 
from taking averages.

Sampling year N

Ho He F Ne

(SE) (SE) (SE) (95% CI)

2011 158 0.311
(0.002)

0.312
(0.002)

0.004
(0.001)

13,752
(7930– 51,118)

2014 155 0.301
(0.002)

0.311
(0.002)

0.031
(0.001)

19,663
(8642– ∞)

2015 204 0.309
(0.002)

0.311
(0.002)

0.007
(0.001)

28,191
(19,981– 47,793)

2017 145 0.315
(0.002)

0.313
(0.002)

−0.005
(0.001)

8489
(4467– 79,490)

Overall 662 0.309
(0.001)

0.312
(0.001)

0.009
(0.001)

14,832
(11,987– 19,416)

Note: Sample sizes (N), observed heterozygosity (Ho), expected heterozygosity (He), and fixation 
index (F) are shown together with their standard error, calculated in GenAlEx (v 6.5, Peakall & 
Smouse, 2006, 2012). Effective population sizes (Ne) and their 95% confidence intervals are also 
shown, calculated using the linkage- disequilibrium method in NeEstimator (v 2.1, Do et al., 2014) at 
a critical value of 0.05.

TA B L E  3  Mean genomic summary 
statistics for Dipturus batis for each 
sampling year, and overall across years
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    |  469DELAVAL et al.

species, age uncertainty could not be meaningfully incorporated into 
the model, so the uncertainty bounds were likely underestimated. 
Testing for the sensitivity of the model to erroneous age estimates, 
we found that re- assigning ages to individuals had a negligible ef-
fect on parameter estimates, but slightly widened the uncertainty 
bounds (Figure S4).

3.3  |  Genetic diversity and effective 
population size

Genetic diversity was stable across all sampling years (2011– 2017), 
with the population of D. batis maintaining relatively constant levels 
of observed heterozygosity of ~0.31 across years (Table 3). Overall 
effective population size (Ne) was estimated at 14,832 individuals 
(95% CI: 11,987– 19,416, Table 3). Ne estimates varied across sam-
pling years, with an increase from approximately 14,000 individu-
als in 2011 to 28,000 individuals in 2015, before a drop to 8500 in 
2017. However, confidence intervals were much larger for yearly Ne 
estimates.

3.4  |  Catch per unit effort

Across the 2014– 2017 survey period, the mean CPUE by abundance 
and biomass for D. batis remained relatively stable. Mean CPUE 
ranged from 0.44– 0.49 individuals km−1 h−1 and, in terms of biomass, 
from 3.96– 5.66 kg km−1 h−1, with notable standard deviations of the 
mean (Figure 3).

Only four stations were fished in all four survey years (stations 
C03, C04, C07 and C09 in Bendall et al., 2018), and the mean CPUE 
at these sites ranged from 0.68 to 0.77 individuals km−1 h−1 and 
6.09– 9.27 kg km−1 h−1 (Figure 3). The lowest recorded mean CPUE 

(biomass) was recorded in 2016, at 3.96 kg km−1 h−1 for all stations 
fished, and 6.09 for kg km−1 h−1 for the four stations that were fished 
each year.

4  |  DISCUSSION

In this study, we evaluated the suitability of CKMR as a demographic 
modelling tool for a data- deficient and critically endangered benthic 
elasmobranch population, the Celtic Sea population of blue skate 
D. batis. Using samples collected during fishery- dependent common 
skate surveys from 2011 to 2017, we implemented a HSP CKMR 
model to generate the first estimates of adult breeding abundance, 
adult population growth rate, and adult survival rates for the popu-
lation. In addition, the spatio- temporal distribution of sibling pairs 
supported the results of Bendall et al. (2018) suggesting that D. batis 
exhibit site fidelity and that an area of critical habitat may occur near 
the Isles of Scilly. Despite limitations owing to the limited number of 
kin pairs identified and the data- deficient nature of D. batis, CKMR 
represents a promising demographic modelling tool for the species, 
as demonstrated by comparing results from it with molecular esti-
mates of effective population size (Ne), genetic diversity and CPUE, 
the last a more familiar estimate in fisheries science. We discuss the 
limitations of these estimates, and evaluate the potential of CKMR 
as a tool to estimate contemporary population demographic param-
eters, and so a population's evolutionary potential, for this and other 
data- deficient elasmobranchs.

The results support anecdotal information that D. batis is locally 
abundant in the Celtic Sea. CPUE estimates remained consistent 
both in terms of biomass and abundance, indicating a stable pop-
ulation in the short term from 2014 to 2017; estimates of genetic 
diversity also remained stable across sampling years. The CKMR 
results suggested that this level of relative abundance corresponds 

F I G U R E  3  Temporal changes in CPUE 
of Dipturus batis (left panel: Abundance; 
right panel: Biomass) for all stations fished 
(top) and for four stations sampled each 
year (bottom) during fishery- dependent 
common skate surveys in the Celtic Sea 
by CEFAS in collaboration with fishing 
industry from 2014 to 2017.
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470  |    DELAVAL et al.

to an adult breeding population in the order of N ≈ 25,000 individu-
als. However, the CKMR estimates should be interpreted with cau-
tion since they were based on the inclusion of relatively few (15) 
HSPs, and additional parameters such as age uncertainty could not 
be incorporated due to the preliminary nature of life- history data 
on the species. The only other known estimates of abundance for 
the population come from Barreau et al. (2016)’s estimates of CPUE, 
which were based on fishery- independent bottom trawl data. These 
authors reported a moderate increase in CPUE from 2009 to 2014. 
Altogether, the results from both molecular and CPUE approaches 
seem to suggest a stable, possibly increasing, population of D. batis 
in the Celtic Sea following the 2009 landing ban, at least until 2017.

Estimates of Ne were in the order of ~15,000 individuals, which 
is above the generally accepted conservation thresholds (e.g. of 500 
or 5000, see Allendorf et al., 2013) and suggests that the Celtic Sea 
population of D. batis is at a relatively low risk of inbreeding depres-
sion. We noted a decline in Ne in 2017; however, our Ne estimates 
should be interpreted with caution: estimates were derived from a 
mixed- age group of individuals and therefore do not reflect Ne per 
generation, which could have been assessed by estimating Ne for 
each cohort should sample sizes have allowed it (e.g. as in Waples 
et al., 2018), and the high- throughput sequencing data from which 
they were derived may be subject to bias due to violations of the 
assumption of unlinked loci (Waples et al., 2016).

The CKMR estimates suggested an annual adult survival rate of 
� = 0.83 (95%CI = 0.64−0.98) for D. batis in the Celtic Sea. This is 
higher than the 0.64 estimated for the larger flapper skate (D. inter-
medius) based on the results of a mark- recapture programme on the 
west coast of Scotland (Neat et al., 2015), although their estimate 
included juveniles which likely experience higher natural mortality 
rates than adults on account of their smaller size. The higher mor-
tality of D. intermedius might also reflect a greater susceptibility to 
fishing mortality for this species (Brander, 1981). In comparison with 
existing elasmobranch CKMR studies, the adult survival rate esti-
mates for D. batis were lower than for adult white shark Carcharodon 
carcharias (Hillary et al., 2018) and grey nurse shark Carcharias tau-
rus (Bradford et al., 2018), both estimated at over 0.90. Such a high 
survival rate might be expected for large oceanic predators given 
their higher trophic position. It is worth noting that mortality rates 
for D. batis discards (accidental catches) in commercial tangle- net 
and trawl fisheries have been estimated at 38.5% (Ellis et al., 2016) 
and 33.5% (Barreau et al., 2016), respectively, while skates in general 
experience mortality rates as high as 45% following capture in UK 
trawl fisheries (Enever et al., 2009). The potential rates of mortality 
that can be inflicted on skate populations by commercial fisheries 
may therefore be consequential, supporting the need for rigorous 
monitoring and implementation of targeted conservation actions.

There is growing evidence of philopatric, site- attached (e.g. 
Feutry et al., 2017; Neat et al., 2015), and aggregating behaviour 
(Lieber et al., 2020; Thorburn et al., 2018) exhibited by elasmo-
branchs, which may relate to preferential feeding, reproductive or 
nursery grounds that could qualify as conservation areas. The full-  
and half- sibling pairs identified in this study were sampled in closer 

proximity to one another (<100 km apart) than would be expected 
by chance, even when collected several years apart, indicative of site 
fidelity. Of particular interest was the high density of sibling pairs 
that occurred in the waters west of the Isles of Scilly. This location 
corresponded to an area thought to be ‘biologically important’ by 
Bendall et al. (2018) where there were increased catches of imma-
ture and mature males and females, and the occurrence of sexually 
active males and egg- bearing females had been observed. Our re-
sults therefore support earlier observations, and identify a site war-
ranting further investigation, one that could perhaps benefit from 
targeted conservation actions.

This study allows us to evaluate sampling- design consider-
ations for improved implementations of CKMR on D. batis and 
other elasmobranchs sharing similar life- history characteristics. 
We could establish that the sampling effort required for a large- 
bodied skate might conceptually lie between that of a ‘teleost fish’ 
(e.g. Bravington, Grewe, et al. (2016) identified 45 parent- offspring 
pairs among 14,000 genotyped southern bluefin tuna, estimating 
an adult abundance of ~2 million individuals) and a ‘shark’ (e.g. 
Hillary et al. (2018) identified 21 HSPs among 100 genotyped white 
sharks, estimating an adult abundance of 280– 650 individuals). 
Though we effectively maximized the genotyped sample size in our 
study based on cost, DNA quality and population dynamic consid-
erations, we estimate that in order to obtain CKMR estimates at 
the precision required of fisheries stock assessments (i.e. corre-
sponding to at least ~45 kin pairs, according to Bravington, Skaug, 
et al., 2016), sampling should continue for the Celtic Sea D. batis 
population until ~1100 individuals have been genotyped, based on 
the assumption that the number of kin- pairs identified increases 
quadratically with sample size (Bravington, Grewe, et al., 2016; 
Appendix S1).

Furthermore, the site fidelity of D. batis suggests that sampling 
effort should be increased longitudinally and across several stations 
in order to avoid sampling litter mates (i.e. siblings born in the same 
year), which complicate CKMR as they violate the assumption of 
independent samples (Bravington, Skaug, et al., 2016). In practice, 
sampling litter mates that are the offspring of an adult with espe-
cially high reproductive success in a particular year may downwardly 
bias the abundance estimate; site fidelity would also increase the 
probability of sampling a litter mate, especially if these two siblings 
happen to share a trait conferring increased survival, and there-
fore capture. This is why we opted for a conservative approach by 
omitting same- cohort pairs. In contrast, it may be argued that given 
the level of uncertainty in our age estimates, the same- cohort pairs 
could have been retained.

Despite the preliminary nature of the age- at- length key used in 
this study (Barreau et al., 2016), it provides the best available age 
estimator for D. batis at the time of writing. Accurate age estima-
tion remains a challenge in elasmobranch population assessment, 
often requiring lethal sampling to obtain vertebral growth readings. 
However, novel statistical approaches now provide an opportunity 
to model age based on individual size, though these require consid-
erable sampling efforts (Régnier et al., 2021).
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    |  471DELAVAL et al.

The variable catchability of elasmobranchs by different sampling 
gears is also an issue to consider. The trammel- net surveys captured 
mostly sub- adults and young adults (length range = 66– 148 cm; 
Table 1). The relative lack of small juveniles may have limited the 
number of cohorts sampled and might explain the absence of parent- 
offspring pairs in our samples, which would have enabled total adult 
abundance estimation using a parent- offspring pair CKMR approach 
(Bravington, Grewe, et al., 2016; Bravington, Skaug, et al., 2016). 
In contrast, the bottom trawl data used in the CPUE estimates of 
Barreau et al. (2016) contained a wide range of size classes (20– 
140 cm), including an abundance of juveniles. These patterns suggest 
that alternative sampling methods such as trawling may yield a wider 
size (and age) range of skates that could be advantageous for CKMR 
abundance estimation, although they may be more destructive.

In summary, our CKMR and Ne estimates provide a first ap-
proximation of the number of breeding adult D. batis in the Celtic 
Sea, complementing CPUE estimates, but they would benefit from 
further validation by other methods. At present, experimental val-
idation of CKMR has been limited to parent- offspring pair models 
in riverine brook trout (Salvelinus fontinalis) populations using mark- 
recapture methods (Marcy- Quay et al., 2020; Ruzzante et al., 2019). 
The long- term tagging of D. batis in the Celtic Sea, initiated by 
Bendall et al. (2018) and Barreau et al. (2016), may provide a useful 
dataset to validate our CKMR estimates once a sufficient number 
of individuals are recaptured. Thereafter, more precise demographic 
models could be developed and applied to the population, and to 
other elasmobranchs sharing similar life- history traits as D. batis.

Despite the limitations discussed, CKMR has proven to be a rel-
atively cost- effective method of estimating important population 
demographic parameters for a critically endangered data- deficient 
elasmobranch; the increasing affordability of sequencing technol-
ogies is making it possible to genotype large numbers of samples 
from single sampling events, while offsetting the increasing costs 
of the repeated surveys at sea needed to physically recapture indi-
viduals (which would also incur additional stress on the animals). In 
addition to the results of a recent seascape genomics study (Delaval 
et al., 2022), the present findings improve the status of knowledge 
for what is likely one of the few remaining large populations of 
D. batis. Together, these studies demonstrate the additive value of 
genomic SNP- based approaches to elasmobranch research, which 
can be implemented in different frameworks (e.g. evolutionary, de-
mographic, and environmental) to address longstanding questions of 
immediate relevance to conservation.
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