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SUMMARY

Spatial learning requires estimates of location that
may be obtained by path integration or from posi-
tional cues. Grid and other spatial firing patterns of
neurons in the superficial medial entorhinal cortex
(MEC) suggest roles in behavioral estimation of loca-
tion. However, distinguishing the contributions of
path integration and cue-based signals to spatial be-
haviors is challenging, and the roles of identified
MEC neurons are unclear. We use virtual reality to
dissociate linear path integration from other strate-
gies for behavioral estimation of location. We find
that mice learn to path integrate using motor-related
self-motion signals, with accuracy that decreases
steeply as a function of distance. We show that inac-
tivation of stellate cells in superficial MEC impairs
spatial learning in virtual reality and in a real world ob-
ject location recognition task. Our results quantify
contributions of path integration to behavior and
corroborate key predictions of models in which stel-
late cells contribute to location estimation.

INTRODUCTION

The ability to learn and update estimates of location during
movement is central to theories of animal and artificial navigation
(Durrant-Whyte and Bailey, 2006; McNaughton et al., 1996,
2006). In mammals, this core cognitive function may be achieved
either using spatial cues, for example, through triangulation or
beaconing strategies (Geva-Sagiv et al., 2015), or by path inte-
gration mechanisms, which generate representations of location
from information about direction and speed of movement (Eti-
enne and Jeffery, 2004). However, behavioral dissociation of
path integration from cue-based navigation is challenging, as
for many spatial behaviors investigated experimentally location
estimates generated by any of several possible strategies may
be sufficient for successful task performance. Indeed, while
elegant experimental manipulations have directly tested mecha-
nisms and roles of path integration in invertebrates (Collett et al.,
1998, 2013; Wittlinger et al., 2006), the extent to which mammals
use path integration strategies behaviorally is unclear, and
whether the underlying neural substrates differ from those for
cue-based location estimation is not known (Etienne and Jeffery,
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2004; Jacob et al., 2017; Van Cauter et al., 2013; Winter et al.,
2013).

The medial entorhinal cortex (MEC) contains multiple func-
tional cell types that generate spatial representations that may
be well suited to support behavioral estimation of location (Diehl
et al., 2017; Hafting et al., 2005; Hardcastle et al., 2017; Solstad
et al., 2008). These functional cell types include grid cells, which
encode location through repeating hexagonally arranged firing
fields (Hafting et al., 2005). Within the MEC, layer 2 has the great-
est density of neurons with grid-firing fields (Sargolini et al.,
2006), and grid firing has been localized to excitatory neurons
with stellate and pyramidal morphology (Domnisoru et al.,
2013; Schmidt-Hieber and Hausser, 2013; Sun et al., 2015).
The stellate cells in layer 2 (L2SCs) have extensive local intra-
laminar connections (Beed et al., 2013; Couey et al., 2013; Fuchs
et al., 2016; Pastoll et al., 2013), discrete projections to principal
cellsin layer 5b (Surmeli et al., 2015), and long-range projections
to the hippocampus (Schwartz and Coleman, 1981; Varga et al.,
2010), making them well placed to coordinate and distribute grid
and other spatial signals. Inactivation of L2SCs suppresses
contextual fear conditioning (Kitamura et al., 2015). However,
while grid cells encode representations of an animal’s current
location and theoretical models predict they may be used to
plan trajectories to future locations (Burak and Fiete, 2009;
Bush et al., 2015; Stemmler et al., 2015), it is not clear whether
output from L2SCs is required for behaviors that require estima-
tion of specific locations.

Because of the metric properties of their firing fields, grid cells
have been proposed to encode the output of a path integration
computation (McNaughton et al., 2006), and many theoretical
models of grid firing perform path integration (Burgess and
O’Keefe, 2011; Giocomo et al., 2011; Zilli, 2012). For example,
continuous attractor network models (McNaughton et al.,
2006), which have been proposed to account for grid firing based
on connectivity between L2SCs and nearby interneurons (Couey
et al., 2013; Pastoll et al., 2013), generate location estimates by
integrating external spatial cues with velocity signals (Burak and
Fiete, 2009; Fuhs and Touretzky, 2006; Guanella et al., 2007).
Other models demonstrate that grid firing need not be the result
of a path integration computation (Cheung, 2016; Kropff and
Treves, 2008), and theoretical analyses suggest that the grid
code may simply serve as a high-capacity spatial representation
(Mathis et al., 2012; Sreenivasan and Fiete, 2011). In support of a
path integration role, lesioning the MEC impairs measures of
path integration in real world behavioral tasks (Jacob et al.,
2017; Van Cauter et al., 2013; Winter et al., 2013); but, with this
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Figure 1. Mice Learn to Estimate Location Using a Path Integration Strategy

(A) Schematic of the virtual track used on beaconed trials (upper) or non-beaconed and probe trials (lower). The reward location is indicated by visual cues from
stripes on the floor and walls of the track only on the beaconed trials.

(B) Configuration of trial types.

(C) Examples of raster plots of stopping locations as a function of track position, separated according to trial type, on day 1 (upper left) and on day 17 (upper right),
and corresponding mean number of stops/10-s bin (lower plots). Stopping locations on the raster plots are indicated by dots, which are red for locations that
triggered a reward, and otherwise are black. The mean numbers of stops are indicated by solid lines and shuffled means by dashed lines. The shaded bands
around the means indicate the SEM.

(D) Average probability of the first stop on each trial as a function of binned track location for all mice (n = 8 mice) across days 1-5 (blue lines) and days 18-22 of
training (red lines) separated according to trial type. Shaded regions indicate SEM. Bin width is 10 cm.

(E) Average first stop location as a function of training day for each trial type. The location of the first stop varied as a function of day for beaconed (p <2.2 x 1076,
%(1)% = 119.4, likelihood ratio test) and non-beaconed trials (p = < 2.2 x 1078, %(1)? = 92.4). There was no significant difference between the three trial types on
days 18-22 (p = 0.23, F(2,87) = 1.48), 1-way repeated-measures ANOVA). Error bars are SEM (N = 8 mice for beaconed and non-beaconed trials and N = 6 mice

for probe trials).

(legend continued on next page)
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approach, it is not possible to distinguish roles of individual cell
populations, and the contributions of surrounding brain struc-
tures are difficult to rule out. Moreover, to avoid confounding vi-
sual cues that might support landmark or beaconing strategies,
path integration in real world conditions must be tested in the
dark, which may impair representation by grid cells (Chen
et al., 2016; Pérez-Escobar et al., 2016).

The hypothesized importance of L2SCs within circuitry that
generates grid firing leads to the prediction that L2SCs are crit-
ical for spatial behaviors. The nature of the predicted contribu-
tion of L2SCs to spatial behaviors depends on the model consid-
ered. While path integration has been a major focus when
investigating models of grid firing, in continuous attractor
network models the same circuitry, depending on the availability
of external inputs, generates grid patterns either through path
integration or as a consequence of external spatial drive to the
grid circuit (Guanella et al., 2007; Milford et al., 2010; Pastoll
etal., 2013; Solanka et al., 2015). In these models, when external
spatial cues are available, they are sufficient to dictate which
neurons are active; but, when external spatial cues are not avail-
able, the models estimate location relative to the last spatial cue
using path integration (Pastoll et al., 2013; Solanka et al., 2015).
Analysis of robot systems suggests that this feature of contin-
uous attractor circuits may be important for resolving naviga-
tional uncertainty (Milford et al., 2010). Given these consider-
ations, if hypothesized continuous attractor networks within
the MEC are the sole source of location estimates for hippocam-
pal neurons important for spatial memory, then the inactivation
of L2SCs should impair learning of cued and path integration-
based estimates of location. On the other hand, if L2SCs are
the source of velocity inputs to a downstream path integrator cir-
cuit, or if cue-based information reaches the hippocampus by
routes that do not involve L2SCs, then inactivation of L2SCs
would impair only path integration-based estimates of location.
Finally, if the function of L2SCs is restricted to the identification
of context (Kitamura et al., 2015), then inactivation of L2SCs
should not affect estimation of location by either cued or path
integration strategies.

Here we introduce methods for behavioral dissociation, in
mice, of the linear component of path integration from cue-
based localization strategies. We demonstrate that virtual real-
ity-based behaviors can probe path integration strategies while
avoiding confounds from spatial cues present in real world ex-
periments. We find that mice successfully learn to use motor-
related information to locate rewards using a path integration
strategy, although with accuracy that decreases rapidly as a
function of distance, unlike that of cue-based strategies. To
investigate roles of L2SCs, we inactivated their outputs by the
expression of tetanus toxin light chain (TeLC) (Murray et al.,
2011). We found that this disrupts the adoption of both path inte-
gration and cue-based behavioral strategies. Consistent with
hypothesized spatial roles of L2SCs, we also found that, in

real-world experiments, the inactivation of L2SCs impairs the
recognition of object locations, but not recognition of novel ob-
jects. Our results provide quantitative constraints for models
that aim to account for mammalian path integration, and they
implicate L2SCs as a critical component of the neural circuitry
for cue- and path integration-based spatial learning.

RESULTS

A Behavioral Task for Quantitative Investigation of Cue-
and Path Integration-Based Estimation of Location

To be able to selectively investigate neural mechanisms for bea-
coning and path integration, we developed a behavioral test that,
depending on the task configuration, can be effectively solved
either using local cues or by estimating location from self-motion
signals, but in which potentially confounding external spatial
cues are not available (Figure 1A; Movie S1). We trained mice
to stop at a defined location on a virtual linear track to receive re-
wards. The virtual track had clearly identifiable start and end
zones connected by a corridor that, apart from the clearly
marked reward zone, did not contain any location-specific
cues. In contrast to real world experiments, in which the distant
end of a track could be used as a cue to estimate location, the
end of the virtual track was not visible from the reward zone
and, therefore, could not be used as a cue. In the first phase of
training, the location of the reward zone was clearly indicated
to the mouse using local visual cues on 4 of every 5 trials (beac-
oned trials) (Figure 1B). On the fifth trial, the visual markers for the
reward zone were absent, but stopping within the zone was re-
warded (non-beaconed trials). After a pre-determined training
period, and if mice passed a performance criterion (see the
Supplemental Experimental Procedures), every second non-
beaconed trial was replaced with a probe trial. On probe trials,
the visual cue was absent and no reward was delivered. Perfor-
mance on non-beaconed and probe trials can be used to test
whether mice estimate their position on the track using a path
integration strategy, while probe trials also enable search strate-
gies to be investigated.

We asked if mice locate the reward zone using a path integra-
tion strategy. On the first day of training, mice often received re-
wards by stopping in the reward zone, but there was no apparent
spatial organization to their stopping behavior (Figure 1C). With
training, the behavior of the mice changed, such that on leaving
the start of the track mice ran, typically without stopping, to a re-
gion close to the reward zone, at which point they advanced at
short intervals until they obtained a reward (Figure 1C). This
change in behavior was readily observed in all mice as an in-
crease in the distance from the start zone to the location of the
first stop (Figures 1C-1E), from location-dependent changes in
the probability of stopping (Figure S1A), and by a reduction in
running speed as the animal approached the reward zone
(Figure S1B). To enable quantitative comparison of stopping

(F) Mean Z scored probability of stopping as a function of binned track location for all mice (N = 8) across days 1-5 (blue lines) and days 18-22 of training (red lines)
separated according to trial type. Shaded regions indicate SEM. Bin width is 10 cm.

(G) Spatial stopping behavior, quantified by the difference between the z score at the start of the track and at the entrance to the reward zone, plotted as a function
of training day for each trial type. The difference varied as a function of day for beaconed (p < 2.2 x 1076, % (1)? = 142.5, likelihood ratio test) and non-beaconed
groups (p = 7.4 x 107'°, %(1)? = 37.9). Probe trials on days 18-22 did not differ from non-beaconed trials (p = 0.78, F(1,50) = 0.08).
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Figure 2. Path Integration Uses Motor-Related Movement Signals

(A and E) Schematic of track designs used to test a decrease (A) or an increase (E) in the gain between motor and visual reference frames. For standard trials, for
every 60 cm mice run on the treadmill, the visual track moves 60 virtual units (VU). On reduced gain trials, for every 60 cm mice run, the visual track moves 30 VU.
For increased gain trials the visual track moves 120 VU for every 60 cm mice run.

(B and F) Example plots of stop locations from single mice for trials in which the gain between treadmill movement and visual update of the track is reduced by 0.5
(B) or increased by x2 (F). The trial number refers to all trials, but for clarity only data from gain change trials are shown.

(C and G) Average of Z scored stop locations across all mice for control probe trials (x 1) and trials on which the gain is reduced (C) or increased (G). Averaged data
are plotted as + SEM (N = 5 mice for x0.5 gain, N = 4 mice for x2 gain).

(D and H) To quantify the effects of the gain change we compared, for each trial type, the ratio of stops in the location of the reward zone in the visual reference
frame (orange) to the sum of the number of stops in the reward zone in the visual and motor reference frames (green). The ratio is modified by reducing (t(4) = 3.7,

p = 0.021, paired t test) (D) or increasing gain (t(3) = 6.5, p = 0.0073) (H). Error bars indicate SEM.
Thus, on trials with reduced gain (B-D), or increased gain (F-H), stops occur in anticipation of the reward zone location in the motor reference frame.

strategies between animals, we calculated Z scored stopping
probabilities by normalizing the mean probability of stopping at
a given location to the mean and SD predicted by shuffled data-
sets (see the Supplemental Experimental Procedures). The dis-
tribution of stops in naive animals was similar in the experimental
and shuffled datasets, whereas in trained animals the probability
of stopping on the first part of the track was reduced and imme-
diately before the reward zone was increased, relative to the
shuffled data (Figures 1C, 1F, and 1G). Strikingly, this spatially
selective stopping behavior was maintained on both non-beac-
oned and probe trials (Figures 1C-1G; Figures S1A and S1B).
Because on these trials visual cues that might indicate the cor-
rect stopping location were absent, and on probe trials cues
associated with the dispensing of rewards were also not avail-
able, these data indicate that mice solve the task using a path
integration strategy. On the probe trials, mice typically stopped
near the start of the hidden reward zone and continued to stop
at short intervals until they reached the end of the hidden reward
zone, at which point trained mice typically ran continuously to the
end of the track to initiate a new trial (Figure 1C), suggesting that
mice may also use path integration strategies to estimate the
length of the reward zone.

Path Integration-Based Estimates of Location Update
Using Self-Motion Signals

In principle, path integration can be achieved by updating location
estimates using either visual (e.g., optic flow) or self-motion (e.g.,
proprioceptive feedback and motor efference) signals (Etienne
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et al., 1996; Raudies et al., 2016). To distinguish between these
possibilities, we altered the relationship between treadmill move-
ment and update of the visual projection of the track during probe
trials. We found that, on these gain manipulation trials, mice
continue to stop at a location predicted by the treadmill move-
ment rather than by the visually perceived track movement
(Figures 2A-2H). Thus, when the rate of update of the visual
projection of the track was halved (Figures 2A-2D), or doubled
(Figures 2E-2H), the first stop location and peak average stop
location were just ahead of the reward zone predicted by the
treadmill position. It is possible that animals use estimates of
time instead of, or as well as, distance to complete the task (Kraus
etal., 2015). To address this, we examined stopping location as a
function of average running speed. If mice were using elapsed
time to estimate location, then the distribution of stopping loca-
tions should depend on running speed, as mice running faster
would cover a greater distance. In contrast, we found little or no
dependence of the first stop location on running speed (Figures
S2A and S2B). Thus, mice appear able to solve the task using a
path integration strategy based on self-motion cues.

Accuracy of Path Integration Decreases with Distance
from Location Cues

Theoretical models predict that internal noise will result in errors
in path integration that increase with distance traveled (Cheung
and Vickerstaff, 2010). The extent to which such errors limit the
ability of mice to estimate location by path integration mecha-
nisms is unclear. We therefore trained mice, using tracks of
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Figure 3. Path Integration Becomes Less Accurate with Increasing Distance

(A) For tracks of increasing length the distance from the start zone to the reward zone increases as indicated. The length of other parts of the track does not change.
(B) Z scored probability of stopping during probe trials as a function of location for three tracks of increasing length.

(C) Mean success rate at obtaining rewards as a function of distance from the start of the track to the reward zone separated according to trial type (N = 7 mice).
The success rate depended on distance to the reward zone (p = 8.74 x 10~7, F(1,60) = 30.1) and accuracy of probe trials differed from beaconed trials (p < 10778,
F(1,60) = 139.3). Success rate depended on distance to the reward zone for probe trial data (x3(1) = 22.8, p = 1.8 x 107%), but not for beaconed trial data

(x3(1)=1.87, p=0.17).

(D) Mean of the most frequent stop location plotted as a function of distance. The most frequent stop location depended on distance to the reward zone
(p < 1078, F(1,60) = 276.5, 2-way repeated-measures ANOVA), but was independent of trial type (p = 0.2, F(1,60) = 1.5).

Error bars in (C) and (D) indicate SEM.

increasing length, to locate rewards at distances from 60 cm to
>4 m from the start zone (Figure 3). After mice reached a criterion
performance (see the Supplemental Experimental Procedures)
on a track of a given length, we increased the distance to the
reward zone by a factor of 1.5 (Figure 3A). We found that, as
the length of the track was increased, mice continued to stop
in the reward zone on a high proportion of beaconed trials (Fig-
ures 3B and 3C). Adaptation to the new reward zone location
was usually apparent within the first 5 trials of the first session
with the new track, indicating that visual cues can rapidly recon-
figure the behavior. In contrast, the fraction of probe trials in
which mice stopped in the reward zone dropped substantially
as the track length increased (Figure 3C; Figure S3A). This steep
drop in performance was also seen when success was evaluated
as a function of time taken to reach the reward zone for tracks of
different lengths (Figure S3B). Examination of stopping patterns
indicated that, for intermediate-length tracks, the stopping loca-

tions were centered around the reward zone, even as the number
of correct trials decreased (Figures 3B and 3D; Figure S3A).
However, from trial to trial stop locations were variable and often
were outside the reward zone, explaining the high number of er-
rors (Figures 3B and 3D; Figure S3A). These observations argue
against errors resulting from a residual memory for the previous
stop location and are consistent with an accumulation of error in
a path integrator system. Thus, in the absence of landmark cues
to anchor path integration, the ability to accurately estimate loca-
tion drops rapidly with distance from a known starting point in a
manner that is consistent with performance of a noisy path
integrator.

Blocking the Output from L2SCs Prevents Spatial
Learning

Because superficial layers of the MEC are enriched with neurons
that have spatial firing properties (Diehl et al., 2017; Hafting et al.,
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2005; Hardcastle et al., 2017; Solstad et al., 2008), and as grid-
firing patterns generated by neurons in the MEC are consistent
with the output of a neural path integrator (McNaughton et al.,
2006), we asked if neural circuitry in superficial MEC is required
for learning of the beaconed or path integration components of
the location estimation task. We focused on L2SCs, as the high-
est density of grid cells is in layer 2 (Sargolini et al., 2006), and
L2SCs have grid-firing fields (Domnisoru et al., 2013). To be
able to selectively manipulate L2SCs, we took advantage of
Sim1°" mice, which we found previously give specific genetic
access to L2SCs (Surmeli et al.,, 2015). To test the role of
L2SCs, we blocked their synaptic output by injecting an ad-
eno-associated virus (AAV) that expresses TeLC and EGFP
conditionally on the presence of Cre (AAV-FLEX-TeLC-EGFP)
(Murray et al., 2011) into the superficial MEC of Sim1™ mice
(Figure 4A). As a control, we used an AAV that expresses only
EGFP (AAV-FLEX-EGFP). Expression of EGFP was restricted
to L2SCs and was absent from the surrounding neurons (Fig-
ure 4A; Figures S4 and S5). To test whether expression of
TeLC blocks SC output, we co-expressed channelrhodopsin
2 (ChR2) in L2SCs, to enable their optical activation, along with
either TeLC-EGFP or EGFP (Figure 4B). When we recorded
from downstream granule cells in the hippocampus, we
observed synaptic currents following light activation of ChR2 in
slices from mice expressing the control EGFP construct, but
not in slices from mice expressing TeLC (Figure 4C). Thus, tar-
geted expression of TeLC using Sim1°™ mice enables the block
of synaptic output from L2SCs.

Does blocking output from L2SCs affect the ability of mice to
learn a rewarded location? To address this, we injected the MEC

1318 Cell Reports 22, 1313-1324, January 30, 2018

Figure 4. Targeted Expression of TeLC to
L2SCs Abolishes Their Synaptic Output

(A) Example of a sagittal section from the brain of a
Sim1°"™ mouse following injection of AAV-TeLC-
EGFP into the MEC. Scale bar, 1 mm.

(B) Schematic of experiment to test the effect of
TeLC expression on synaptic output from L2SCs.
AAV-FLEX-ChR2-mCherry and either AAV-FLEX-
TeLC-EGFP or AAV-FLEX-EGFP were injected
into the MEC of Sim1°™ mice. Synaptic output
from L2SCs was evaluated by recording light
evoked response of granule cells in the dentate
gyrus.

(C) Examples of membrane potential responses of
dentate gyrus granule cells to optogenetic acti-
vation of L2SCs expressing ChR2 and either GFP
(left) or TeLC-EGFP (middle). Responses are pre-
sent in all neurons from control animals (n = 10
neurons, N = 5 mice) and were absent in all neu-
rons from animals expressing TeLC-EGFP (n = 8
neurons, N = 4 mice). The peak response was
reduced by expression of TeLC-EGFP (right) (p =
0, percentile bootstrap comparison of control and
TeLC-EGFP groups, test statistic = 2.125, 95%
confidence interval [1.69, 4.29]). Circles are indi-
vidual neurons, diamonds are the population
’ average. Two neurons from two control mice were
excluded from the plot and statistical analysis as
they showed very large responses that reached
action potential threshold preventing their quanti-
fication. Error bars indicate SEM.

AAV-FLEX-TelLC-eGFP
AAV-FLEX-ChR2-mCherry

Control TelLC

of Sim1°"™® mice with AAV-FLEX-TeLC-EGFP (n = 10) or AAV-
FLEX-EGFP (n = 6). We trained the mice for 3 weeks in the virtual
location estimation task, and then we sacrificed them in order
to analyze the extent of expression of the viral transgenes
(Figures S4 and S5). We found that the proportion of trials on
which mice stopped in the reward zone was reduced for the
TeLC-expressing mice compared to control mice. This was man-
ifest as a delay to reach the criterion for the introduction of probe
trials into the experiment (control: 7.33 + 0.33 days, TeLC: 14.3 +
1.69 days; p = 0.00069, percentile bootstrap comparison of con-
trol and TeLC groups, test statistic = —6.5, 95% confidence in-
terval [-13,—2.5]). The delay depended on the extent of viral
transduction in the TeLC group, but not in the control group (Fig-
ure 5A). Because expression and task progression were variable
between animals, for further analysis we divided the mice, ac-
cording to the extent of labeling of neurons in the dorsal MEC,
into groups with high (hTeLC, n = 4) and low (ITeLC, n = 6)
expression of TeLC (Figure 5A; Figure S4). Whereas all control
mice reached the criterion for inclusion of probe trials within
9 days (7.33 + 0.33 days), the ITeLC mice were delayed (10.5 +
1.18 days; p = 0.019, test statistic = —3.5, 95% confidence inter-
val [-6.5,—0.5]), and the hTeLC mice did not meet the criteria
within the 19 days of the experiment. We note that, in 3 of
4 mice from the hTeLC group, we observed small numbers of
labeled cells in L5a. Because very few cells were labeled in
L5a in any animal and as the behavioral impairment was present
in the mouse that had no detectable expression in L5a, expres-
sion of TeLC in deep layers is unlikely to account for the
observed behavioral changes (Figure S6). Thus, these data indi-
cate that output from L2SCs plays a key role in learning the
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Figure 5. Inactivation of L2SCs Impairs Estimation of Location

(A) Day of the experiment on which each mouse from TeLC (N = 10) and control groups (N = 6) met the performance criteria to graduate from stage 1 (beaconed
and non-beaconed trials) to stage 2 (beaconed, non-beaconed and probe trials) as a function of mean intensity of GFP fluorescence in layer 2 of the dorsal MEC
(left), and proportion of mice that had graduated to stage 2 as a function of training day (right). The graduation day correlated with fluorescence intensity for the
TeLC group (p = 0.00077, robust least-squares regression), but not the control group (p = 0.38; comparison of GFP and TeLC-GFP groups: p = 0.0012, for
statistical analysis see the Experimental Procedures).

(B) Examples of rasters of stopping locations on day 17 of training for a control mouse, and for mice with high and low expression levels of TeLC (ITeLC and
hTeLC). Black dots indicating stopping location are absent on some trials because the animal did not stop.

(C) Mean z-scored probability of stopping as a function of track location during beaconed trials for GFP only control (left), ITeLC (center), and hTeLC mice (right) on
days 1-5 and days 15-19.

(D) Comparison of mean z-scored probability of stopping for trained mice (days 15-19) for each group on beaconed trials (left) and probe trials (right).

(E) The difference, between the start of the track and the start of the reward zone, in the probability of stopping (Stops»..1) (locations L1 and L2 are indicated in
Figure 1A) increased with training for GFP mice (p = 1.4 x 107, %(1)? = 41.2, likelihood ratio test) and ITeLC mice (p = 5.2 x 1078, %(1)2 = 29.6), but not for hTeLC
mice (p = 0.89, %(1)? = 0.017).

(F) Analysis of spatial strategy for beaconed trials during days 15-19. The mean location of the first stop (left) differed between control (GFP) and all TeLC
mice (ITeLC and hTeLC combined) (p = 0.021, percentile bootstrap, test statistic = 16.1, confidence interval [2.9, 26.1]), and hTeLC mice differed from control
mice (p = 0.01, percentile bootstrap corrected for multiple comparisons, test statistic = 22.2, 95% confidence interval [6.4, 28.6]), but there was no significant
difference between ITeLC and control mice (p = 0.09, test statistic = 13.1, 95% confidence interval [-0.23, 26.8]). Stops »_| 1 (right) differed between control and all
TeLC mice (ITeLC and hTeLC combined) (p = 0.00052, test statistic = 11.75, 95% confidence interval [3.26, 16.1]), and hTeLC and ITeLC mice differed from
control mice (hTeLC: p = 0.0, test statistic = 12.1, 95% confidence interval [8.4, 18.1]; ITeLC: p = 0.034, test statistic = 5.42, 95% confidence interval [1.1, 14.1]).
(G) Running speed in the black box at the end of the track increased with training for all groups of mice (GFP: p = 3.5 x 107", %(1)? = 43.7; ITeLC: p = 0.0013,
%(1)? = 10.4; hTeLC: p = 6.5 x 1078, %(1)? = 20.3). During week 4 there was no difference between groups in their running speed within the black box (adjusted
p = > 0.7 for all comparisons, percentile bootstrap test).

(H) Analysis of spatial strategy for probe trials during days 15-19. The first stop location (left) differed between ITeLC and GFP groups (p = 0.045, test-statistic =
17.9, 95% confidence interval [0.64, 34.5]). Stops 1 during probe trials (right) did not differ significantly between ITeLC and control mice (p = 0.097, test
statistic = 10.7, 95% confidence interval [-1.2, 12.2]).

Error bars in (A) and (E)-(H) indicate SEM.
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location of a reward zone, with the number of available L2SCs
determining the rate of learning.

Learning Deficits following the Block of L2SC Output
Include Cue- and Path Integration-Based Estimation of
Location

How do the deficits in performance of TeLC mice relate to the
acquisition of a spatial stopping strategy? We first compared
stopping strategies used by mice after >14 days training with
stopping strategies used over the first 5 days of training. We found
that, after training, control mice and ITeLC mice both demon-
strated spatial stopping strategies on beaconed trials (Figures
5B and 5C). The distribution of stop locations was distinct from
that of naive mice (Figure 5C), suggesting that mice in both groups
learn to stop in the region of the reward zone. In contrast, hTeLC
mice did not develop a clear spatial stopping strategy (Figures
5B-5D), and the distribution of stop locations appeared similar
to the first week of training (Figures 5C and 5D).

To quantitatively compare these changes, we evaluated the
difference between stopping probability at the start of the
track and the start of the reward zone, which we refer to as
Stops, . 1, as a function of the day of the experiment (Figure 5E).
We found that Stops o1 measured during beaconed trials
increased with training for the control group and the ITeLC
group, consistent with these mice learning a spatial stopping
strategy, but did not change for the hTeLC group (Figure 5E).
Comparison of stopping patterns on days 15-19 indicated that
mice in the ITeLC group were, nevertheless, impaired relative
to the control group, with first stop location and Stops, .. 1 that
were intermediate to that of the hTeLC group (Figure 5F). We
noticed that training in the task was also associated with an in-
crease in running speed that was particularly apparent in the
part of the track between the end of the reward zone and the
end of the black box that separates tracks between trials (Fig-
ure S1B). To quantify this change, we evaluated the average
running speed in the black box as a function of day of the exper-
iment. In contrast to measures of the spatial stopping strategy,
running speed in the black box increased with training for con-
trol, ITeLC, and hTeLC mice (Figure 5G), suggesting that all
mice learn about the structure of the task such that they increase
their running speed to minimize the time between consecutive
rewards. Consistent with this interpretation, we found no detect-
able difference between groups in their running speed on days
15-19 (Figure 5G). Thus, inactivation of L2SCs impairs learning
of a location, but not task structure, with the size of the deficit
dependent on the extent of inactivation.

To evaluate the effects of inactivation of L2SCs on path inte-
gration, we compared probe trials between ITeLC and control
groups (Figures 5D and 5H). In contrast to control mice, the
average distribution of stop locations for ITeLC mice showed lit-
tle spatial organization on probe trials (Figure 5D). The ITeLC
group differed significantly from the EGFP group in the first
stop location (Figure 5H), but not the Z score difference between
the start of the track and the reward zone (Figure 5H). Analysis of
preferred stopping locations and running speed also indicated
deficits in the ITeLC group compared to the control mice (Figures
S6B and S6C). Thus, estimation of location by ITeLC mice on
probe trials appears to be impaired.
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Together, these results indicate that L2SCs are required to
learn a reward location in environments in which beaconing
and path integration are the only available strategies, while inac-
tivation of L2SCs does not appear to influence learning about
task structure.

L2SC Output Is Required for Object Location
Recognition

Finally, to establish whether the deficits we identified in virtual re-
ality-based tests of location estimation extend to real world behav-
iors, we investigated the effects on location recognition of ex-
pressing TeLC in L2SCs. We used an object location memory
task that takes advantage of an animal’s spontaneous tendency
to explore relocated objects (Figure 6A). During a sample phase,
mice explored an arena containing two identical objects. During
a test phase, one of the objects was relocated to a novel location
and mice were allowed to re-explore the arena. To compare the
two groups, we calculated the relative time spent exploring each
object during the test phase. Whereas control mice that expressed
only EGFP in L2SCs showed preferential exploration of the
relocated object over the stationary object (discrimination ratio
significantly greater than 0, p = 0.0053, one-sample t test versus
0, df =7, t = 3.99), mice that expressed TeLC in L2SCs did not
(p = 0.45, one-sample t test versus 0, df = 7, t = 0.79) (Figure 6B).
Consistent with this, discrimination between the objects was sub-
stantially lower for mice expressing TeLC in L2SCs compared with
control mice (Figure 6B). There was no significant difference in to-
tal exploration times between control mice and mice expressing
TeLC in L2SCs (Figure 6C), indicating that the differences in
discrimination ratios did not reflect disparities in exploration.

To test whether impairments in object location discrimination
following the expression of TeLC in L2SCs extend to recognition
of objects, we tested the same mice in a version of the task in
which a familiar object was replaced with a novel object in the
test phase (Figure 6D). Total exploration during the sample and
test phases of the task were similar between control and
TelLC-expressing mice; both groups showed above-chance
discrimination of the novel object, and there was no significant
difference in discrimination indexes between control and
TelLC-expressing mice, indicating that object recognition was
unimpaired (Figures 6E and 6F). Together, these results indicate
that, while L2SCs are not required for the recognition of objects,
blocking their output impairs discrimination between novel and
familiar object locations.

DISCUSSION

By using a virtual reality-based behavioral task, we dissociate esti-
mation of location by beaconing and path integration in conditions
in which both visual and motor-related movement information is
available. Our results indicate that the accuracy of location estima-
tion by path integration drops steeply as a function of distance,
and they suggest that, when visual motion signals are available,
mice nevertheless use a motor-based reference frame for path
integration. By selectively inhibiting output from L2SCs, we find
that this population of medial entorhinal neurons is required for
mice to learn to estimate location in the virtual reality task and in
a real world object location recognition task. Our data constrain



A Habituation phase Sample phase Test phase
O O O
e — e
3min 3 min
O
5 min 5min 5min
B C
@ Control
08 e 120 4 o @ TelC
3 _ ®
5 T 1% 1 °
=R S
c I L T A
£ ° S °
g 4 ° g ©
a . - $
4 ° .
0.0 - e i
T 1 O
Control TelLC Sample Test

D Habituation phase Sample phase Test phase
3min 3 min
5min 5min 5min
E F
® Control
08 A 120 A @ TelC

Discrimination index
1
osl-@+
oo |@» o
Exploration (s)
1 1
o o [@p
e oo oo
© el@h @
@ ol@be o

e
o
1

Control TelC Sample Test

Figure 6. Layer 2 Stellate Cells Are Required for Object Location Recognition

(A and D) Schematized organization of the object location (A) and object recognition (D) experiments. In the test phase of the object location experiment one
object is moved to a novel location (A), whereas in the object recognition experiment a novel object is introduced at a familiar location (D).

(B and E) The discrimination index for control mice (Control, N = 8) differed significantly from mice with output from L2SCs inactivated (TeLC, N = 8) in the object
location experiment (p = 0.022, unpaired t test, df = 14, t = 2.58) (B), but not the object recognition experiment (p = 0.19, unpaired t test, df = 14, t = 1.37) (E).
(C and F) Total exploration times in the sample and test phases did not differ between animals in the object location experiment (sample phase p = 0.78, df = 14,
t=0.28; test phase p = 0.17, df = 14, t = 1.45) (C) or in the object recognition experiment (sample phase p = 0.27, df = 14, t = —1.14; test phase p = 0.66, df = 14,
t = —0.45) (F), indicating that different recognition scores do not result from differences in overall exploration.

Error bars in (B), (C), (E), and (F) indicate SEM.

possible models for behavioral estimation of location, and they
provide evidence for a critical involvement of grid cell circuitry.

Because spatial cognition involves parallel perceptual and
memory processes, with multiple strategies available to provide
the brain with estimates of location, investigation of specific
cognitive mechanisms in isolation is challenging. Our approach
using a virtual location estimation task is in contrast to real world
experiments that isolate path integration from other behavioral
strategies through the use of environmental manipulations (Eti-
enne and Jeffery, 2004; Jacob et al., 2017; Van Cauter et al.,
2013; Winter et al., 2013). In real world experiments, evaluation
of path integration requires the execution of behaviors in dark-
ness in order to prevent confounding influences of visual land-
mark cues, but this manipulation also removes visual input
required for normal function of grid cell circuits, and, therefore,
it could impair path integration mechanisms that rely on grid cells
(Chen et al., 2016; Pérez-Escobar et al., 2016). Confounding
contributions from residual spatial cues, for example, from odors
or sounds, are also difficult to fully exclude in real world experi-
ments. In contrast, in the virtual reality-based tasks we introduce
here, both visual and motor information is available to the mice,
while odor, auditory, or visual cues in the experimental room are
not useful in solving the task. Thus, because we were able to
represent reward locations in an environment that is devoid of
triangulation and beaconing cues, we have been able to specif-
ically probe psychophysical properties of path integration,
including dependence on distance and the roles of visual and
motor reference frames.

What is the nature of the movement signals used to estimate
location by path integration? While place and grid cells can
encode elapsed time as well as location (Kraus et al., 2015; Pas-
talkova et al., 2008), the estimation of time rather than distance is
unlikely to explain our observations, as the time taken by an ani-
mal to reach the reward zone from the start of the track was a poor
predictor of stopping location (Figures S2A and S2B). Recordings
from hippocampal place cells suggest that either motor or visual
reference frames can be used to represent location (Chen et al.,
2013). Because we find that the locations at which mice stop fol-
lowed the physical distance moved on the treadmill, rather than
that predicted by visual signals from the projected track (Figures
2A-2D), our data suggest that behavioral estimation of location by
path integration uses a motor-based reference frame. The origin
of the motor signals driving the path integrator is unclear, but it
may include copies of centrally generated motor commands or
proprioceptive feedback. Because mice were head fixed and,
therefore, vestibular output is effectively clamped, a necessary
role of vestibular motion signals in our experimental conditions
can be ruled out. Nevertheless, it is possible that, in different
behavioral conditions, the signals used to generate location esti-
mates by path integration may differ.

A critical constraint on behavioral use of path integration to es-
timate location is the extent to which estimates drift in the
absence of spatial cues to anchor the path integrator (Cheung
and Vickerstaff, 2010). In models that account for grid cell firing
through a path integration mechanism, grid patterns are stable in
the absence of noise; but, when noise is introduced into the
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neural circuitry, the grid pattern drifts unless additional spatial
input is provided (Burak and Fiete, 2009; Guanella et al., 2007;
Solanka et al., 2015; Zilli and Hasselmo, 2010). While models
differ in their assumptions about the rate at which drift accumu-
lates, in all models additional information about location is
required to correct drift. Indeed, as we discuss below, when
this additional information is available, for example, from bea-
coning cues, it may dominate output from circuits capable of
path integration. We find that the estimation of location through
path integration, but not by beaconing, becomes unreliable for
distances >2 m. Since the estimation of longer distances might,
in principle, be improved if additional training reduces the sensi-
tivity of the path integrator to noise, our results place only a lower
bound on performance. Nevertheless, our observations impose
constraints on the behavioral scenarios under which outputs of
a neural path integrator may be useful. Our results are also
consistent with recent findings that grid fields appear to rapidly
drift when visual stimuli are removed (Chen et al., 2016; Pérez-
Escobar et al., 2016). While this loss of grid firing may result
from an absence of optic flow signals as movement inputs to
the grid circuit (Raudies and Hasselmo, 2015; Raudies et al.,
2016), our data suggest that distance estimation uses motor sig-
nals. Visible spatial cues may instead be critical to anchor grid
firing and path integration in the face of drift (Pastoll et al.,
2013). The relatively rapid accumulation of drift in grid cell firing
(Chen et al., 2016; Pérez-Escobar et al., 2016) and of path inte-
gration error that we describe here suggest that, in mice, path
integration mechanisms may be important for moment-to-
moment tracking of location rather than long-range navigation.

While cells with grid and other spatial firing properties are en-
riched in superficial layers of the MEC (Sargolini et al., 2006), and
previously L2SCs have been shown to be important for contex-
tual learning (Kitamura et al., 2015), it has been unclear whether
they contribute to spatial behaviors. Our results provide evi-
dence that L2SCs in the dorsal MEC are required for learning
that depends on location estimation within an environment (Fig-
ures 5 and 6). These data also speak to a hypothesized role for
grid cells as the output of a neural path integrator (McNaughton
et al., 2006). Continuous attractor network models that generate
grid fields perform path integration using speed and direction
signals, but, when external spatial signals are present, they
can dictate activity in these circuits. Our results with inactivation
of L2SCs corroborate the prediction that, if circuits of this kind
are the source of location estimates used to guide behavior,
inactivation of these circuits should impair estimation of location
by beaconing and by path integration. Nevertheless, additional
interpretations are conceivable. Inactivation of external spatial
inputs to an integrator circuit would lead to similar behavioral
outcomes, although this interpretation is inconsistent with the
finding that L2SCs have grid fields (Domnisoru et al., 2013). Alter-
natively, L2SCs may be downstream of the hypothesized path
integrator circuit. In this case, L2SCs must, nevertheless, be a
necessary output path by which combined path integration
and beaconing signals influence spatial behaviors. The possibil-
ity that beaconing and path integration systems operating in par-
allel, with L2SCs required only for beaconing, appears unlikely,
as in this scenario path integration behavior should be main-
tained after the inactivation of L2SCs.
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The effects of our targeted manipulation may be manifest via
interactions within L2 of the MEC (Beed et al., 2013; Couey
et al., 2013; Pastoll et al., 2013), by projections from L2SCs to
cell populations in deeper layers of the MEC (Surmeli et al.,
2015), or through longer range projections to the dentate gyrus
and CA3 (Schwartz and Coleman, 1981). Indeed, brain regions
downstream of the MEC, including the hippocampus, contain
neurons with properties indicative of roles in encoding of path
integration and beaconing signals (Chen et al., 2013; Samsono-
vich and McNaughton, 1997). While following lesions of the MEC
place firing in the hippocampus is reduced (Hales et al., 2014)
and learning in the water maze is impaired (Hales et al., 2014;
Morrissey and Takehara-Nishiuchi, 2014; Steffenach et al.,
2005), the loss of place firing is only partial, suggesting that addi-
tional spatial signals reach hippocampal structures. One possi-
bility is that L2SCs may be specialized to integrate visual cues
with spatial information (Pérez-Escobar et al., 2016; Yoo and
Lee, 2017), while spatial information from olfactory or other
non-visual cues reaches the hippocampus through the lateral
entorhinal cortex (Leitner et al., 2016; Van Cauter et al., 2013).
These signals are of no use to solve the virtual reality-based loca-
tion estimation task, and they may not be sufficient for the object
location recognition task under our experimental conditions.

Quantitative dissection of simple behaviors has been essential
in establishing underlying computational principles and circuit
mechanisms. In contrast, analysis of cognitive behaviors
involving multiple sensory modalities is more challenging
because of their additional behavioral complexity and because
brains may have multiple neural strategies available to solve a
task. By implementing a relatively simple spatial task in virtual re-
ality, we have been able to quantitatively dissect roles of beacon-
ing and linear path integration in estimation of location. Our ex-
periments provide evidence to support the long-standing idea
that computations by grid cells in the MEC support estimation
of location, and, while alternative models remain feasible, our re-
sults corroborate key predictions of grid cell models that perform
path integration in a manner that integrates external spatial input
with velocity signals. Finally, our results may help link deficits in
spatial cognition found in dementia to underlying circuit mecha-
nisms. Conceptually similar virtual tasks may be useful as assays
of early deficits in dementia, while the key roles we identify for
L2SCs suggest that damage restricted to a single cell population
at very early stages of degeneration may be detectable by
appropriately designed behavioral tests.

EXPERIMENTAL PROCEDURES

Further details and an outline of methods and resources used in this work can
be found in the Supplemental Experimental Procedures.

Animals

All animal experiments were carried out under a project license granted by the
UK Home Office, were approved by the Animal Welfare and Ethical Review
Board (AWERB) of the University of Edinburgh School of Medicine and Veteri-
nary Medicine, and conformed with the UK Animals (Scientific Procedures)
Act 1986 and the European Directive 86/609/EEC on the protection of animals
used for experimental purposes. Male and female mice, aged 7-12 weeks,
were used for all experiments. Mice were randomly allocated to experimental
groups.



Data Analysis and Statistical Methods
To quantify virus expression, we measured mean GFP fluorescence using FIJI.
Confocal images were opened using the Bio-Formats package (Linkert et al.,
2010). Collection, analysis, and presentation of data from virtual reality-based
behavioral experiments were performed using custom scripts written in python
3.5 (https://www.python.org) using Numpy version (v.)1.8.1, Scipy v.0.11.0b1,
and Matplotlib v.1.5.1 packages. Scripts were written using Spyder 2.3 (www.
pythonhosted.org/spyder). Electrophysiology data were analyzed using
IGORpro (Wavemetrics). For object exploration tasks, behavior was quantified
using the Multitimer scoring system (Vogel-Cierniaand Wood, 2014), and manual
scores were confirmed by repeating the scoring using AnyMaze (http://www.
anymaze.co.uk/) on video recordings of the mouse’s exploration. Full details of
quantification are provided in the Supplemental Experimental Procedures.
Statistical analysis was performed in R v.3.30 (R Core Team, 2014). Scripts
were written and run using RStudio 0.99.902 (RStudio Team, 2015; https://
www.rstudio.com). Details of data distributions and tests are given in the
main text and figures. When a measure was obtained repeatedly from the
same animal, the mean for that animal was used for population level analyses
unless indicated otherwise. Linear mixed effect models (LMEs) were fit using
Ime 4 1.1-12 (Bates et al., 2015). Animal identity was included in models as
a random effect and the variable of interest as a fixed effect. To evaluate sig-
nificance of effects using LMEs, the model without the variable of interest (a
reduced/null model) was compared to the model with the variable of interest
using a likelihood ratio test. Because for experiments comparing effects of
expression of GFP with TeLC-GFP (Figures 4 and 5) the distribution of the
data appeared clearly non-normal, for analysis of these experiments we
used robust statistical methods to compare groups (Wilcox, 2016). These
were implemented in R using the packages WRS (https://github.com/
nicebread/WRS) and WRS2 (v.0.9-2 from https://cran.r-project.org). Compar-
isons of groups used the percentile bootstrap method. For independent
groups, differences between medians were evaluated using the R function
medpb2 (in WRS2). For dependent groups, the bootdpci function (in WRS)
was used to compare 20% trimmed means. Results are reported using 10°
bootstrap samples. Linear regression was performed using a least-squares
method that allows heteroscedasticity, implemented in the R function olshc4
(WRS package), with slopes compared using the R function ols2ci (WRS pack-
age). For multiple comparisons within an experiment, reported p values were
adjusted by the Benjamini and Hochberg method using the R function p.adjust.
Data and code to reproduce the analyses reported in the paper will be made
available via the University of Edinburgh DataShare repository (http://dx.doi.
org/10.7488/ds/2290). Analysis code will be made available via the Nolan
Lab GitHub repository (https://github.com/MattNolanLab).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
six figures, and one movie and can be found with this article online at
https://doi.org/10.1016/j.celrep.2018.01.005.
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