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We point out the existence of transition from partial to global generalized synchronization (GS)
in symmetrically coupled regular networks (array, ring, global and star) of distinctly different
time-delay systems of different orders using the auxiliary system approach and the mutual false
nearest neighbor method. It is established that there exist a common GS manifold even in an
ensemble of structurally nonidentical time-delay systems with different fractal dimensions and
we find that GS occurs simultaneously with phase synchronization (PS) in these networks. We
calculate the maximal transverse Lyapunov exponent to evaluate the asymptotic stability of the
complete synchronization manifold of each of the main and the corresponding auxiliary systems,
which, in turn, ensures the stability of the GS manifold between the main systems. Further
we also estimate the correlation coefficient and the correlation of probability of recurrence to
establish the relation between GS and PS. We also deduce an analytical stability condition for
partial and global GS using the Krasovskii-Lyapunov theory.

Keywords : partial generalized synchronization; global generalized synchronization, structurally
different time-delay systems; networks of time-delay systems.

1. Introduction

In the last two decades, the phenomenon of chaos synchronization has been extensively studied in coupled
nonlinear dynamical systems from both theoretical and application perspectives due to its significance
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in diverse natural and man-made systems [Pikovsky et al., 2001; Lakshmanan & Senthilkumar, 2010]. In
particular, various types of synchronization, namely complete synchronization (CS), phase synchroniza-
tion (PS), intermittent lag/anticipatory synchronizations and generalized synchronization (GS) have been
identified in coupled systems. All these types of synchronization have been investigated mainly in identical
systems and in systems with parameter mismatch. Very occasionally it has been studied in distinctly non-
identical (structurally different) systems. But in reality, structurally different systems are predominant in
nature and very often the phenomenon of synchronization (GS) is responsible for their evolutionary mech-
anism and proper functioning of such distinctly nonidentical systems. As typical examples, we may cite the
cooperative functions of brain, heart, liver, lungs, limbs, etc., in living systems and coherent coordination of
different parts of machines, between cardiovascular and respiratory systems [Schafer et al., 1998], different
populations of species [Blasius et al., 1999; Amritkar & Rangarajan, 2006], in epidemics [Grenfell et al.,
2001; Earn et al., 1998], in visual and motor systems [Famer, 1998; Sebe et al., 2006], in climatology
[Stein et al., 2011; Maraun & Kurths, 2005], in paced maternal breathing on fetal [Van Leeuwen et al.,
2009] etc. It has also been shown that GS is more likely to occur in spatially extended systems and complex
networks (even in networks with identical nodes, due to the large heterogeneity in their nodal dynamics)
[Shang et al., 2009; Hung et al., 2008; Moskalenko et al., 2012]. In addition, GS has been experimentally
observed in laser systems [Uchida et al., 2003], liquid crystal spatial light modulators [Rogers et al., 2004],
microwave electronic systems [Dmitriev et al., 2009] and has applications in secure communication devices
[Murali & Lakshmanan, 1998; Moskalenko et al., 2010]. Therefore understanding the evolutionary mecha-
nisms of many natural systems necessitates the understanding of the intricacies involved in the underlying
generalized synchronization (GS) phenomenon.

The phenomenon of GS has been well studied and understood in unidirectionally coupled sys-
tems [Kocarev & Parlitz, 1996; Rulkov et al., 1995; Abarbanel et al., 1996; Brown, 1998; Pyragas, 1996],
but still it remains largely unexplored in mutually coupled systems. Only a limited number of studies
are available on GS in mutually coupled systems even with parameter mismatches [Zheng et al., 2002;
Hung et al., 2008; Guan et al., 2009; Chen et al., 2009; Hu et al., 2010; Guan et al., 2010; Shang et al.,
2009; Moskalenko et al., 2012; Shahverdiev & Shore, 2009; Acharyya & Amritkar, 2013] and rarely in struc-
turally different dynamical systems with different fractal dimensions [Boccaletti et al., 2000]. Recent in-
vestigations have revealed that GS emerges even in symmetrically (mutually) coupled network motifs in
networks of identical systems, and that it also plays a vital role in achieving coherent behavior of the
entire network [Soriano et al., 2012; Moskalenko et al., 2012]. As almost all natural networks are hetero-
geneous in nature, the notion of GS has been shown to play a vital role in their evolutionary mechanisms
[Pikovsky et al., 2001]. Thus to unravel the role of GS in such large networks, it is crucial to understand the
emergence of GS in heterogeneous network motifs composed of distinctly different nonidentical systems. It
is to be noted that the notion of PS has been widely investigated in mutually coupled essentially different
(low-dimensional) chaotic systems [Pikovsky et al., 2001], while the notion of GS in such systems has been
largely ignored. It is an accepted fact that PS is weaker than GS (because PS does not add restrictions
on the amplitude, and only the locking of the phases is crucial). Parlitz et al. have shown that in gen-
eral GS always leads to PS, if one can suitably define a phase variable, and that GS is stronger (which
has been studied in unidirectionally coupled chaotic systems). That is, PS may occur in cases where the
coupled systems show no GS [Parlitz et al., 1996]. Further, the transition from PS to GS as a function
of the coupling strength has been demonstrated in coupled time-delay systems with parameter mismatch
which confirms that PS is weaker than GS [Senthilkumar et al., 2007]. On the other hand, Zhang and Hu
[Zheng & Hu, 2000] have demonstrated that GS is not necessarily stronger than PS, and in some cases
PS comes after GS with increasing coupling strength depending upon the degree of parameter mismatch.
They have concluded that PS (GS) emerges first for low (high) degree of parameter mismatch and that
they both occur simultaneously for a critical range of mismatch in low-dimensional systems [Zheng & Hu,
2000]. In general, the notion of GS and its relation with PS in mutually coupled systems, particularly in
distinctly nonidentical systems with different fractal dimensions including time-delay systems, need much
deeper understanding.

In line with the above discussion, we have reported briefly the existence of GS in symmetrically coupled
networks of distinctly nonidentical time-delay systems using the auxiliary system approach in a letter
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[Senthilkumar et al., 2013]. In this paper, we will provide an extended version of the letter with important
additional results and explanations. In particular, in this paper we will demonstrate the occurrence of
a transition from partial to global GS in mutually coupled networks of structurally different time-delay
systems (for N = 2, 3 and 4) with different fractal (Kaplan-Yorke) dimensions and in systems with different
orders using the auxiliary system approach and the mutual false nearest neighbor (MFNN) method. We
use the Mackey-Glass (MG) [Mackey & Glass, 1977], a piecewise linear (PWL) [Senthilkumar et al., 2006,
2007], a threshold piecewise linear (TPWL) [Suresh et al., 2013] and the Ikeda time-delay [Ikeda et al.,
1980] systems to construct heterogeneous network motifs. The main reason to consider time-delay systems
in this study is that even with a single time-delay system, one has the flexibility of choosing systems with
different fractal dimensions just by adjusting their intrinsic delay alone, which is a quite attracting feature
of time-delay systems from modelling point of view [Appeltant et al., 2011]. Further, time-delay systems
are ubiquitous in several real situations, including problems in ecology, epidemics, physiology, physics,
economics, engineering and control systems, [Lakshmanan & Senthilkumar, 2010] which inevitably require
delay for a complete description of the system (note that intrinsic delay is different from connection delays
which arise between different units due to finite signal propagation time).

In our present work, we report that there exists a common GS manifold even in networks of dis-
tinctly different time-delay systems. In other words, there exists a functional relationship even for systems
with different fractal dimensions, which maps them to a common GS manifold. Further, we also wish to
emphasize that our results are not confined to just scalar one-dimensional time-delay systems alone but
we confirm that there exists a similar type of synchronization transitions even in the case of time-delay
systems of different orders. Particularly, we demonstrate that synchronization phenomenon occurs in a
system of a Ikeda time-delay system (first order time-delay system) mutually coupled with a Hopfield
neural network (a second order time-delay system), and in a system of a MG time-delay system (first
order time-delay system) mutually coupled with a plankton model (a third order system with multiple
delays) to establish the generic nature of our results. Stability of GS manifold in unidirectionally coupled
systems is usually determined by examining the conditional Lyapunov exponents of the synchronization
manifold [Kocarev & Parlitz, 1996; Pyragas, 1996] or the Lyapunov exponents of the coupled system it-
self [Moskalenko et al., 2012]. Here, we will estimate the maximal transverse Lyapunov exponent (MTLE)
to determine the asymptotic stability of the CS manifold of each of the systems with their corresponding
auxiliary systems starting from different initial conditions, which in turn asserts the stability of GS between
the original distinctly nonidentical time-delay systems. Further, we will also estimate the cross correlation
(CC) and the correlation of probability of recurrence (CPR) to establish the relation between GS and
PS (here GS and PS always occur simultaneously in structurally different time-delay systems). CC essen-
tially gives a much better statistical average of the synchronization error, which is being widely studied to
characterize CS. Further, CPR is a recurrence quantification tool [Marwan et al., 2007], which effectively
characterizes the existence of PS especially in highly non-phase-coherent hyperchaotic attractors usually
exhibited by time-delay systems [Senthilkumar et al., 2006]. It is also to be noted that the auxiliary system
approach has some practical limitations. This method fails for systems whose dynamical equations are not
known. Particularly, CS between response and auxiliary systems arises only when their initial conditions
are set to be in the same basin of attraction. Due to the above limitations of the auxiliary system approach,
we have also calculated the mutual false nearest neighbor (MFNN) which doubly confirms our results. In
addition, an analytical stability condition using the Krasovskii-Lyapunov theory is also deduced in suitable
cases.

The remaining paper is organized as follows: In Sec. 2, we will describe briefly the notion of structurally
different time-delay systems with different fractal dimensions with examples. In Secs. 3 and 4, we will
demonstrate the existence of a transition from partial to global GS in N = 2 mutually coupled time-delay
systems using the auxiliary system approach and the MFNN method, respectively. An analytical stability
condition is also deduced using the Krasovskii-Lyapunov theory in Sec. 3. The transition from partial
to global GS is demonstrated in N = 3 mutually coupled time-delay systems with an array and a ring
coupling configuration in Sec. 5. In Sec. 6, we will consider N = 4 mutually coupled time-delay systems
with array, ring, global and star configurations and discuss the occurrence of partial and global GS. The
above synchronization transition in time-delay systems with different orders is demonstrated in Sec. 7 and
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finally we summarize our results in Sec. 8.

2. Structurally Different Time-delay Systems with Different Fractal Dimensions

In this section, we consider structurally different first order scalar time-delay systems with different fractal
dimensions. Here, structurally different time-delay systems refer to systems exhibiting chaotic/hyperchaotic
attractors with different phase space geometry characterized by different degree of complexity. Despite the
similarity in the structure of the evolution equations, the nature of chaotic attractors, the number of
positive LEs and their magnitudes characterizing the rate of divergence and the degree of complexity as
measured by the Kaplan-Yorke dimension (DKY ) of the underlying dynamics are different even for the
same value of time-delay because of the difference in the nonlinear functional form.

As an illustration, first let us consider a symmetrically coupled arbitrary network of distinctly non-
identical scalar time-delay systems. Then the dynamics of the ith node in the network is represented
as

ẋi = −αixi(t) + βifi(xi(t− τi))− ε

N
∑

j=1

Gijxj , (1)

where i = 1, ..., N , and N is the number of nodes in the network, αi’s and βi’s are system’s parameters,
τi’s the time-delays, the nonlinear function of the ith node is defined as fi(xi), ε is the coupling strength
and G a Laplacian matrix which determines the topology of the arbitrary network. For the MG time-delay
system, we choose the nonlinear function defined as [Mackey & Glass, 1977]

f1(x(t− τ1)) =
x1(t− τ1)

(1 + (x1(t− τ1)10))
, (2)

and for the PWL system with the nonlinear function given as [Senthilkumar et al., 2006, 2007]

f2(x) =























0, x ≤ −4/3
−1.5x− 2, −4/3 < x ≤ −0.8

x, −0.8 < x ≤ 0.8
−1.5x+ 2, −0.8 < x ≤ 4/3

0, x > 4/3.

(3)

For the TPWL system we choose the form of the nonlinear function as given by [Suresh et al., 2013]

f3(x) = AF ∗ −Bx, (4)

with

F ∗ =







−x∗, x < −x∗

x, −x∗ ≤ x ≤ x∗

x∗, x > x∗,
(5)

and for the Ikeda time-delay system the nonlinear function is given by [Ikeda et al., 1980]

f4(x(t− τ4)) = sin(x(t− τ4)). (6)

The parameter values for the above time-delay systems are chosen throughout the paper as follows:
1) For the MG systems: We choose β1 = 0.5, α1 = 1.0, and τ1 = 8.5;
2) For the PWL systems: We choose β2 = 1.0, α2 = 1.2, τ2 = 10.0, p1 = 0.8 and p2 = 1.33;
3) The parameter values for the TPWL are fixed as β3 = 1.0, α3 = 1.2, τ3 = 7.0, A = 5.2, B = 3.5 and
x∗ = 0.7 and
4) for the Ikeda time-delay system we choose β4 = 1.0, α4 = 5.0, τ4 = 7.0. The hyperchaotic attractors of
the uncoupled MG, PWL, TPWL and Ikeda time-delay systems are depicted in Figs. 1(a)-(d), respectively.
The first few largest LEs of all the above four (uncoupled) time-delay systems are shown as a function of
the delay time τ in Figs. 2(a)-(d). It is also clear from this figure that the number of positive LEs, and
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Fig. 1. Hyperchaotic attractors of (a) Mackey-Glass,(b) piecewise linear (PWL), (c) piecewise linear with threshold nonlin-
earity (TPWL) and (d) Ikeda time-delay systems for the choice of parameters given in Table 1.

hence the complexity and dimension of the state space, generally increase with the delay time. Further,
the degree of complexity, measured by their number of positive LEs of the dynamics (attractors) exhibited
by all the four systems are distinctly different even for the same value of time-delay. In fact, we have taken
different values of delay for each of the systems, as pointed out by the arrows in Fig. 2, to demonstrate
the existence of suitable smooth transformation that maps the strongly distinct individual systems to a
common GS manifold.

Table 1. The parameter values, number of positive LEs and Kaplan-Y-
orke dimension (Dky) of the structurally different time-delay systems.

No System Choice of parameters No. of Positive LEs Dky

βi αi τi
1 MG 0.5 1.0 8.5 2 2.957
2 PWL 1.0 1.2 10.0 3 4.414
3 TPWL 1.0 1.2 7.0 4 8.211
4 Ikeda 1.0 5.0 7.0 5 10.116

We wish to emphasize especially the structural difference, measured by their degree of complexity,
between the hyperchaotic attractors of different scalar first order time-delay systems (Fig. 1) which we
have studied in this paper and are detailed in Table 1: 1) the MG system has two positive LEs with
DKY = 2.957 for τ1 = 8.5, 2) the PWL time-delay system has three positive LEs with DKY = 4.414
for τ2 = 10.0, 3) the TPWL time-delay system has four positive LEs with DKY = 8.211 for τ3 = 7.0
and 4) the Ikeda system has five positive LEs with DKY = 10.116 for τ4 = 7.0. The above facts clearly
indicate that the real state space dimension explored by the flow of a time-delay system, which is essentially
infinite-dimensional in nature, and the associated degree of complexity are characterized by the form of
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Fig. 2. First few largest Lyapunov exponents of (a) Mackey-Glass,(b) piecewise linear (PWL), (c) piecewise linear with
threshold nonlinearity (TPWL) and (d) Ikeda time-delay systems, as a function of the time-delay. Arrows point the value of
the delay time we have considered in our analysis.

nonlinearity and the value of delay time irrespective of the similarity of the underlying evolution equations
of the scalar first order time-delay systems.

3. Transition from Partial to Global GS in Mutually Coupled Time-delay

Systems: Auxiliary System Approach

It has already been shown that the functional relationship between two different systems in GS is generally
difficult to identify analytically. However GS in such systems can be characterized numerically using various
approaches, namely the mutual false nearest neighbor method [Rulkov et al., 1995], the statistical mod-
eling approach [Schumacher et al., 2012], the phase tube approach [Koronvskii et al., 2011], the auxiliary
system approach [Abarbanel et al., 1996], etc. Among all these methods the auxiliary system approach is
extensively used to detect the presence of GS in unidirectionally coupled systems (both in numerical and
experimental studies due to its simple and powerful implementation). Abarbanel et al. [Abarbanel et al.,
1996] first introduced this approach to characterize and confirm GS in dynamical systems (when the sys-
tem equations are known). The mathematical formulation of this concept was put forward by Kocarev
and Parlitz [Kocarev & Parlitz, 1996] for a drive-response configuration in low-dimensional systems. They
formulated it as the asymptotic convergence of the response and its auxiliary systems which are identically
coupled to the drive system, starting from two different initial conditions from the same basin of attraction.
The asymptotic convergence indeed ensures the existence of an attracting synchronization manifold (CS
manifold between the response and auxiliary systems and GS manifold between the drive and response
systems) [Kocarev & Parlitz, 1996]. In other words, GS between the drive x and the response y systems
occur only when the response system is asymptotically stable, that is ∀ yi(0) & x(0) in the basin of the
synchronization manifold one requires limt→∞ ||y(t,x(0), y1(0)) − y(t,x(0), y2(0))|| = 0.

Now, we will provide an extension of this approach to a network for mutually coupled systems. For sim-
plicity, we consider two mutually coupled nonidentical distinctly different time-delay systems represented
by

ẋ = f(x, xτ , u), and (7a)

ẏ = g(y, yτ , v), f 6= g (7b)

where x, xτ ∈ Rn, y, yτ ∈ Rm, τ ∈ R (xτ = x(t− τ), yτ = y(t− τ)) and u, v ∈ Rk, k ≤ m, n.
ui = −vi = hi (x(t,x0), y(t,y0)) correspond to the driving signals. System (7) is in GS if there exists
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a transformation H such that the trajectories of the systems (7a) and (7b) are mapped onto a subspace
(synchronization manifold) of the whole state space Rn ×Rm. That is

H : (Rn,Rm) → Rµ ⊂ Rn ×Rm. (8)

We also note here that since we are dealing with GS of nonidentical systems with different fractal dimen-
sions, the transformation function H refers to a generalized transformation (not identity transformation)
and also there may exist a set of transformations H that maps a given x, xτ ∈ Rn and y, yτ ∈ Rm to
different subspaces of Rµ. This indicates that the synchronization manifold M = {(x, y) : H(x, y) = 0} is
such that ∀ x(τ̂ ),y(τ̂ ), τ̂ ∈ [−τ, 0], which lies within a subset of the basin of attraction B = Bx×By ≡ Rµ,
approaches M ⊂ B, so that M is an attracting manifold. Here Bx and By are the basins of attraction of
systems (7a) and (7b), respectively. The synchronization manifold M could also be

M = {(x, y) : y = H(x)} or M = {(x, y) : x = H(y)} (9)

as special cases, but without ambiguity M = H(x, y) is the most general one for mutually coupled systems.
Hence, GS exists between the systems (7a) and (7b) only when both coupled systems are asymptotically
stable. That is, ∀ (xi(τ̂ ), yi(τ̂)), τ̂ ∈ [−τ, 0] ⊂ B, i = 1, 2, one requires

lim
t→∞

||y(t,x1(τ̂), y1(τ̂))− y(t,x1(τ̂), y2(τ̂ ))|| = 0, (10a)

lim
t→∞

||x(t,x1(τ̂ ), y1(τ̂ ))− x(t,x2(τ̂), y1(τ̂ ))|| = 0 (10b)

Further, it is worth to emphasize that in Ref. [Parlitz et al., 1997], it is reported that a subharmonic
entrainment takes place when there exists a relation between the interacting systems, which usually takes
place for periodic synchronization with m : n periods, m 6= n. But in this paper, the synchronization
dynamics in all the cases we have considered exhibits chaotic/hyperchaotic oscillations and hence the
transformation function H refers to the existence of a function (not a relation) in our case. Therefore
the trajectories of Eq. (7) starting from the basin of attraction B asymptotically reach the synchroniza-
tion manifold M defined by the transformation function H(x,y), which can be smooth if the systems (7)
uniformly converge to GS manifold (otherwise nonsmooth). The uniform convergence (smooth transforma-
tion) is confirmed by negative values of their local Lyapunov exponents of the synchronization manifold
M [Pecora et al., 1997].

Now, we will demonstrate the existence of GS in symmetrically coupled arbitrary networks of distinctly
nonidentical time-delay systems with different fractal dimensions using the auxiliary system approach. We
consider a symmetrically coupled arbitrary network as given in Eq. (1). To determine the asymptotic sta-
bility of each of the nodes in this network, one can define a network (auxiliary) identical to Eq. (1) (starting
from different initial conditions in the same basin of attraction), whose node dynamics is represented as

ẋ′

i = −αix
′

i(t) + βif
′

i(x
′

i(t− τi))− ε

N
∑

j=1

Gij(xj − δijxj). (11)

The parameter values are the same as in Eq.(1) discussed in Sec. 2. In the following sections, we will
investigate the existence of transition from partial GS to global GS in networks of N = 2, 3 and 4 systems
with a linear array, ring, global and star coupling configurations.

3.1. N = 2 mutually coupled systems

To start with, in order to demonstrate the existence of GS between two (N = 2) mutually coupled non-
identical distinctly different time-delay systems, we consider the network given in Fig. 3(a). Here 1 and 2
are mutually coupled distinctly nonidentical time-delay systems and 1′ and 2′ are the associated auxiliary
systems. Fig. 3 also depicts schematically different configurations for N > 2, which are discussed later on.
The state equations for N = 2 coupled systems can be represented as

ẋ1 = −α1x1(t) + β1f1(x1(t− τ1)) + ε(x2 − x1), (12a)

ẋ2 = −α2x2(t) + β2f2(x2(t− τ2)) + ε(x1 − x2). (12b)
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Fig. 3. Schematic diagrams of the auxiliary system approach for networks of mutually coupled systems. (a, b, d) Linear
arrays with N = 2, 3, 4, (c, e) ring configurations with N = 3, 4, and (f, g) global and star coupling configurations with
N = 4.

Now, let us couple the auxiliary system 1′ to 2 and 2′ to 1 unidirectionally as given in Fig. 3(a), such that
the systems 1 and 1′ are driven by the same signal from system 2, and systems 2 and 2′ are similarly driven
by system 1. The corresponding dynamical equation for the auxiliary systems can be given as

ẋ′1 = −α1x
′

1(t) + β1f
′

1(x
′

1(t− τ1)) + ε(x2 − x′1), (13a)

ẋ′2 = −α2x
′

2(t) + β2f
′

2(x
′

2(t− τ2)) + ε(x1 − x′2). (13b)

We choose the MG time-delay systems (system 1 and 1′) with the nonlinear function f1(x) given in
Eq. (2) and the PWL systems (system 2 and 2′) with the nonlinear function f2(x) given in Eq. (3). The
parameters of both systems are fixed as given in Sec. 2 (Table 1) and for those parameter values both
systems exhibit hyperchaotic attractors [Figs. 1(a) and 1(b)] with two [Fig. 2(a)] and three [Fig. 2(b)]
positive LEs, respectively.

Generally, in mutual coupling configuration the systems affect each other and attain a common syn-
chronization manifold simultaneously above a threshold value of the coupling strength. But interestingly
in distinctly different coupled time-delay systems with different fractal dimensions, one of the systems first
reaches the GS manifold for a lower value of ε, while the other system remains in a desynchronized state,
which we call as a partial GS state. For a further increase of ε both systems organize themselves and enter
into a common GS manifold, thereby achieving a global GS. In other words, when system 1 and 1′ are
identically synchronized, system 1 is synchronized to a subspace (synchronization manifold) of the whole
state space Rn × Rm of both systems in a generalized sense, which we call as a partial GS. Similarly,
when the systems 2 and 2′ are synchronized identically, then system 2 is synchronized to the common
synchronization manifold. This corroborates that both systems 1 and 2 share a common GS manifold in
the phase space Rn × Rm. Thus, when both auxiliary systems are completely synchronized with their
original systems for an appropriate coupling strength, then there exists a function that maps systems 1
and 2 to the common (global) GS manifold.

In order to characterize the transition from partial to global GS and to evaluate the stability of the
CS of each of the main and auxiliary systems, we have calculated the MTLEs of the main and auxiliary
systems which in turn ensure the stability of GS manifold between the original systems. We have also
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Fig. 4. (a) MTLEs and (b) CC, CPR of the main and auxiliary systems for two mutually coupled MG-PWL systems as a
function of ε ∈ (0.0, 0.6) for N = 2 (13b).

estimated the correlation coefficient (CC) of each of the main and the associated auxiliary systems, given
by

Ci,i′ =
〈(xi(t)− 〈xi(t)〉)(x

′

i(t)− 〈x′i(t)〉)〉
√

〈(xi(t)− 〈xi(t)〉)2〉〈(x′i(t)− 〈x′i(t)〉)
2〉
, (14)

where the 〈...〉 brackets indicate temporal average. If the two systems are in CS state, the correlation
coefficient CC ≈ 1, otherwise CC < 1. Further, the existence of PS (between the main and auxiliary
systems) can be characterized by the value of the index CPR. If the phases of the coupled systems are
mutually locked, then the probability of recurrence is maximal at a time and CPR ≈ 1. In contrast, one
can expect a drift in the probability of recurrence resulting in low values of CPR characterizing the degree
of locking between the coupled systems [Marwan et al., 2007; Senthilkumar et al., 2006].

The coupled equations (1) and (11) are integrated using the Runge-Kutta fourth order method. The
MTLEs are the largest Lyapunov exponents of the evolution equation of ∆̇i ≡ ẋi − ẋ′i, i = 1, 2, 3, 4. The
Lyapunov exponents are calculated using J. D. Farmer’s approach [Lakshmanan & Senthilkumar, 2010]. In
Fig. 4, we have plotted the various characterizing quantities based on our numerical analysis. The red (light

gray) continuous line in Fig. 4(a) shows the MTLE (λ
(1)
MTLE) of the MG systems (x1, x

′

1) and the blue (dark

gray) dotted line depicts the MTLE (λ
(2)
MTLE) of the PWL systems (x2, x

′

2) as a function of the coupling
strength. Figure 4(b) shows the CC and CPR of the main and auxiliary MG time-delay systems as red
(light gray) filled and open circles, respectively, and the CC and CPR of the PWL systems are represented
by the blue (dark gray) filled and open triangles. Initially, for ε = 0, both CC1,1′ and CC2,2′ are nearly

zero, indicating the desynchronized state when both λ
(1)
MTLE and λ

(2)
MTLE > 0 which confirm that CS (GS)

is unstable. If we increase the coupling strength, CC2,2′ and CPR2,2′ start to increase towards unity and

at ε
(2)
c ≈ 0.26, CC2,2′ = 1 (CPR2,2′ = 1), where λ

(2)
MTLE < 0, which confirm the simultaneous existence

of GS and PS in the PWL system, while the MG system continues to remain in a desynchronized state

(CC2,2′ ≈ 0.2 and λ
(1)
MTLE > 0) (partial GS). Further, if we increase the coupling strength to a threshold

value ε
(1)
c ≈ 0.5, a global GS occurs where both CC1,1′ and CC2,2′ become unity and λ

(1)
MTLE and λ

(2)
MTLE

become negative. The transition of the MTLE of the auxiliary and its original systems from positive to
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Fig. 5. (a, b) The magnitude of difference in the trajectories between the systems (∆xi,i′ = |xi − x′i|, i = 1, 2) for ε = 0.3,
and (c, d) for ε = 0.55 for N = 2 mutually coupled MG and PWL systems.
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2) and (x1, x2) for ε = 0.3, and (d-f) for ε = 0.55 for N = 2.

negative values as a function of the coupling strength strongly confirms the existence of an attracting
manifold. To be more clear, for the value of the coupling strengths in range of global GS, a negative value
of the MTLE assures the convergence of the perturbed trajectories in the synchronization manifold (CS
between the main and auxiliary systems and GS manifold between the main systems). The convergence
corroborates the attracting nature of the synchronization manifold. Further, normally one may expect that
the systems with lower dynamical complexity will converge to GS manifold first, followed by the system
with higher dynamical complexity [Zheng et al., 2002]. But in our studies we encounter a contrary behavior,

where the PWL system with three positive LEs reaches the GS manifold first (at ε
(2)
c ≈ 0.26) and then the

MG system (with two positive LEs) converges to the GS manifold at ε
(1)
c ≈ 0.5 confirming the existence

of a transition from partial to global GS in distinctly nonidentical time-delay systems.
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Fig. 7. Phase diagram in the (β2 − ε) plane for two mutually coupled MG-PWL systems showing partial (blue/dark gray),
global (light gray) GS and desynchronization (white) regimes.

We have also numerically computed the synchronization error (∆xi,i′(t) = |xi(t)−x′i(t)|, i = 1, 2) and
phase projection plots, which are depicted in Figs. 5 and 6, respectively. In the absence of the coupling
all the systems evolve with their own dynamics. If we slowly increase the coupling strength the main and

the auxiliary PWL systems become completely synchronized for ε
(2)
c = 0.26. The synchronization error

∆x2,2′(t) = 0 and the linear relation between the systems (x2, x
′

2) in Fig. 5(b) and in Fig. 6(b) (plotted for

ε(2) = 0.3), respectively, confirm that the systems x2 and x′2 are in a CS state, whereas the MG systems
(x1, x

′

1) remain desynchronized as confirmed by the phase projection [Fig. 6(a)] for the same value of the
coupling strength. We also note here that for this value of coupling strength the systems x1 and x2 show
certain degree of correlation as depicted in Fig. 6(c). If we increase ε further, the systems (x1, x

′

1) and

(x2, x
′

2) reach the CS manifold (for ε
(1)
c = 0.5) and one may expect that both x1 and x2 attain the common

GS manifold, which we call as global GS. Both synchronization errors ∆x1,1′(t) and ∆x2,2′(t) become zero

as shown in Figs. 5(c) and 5(d) for ε
(1)
c = 0.55. This fact confirms the existence of a global GS state. Further,

Figs. 6(d) and 6(e) show a linear relation between the systems (x1, x
′

1) and (x2, x
′

2), respectively, which
additionally confirms the existence of global GS. The degree of correlation in the phase space between the
systems x1 and x2 for the global GS state is depicted in Fig. 6(f) for the same value of coupling strength.

To obtain a global picture on the occurrence of transition from partial to global GS between the MG
and PWL systems, we have plotted the values of CCi,i′ as a 2-parameter diagram in the (β2 − ε) plane.
We have fixed the parameter values of the MG systems (as given in Sec. 2) and vary one of the parameter
(β2 ∈ (1.1, 1.3)) of the PWL system as a function of the coupling strength (ε ∈ (0.1, 0.6)) as depicted in
Fig. 7. The white region indicates the desynchronized state and the blue (dark gray) region corresponds
to the partial GS region, where only one of the mutually coupled systems has reached the common GS
manifold as indicated by the unit value of the CCi,i′ . The global GS is represented by light gray where
both coupled systems are in GS manifold as confirmed by the unit value of CCi,i′ of both systems.

We have also analytically investigated the existence of the transition from partial to global GS using
the Krasovskii-Lyapunov functional theory. In this connection, we consider the difference between the state
variables (synchronization error) of the main and the associated auxiliary systems (∆i = xi−x′i, i = 1, 2).
For small values of ∆i, the evolution equation for the CS manifold of the MG systems (∆1 = x1 − x′1) can
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be written as

∆̇1 = −(α1 + ε)∆1 + β1[f
′

1(xτ1)]∆1τ1 (15)

where xτ1 = x(t− τ1) and ∆1τ1 = ∆1(t− τ1). The CS manifold is locally attracting if the origin of Eq. (15)
is stable. From the Krasovskii-Lyapunov theory, a continuous positive definite Lyapunov functional can be
defined as

V (t) =
1

2
∆2

1 + µ

∫ 0

−τ

∆2
1(t+ θ)dθ, V (0) = 0, (16)

where µ > 0 is an arbitrary positive parameter. The Lyapunov function V (t) approaches zero as ∆1 → 0.
The derivative of the above equation (16) can be written as

dV

dt
= −[α1 + ε]∆2

1 + β1[f
′

1(xτ1)]∆1∆1τ1 + µ∆2
1 − µ∆2

1τ1 , (17)

which should be negative for stability of the CS manifold, that is ∆1 = 0. This requirement results in a
condition for stability as

(α1 + ε) > |β1f
′

1(xτ1)|. (18)

From Eq. (18), one can see that the stability condition depends on the nonlinear function f(x) of the
individual systems. Hence from the form of the nonlinear function of the MG system [Eq. (2)], we have

f ′

1(xτ1) =
(1 + xcτ1)− cxcτ1

(1 + xcτ1)
2

. (19)

Consequently, the stability condition becomes,

(α1 + ε) >

∣

∣

∣

∣

β1

(

(1 + xcτ1)− cxcτ1
(1 + xcτ1)

2

)
∣

∣

∣

∣

. (20)

It is not possible to find the exact value of the nonlinear function f ′(xτ ) as it depends on the value of
the variable xτ1 . However, it is possible to find the value of f ′

1(xmax) by identifying the maximal value of
xmax using the Lyapunov-Razumikin function (which is a special class of the Krasovskii-Lyapunov theory).
From the hyperchaotic attractor of the MG system, for the chosen parameter values, one can identify the
maximum value of xmax = 1.24. So the stability condition becomes ε > |β1f

′

1(xmax τ1)| − α ≈ 0.33 (a
sufficient condition for the global GS). From Fig. 4, the threshold value of the coupling strength to attain

GS in the MG systems is ε
(1)
c ≈ 0.5 (> 0.33) for which the stability condition is satisfied.

Now, one can find the evolution equation for the CS manifold corresponding to the PWL time-delay
system (x2−x′2) as ∆̇2 = −(α2+ε)∆2+β2[f

′

2(xτ2)]∆2τ2 and with a similar procedure as above, the stability
condition for the PWL systems becomes (α2 + ε) > |β2f

′

2(xτ2)|. Now from the form of the piecewise linear
function f2(x) in Eq. (3), we have

f ′

2(xτ2) =

{

1.5, 0.8 ≤ |x| ≤ 4
3

1.0, |x| < 0.8
(21)

Consequently, the stability condition becomes (α2 + ε) > |β2|, corresponding to the inner regime of the
nonlinear function where most of the system dynamics is confined for the asymptotic CS state ∆2 = 0.

From Fig. 4, one can find that CS between the PWL systems occurs for a coupling strength ε
(2)
c > 0.27,

satisfying the sufficient stability condition for partial GS, ε > |β2| − α2 = 0.2 (0.27 > 0.2).

4. Detection of Global GS Using the Mutual False Nearest Neighbor Method

Next, we use the mutual false nearest neighbor method to confirm the existence of global GS in distinctly
different time-delay systems. The main idea of this technique consists of the fact of preserving the local
neighborliness between the states of the interacting systems [Rulkov et al., 1995]. Let us consider the
trajectories of two systems which are connected by the relation y(t) = φ(x(t)) (condition for GS). The
MFNN method depends on the observation that in GS state two neighboring points in the phase space of
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Fig. 8. MFNN parameter (p) as a function of coupling strength (ε) showing global GS state for N = 2 mutually coupled
MG-PWL time-delay systems (corresponding to Fig. 4).

the drive system x(t) correspond to two neighboring points in the phase space of the response system y(t).
For mutually coupled systems, the inverse statement is also valid. That is, all close states in the phase
space of the system y(t) must correspond to close states of the system x(t).

Let us consider a set of embedded vector points (obtained by attractor reconstruction using time-delay
embedding methods [Abarbanel et al., 1993; Packard et al., 1980]) in the spaces of the drive (X1,X2, · · · )
and response (Y1, Y2, · · · ) systems coming from finite segments of the trajectories sampled at uniform
intervals of time. Now we can choose an arbitrary point Xn in the phase space of the drive system. Let
the nearest phase space neighbor of this point in the reconstructed attractor be XnNND. In GS state,
one can also expect that the corresponding points of the response system Yn will have YnNND as its close
neighbor. From the GS relation, the distance between the two nearest neighbors in the phase space of the
response system can be written as Yn − YnNND = Dφ(Xn)(Xn −XnNND), where Dφ(Xn) is the Jacobian
matrix of the transformation φ evaluated at Xn. Similarly, we consider the point Yn and locate its nearest
neighbor from the time series as YnNND. Again using the GS relation, the distance between the points of
the response variables can be written as Yn − YnNNR = Dφ(Xn)(Xn − XnNNR). This suggests that the
ratio for the MFNN parameter can be written as,

p =
1

T

∑

n

|Yn − YnNND| |Xn −XnNNR|

|Xn −XnNND| |Yn − YnNNR|
, (22)

where T is the sampling time. In GS state the MFNN parameter (p) will be of the order of unity. This
method has been widely used to identify GS in mutually coupled systems.

The MFNN parameter (p) for two mutually coupled MG and PWL time-delay systems is depicted in
Fig. 8 (corresponding to Fig. 4). As can be seen from this figure the value of p becomes close to unity above

ε > 0.5, which is indeed the critical coupling strength ε
(1)
c in Fig. 4, strongly confirming the existence of

global GS.

5. Transition from Partial to Global GS in N = 3 Mutually Coupled Time-delay

Systems

Now, we extend the above analysis to N = 3 mutually coupled distinctly nonidentical systems in an array
and a ring configuration [Figs. 3(b) and 3(c)]. In addition to the above two time-delay systems, now we
have considered the third system as TPWL with the nonlinear function f3(x) as given in Eq. (4). The
system parameters are fixed as in Sec. 2. For this chosen set of parameter values the system exhibits a
hyperchaotic attractor (Fig. 1(c)) with four positive LEs (DKY = 8.211) [see Fig. 2(c)].
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Fig. 10. MFNN parameter (p) for the linear array of N = 3 mutually coupled time-delay systems as a function of the coupling
strength shows the global GS state (corresponding to Fig. 9). See text for details.

5.1. Three mutually coupled systems with array configuration

First, we illustrate the transition from partial to global GS in a linear array of N = 3 mutually coupled
systems using the auxiliary system approach. The schematic diagram for this configuration is given in
Fig. 3(b). Here the systems 1, 2 and 3 are mutually coupled with their neighboring systems as depicted in
Fig.3(b) and the associated auxiliary systems are driven by the neighboring main systems. For example,
x′1 is driven by x2, while x′2 by x1 and x3, and x′3 by x2. MTLEs, CC and CPR of all the three main
and auxiliary systems are shown in Fig. 9(a) and 9(b) as a function of the coupling strength. In the

absence of the coupling (ε = 0), positive values of MTLEs (λ
(i)
MTLE > 0) and the low values of CCi,i′ and

CPRi,i′ indicate that the main and the corresponding auxiliary systems evolve independently. Increasing

the coupling strength from null value results in decreasing λ
(i)
MTLE and increasing CCi,i′ and CPRi,i′ .
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Fig. 11. (a) MTLEs and (b) CC, CPR of the main and auxiliary systems for N = 3 distinctly nonidentical time-delay systems
with ring configuration as a function of ε.

If we increase the coupling strength to ε
(2)
c = 0.12, the PWL systems with three positive LEs becomes

synchronized first as evidenced by λ
(2)
MTLE < 0, CC2,2′ = 1 and CPR2,2′ = 1, indicating the onset of partial

GS. The MTLE of the MG systems with two positive LEs becomes negative (λ
(1)
MTLE < 0) along with

CC1,1′ = 1 and CPR1,1′ = 1 at ε
(1)
c = 0.45 which confirms that the MG system reaches the common GS

manifold, while the TPWL systems are not yet synchronized. Finally for ε
(3)
c = 1.74, the TPWL system

with four positive LEs attains the CS state with λ
(3)
MTLE < 0 and CC3,3′ and CPR3,3′ reaching unit values

exactly at the same threshold value of the coupling strength (ε
(3)
c ) indicating the existence of global GS.

This also confirms the simultaneous existence of GS and PS in an array of three mutually coupled systems.

For N > 2, it is not possible to obtain accurate analytical results for all the coupled systems with
respect to the numerical simulation results due to the complexity in the coupling architecture. We have
also calculated the MFNN parameter (p) for the linear array of three mutually coupled time-delay systems
as a function of the coupling strength, which is depicted in Fig. 10 (corresponding to Fig. 9). The MFNN
parameter for the MG and PWL systems (systems 1 and 2) becomes close to unity at ε > 0.45 (filled
circle). The MFNN parameter p of the MG and TPWL systems (systems 1 and 3) approximately reaches
the unit value at ε > 1.74 (filled triangle) agreeing perfectly with the threshold values indicated by MTLEs,
CC and CPR, all confirming the existence of global GS in the array.

5.2. Three mutually coupled systems with ring configuration

Next, we consider a system of three mutually coupled systems with a ring configuration along with their
corresponding auxiliary systems (here each auxiliary system is driven by the other two systems, for example,
x′1 is driven by x2 and x3, x

′

2 by x1 and x3 and x′3 by x1 and x2, as depicted in the schematic diagram
Fig. 3(c)). CC, CPR and MTLEs for the mutually coupled ring of the above three distinctly nonidentical
systems are shown in Fig. 11(a) and 11(b). Again all the three systems (PWL, MG and TPWL) reach their

CS (GS) manifold for the threshold values ε
(i)
c ≈ 0.12, 0.22 and 0.88, i = 1, 2, 3, respectively, as indicated by
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Fig. 12. (a) MTLEs and (b) CC, CPR of the main and auxiliary systems for N = 4 distinctly nonidentical time-delay systems
with linear array configuration as a function of ε.

the transition of their λ
(i)
MTLE below zero [Fig. 11(a)]. In addition all CCi,i′ and CPRi,i′ reach unit values

[Fig. 11(b)] exactly at the same threshold values of the coupling strength indicating the simultaneous
existence of GS and PS in a ring of three mutually coupled time-delay systems.

It has been already known that structurally different time-delay systems will produce
chaotic/hyperchaotic attractors with dissimilar phase space geometry characterized by multiple time-scales
(see Fig. 1 for example). In order to preserve the local neighboring points of each of the attractor we have
reconstructed the attractors of different time-delay systems with almost identical time-scales. Due to the
increased complexity of the topological properties of chaotic/hyperchaotic attractors of the network of
ring, global and star configurations, it is not possible to obtain the reconstructed attractor with similar
time-scales in structurally different time-delay systems and hence MFNN cannot be estimated in these
cases.

6. Transition from Partial to Global GS in N = 4 Mutually Coupled Time-delay

Systems

In this section, we demonstrate the existence of transition from partial to global GS in four (only in N = 4
for clear visibility of figures depicting synchronization transitions) mutually coupled distinctly nonidentical
time-delay systems in the following configurations: a ring, an array, a global and a star. In addition to
the above three time-delay systems discussed in the previous sections, as a fourth system, we consider the
Ikeda time-delay system with the nonlinear function as in Eq. (6) [Ikeda et al., 1980]. This system exhibits
a hyperchaotic attractor [Fig. 1(d)] with five positive LEs [Fig. 2(d)] with a KY dimension KDY = 10.116
for the chosen parameter values.

6.1. Four mutually coupled systems with an array configuration

First we demonstrate the existence of transition from partial to global GS in four mutually coupled time-
delay systems (MG, PWL, TPWL and Ikeda) in a linear array configuration. The schematic diagram for this
configuration is depicted in Fig. 3(d). In Figs. 12(a) and 12(b), we have again presented the characterizing
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Fig. 13. MFNN parameter (p) for the linear array of mutually coupled systems with N = 4 as a function of the coupling
strength showing the global GS state (corresponding to Fig. 12).

quantities λ
(i)
MTLE, CCi,i′ and CPRi,i′ , i, i

′ = 1, 2, 3, 4 of all the four systems along with their associated

auxiliary systems as a function of coupling strength. For ε = 0, λ
(i)
MTLE > 0, while CCi,i′ and CPRi,i′ show

low values corresponding to a desynchronized state. At ε
(2)
c = 0.09 and ε

(1)
c = 0.4, λ

(2)
MTLE of the PWL

systems and λ
(1)
MTLE of the MG systems become negative, respectively, which confirm that these systems

reach the CS (GS) state with their corresponding auxiliary (main) systems, whereas the other two systems

are not yet synchronized (λ
(3,4)
MTLE > 0). Increasing the coupling strength, we find that at ε

(4)
c = 0.54 the

Ikeda systems with five positive LEs attain the CS (GS) manifold when λ
(4)
MTLE < 0 and finally the TPWL

system becomes synchronized at ε
(3)
c = 1.2, confirming the transition from partial to global GS in four

mutually coupled time-delay systems in an array configuration. The CCi,i′ and CPRi,i′ of the corresponding

systems show a clear transition to unit value for their corresponding threshold values of ε
(i)
c confirming

the simultaneous existence of GS and PS [Fig. 12(b)]. We have again calculated the MFNN parameter (p)
for N = 4 mutually coupled linear array of time-delay systems by taking the MG time-delay system as a

reference system as depicted in Fig. 13. The unit value of the MFNN parameter p of the respective ε
(i)
c

values of PWL, TPWL and Ikeda time-delay systems (with respect to the MG time-delay system) confirms
the existence of the transition from partial to global GS .

6.2. Four mutually coupled systems with a ring configuration

Next, we illustrate the existence of a transition from partial to global GS in a ring of N = 4 mutually
coupled distinctly nonidentical time-delay systems [Fig. 3(e)]. MTLEs, CC and CPR of all the four main
and corresponding auxiliary systems are depicted in Figs. 14(a) and 14(b). In the absence of the coupling,

all the systems evolve independently as evidenced by the fact that λ
(i)
MTLE > 0, i = 1, 2, 3, 4, and low values

of CCi,i′ and CPRi,i′. The transitions of MTLEs (λ
(i)
MTLE < 0) from positive to negative values of the

MG, PWL, TPWL and Ikeda systems indicate that they reach their CS (GS) manifolds for the threshold

values of the coupling strengths ε
(i)
c = 0.092, 0.088, 0.75 and 0.65, respectively. Further, GS and PS also

occur simultaneously as indicated by the CCi,i′ and CPRi,i′ [in Fig. 14(b)] of the systems in the ring
configuration.

6.3. Four mutually coupled systems with global and star configurations

In this section, we study the transition from partial to global GS in global (all-to-all) and star coupling
configurations with N = 4 time-delay systems with different fractal dimensions. The schematic diagrams
of the global and star coupling configurations are depicted in Figs. 3(f) and 3(g), respectively. MTLEs,
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Fig. 14. (a) MTLEs and (b) CC, CPR of the main and auxiliary systems for N = 4 distinctly nonidentical time-delay systems
with ring configuration as a function of ε.
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Fig. 15. (a) MTLEs and (b) CC, CPR of the main and auxiliary systems of four distinctly nonidentical time-delay systems
with global coupling as a function of ε. (c) and (d) are the corresponding figures for star configuration.

CC and CPR of all the four systems are depicted in Figs. 15(a-b) and 15(c-d) for global and star coupling

configurations, respectively. In the case of global coupling configuration, λ
(2)
MTLE of the PWL systems and

λ
(1)
MTLE of the MG systems become negative at ε

(2)
c = 0.03 and ε

(1)
c = 0.07, respectively, while the other

two systems evolve independently. When the coupling strength is increased to ε
(4)
c = 0.35, the Ikeda system

gets synchronized (λ
(4)
MTLE < 0) and finally λ

(3)
MTLE of the TPWL system becomes negative at ε

(3)
c = 0.38,

thereby confirming the onset of a global GS state in globally coupled network of distinctly nonidentical
time-delay systems. Further, the values of CCi,i′ and CPRi,i′ reach unit value at the same values of the
coupling strength as above indicating the simultaneous occurrence of GS and PS [Fig. 15(b)].

In the star configuration, λ
(2)
MTLE transits first from positive to negative values at ε

(2)
c = 0.09 showing a
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CS between PWL and its auxiliary system [Fig. 15]. This is followed by the value of λ
(1)
MTLE of MG systems

becoming negative at ε
(1)
c = 0.18. Next for the Ikeda systems λ

(4)
MTLE becomes negative at ε

(4)
c = 1.4 and

finally the λ
(3)
MTLE of TPWL systems becomes negative at ε

(3)
c = 1.56, confirming the existence of global

GS. Further, for the same values of coupling strength, CCi,i′ and CPRi,i′ reach unit values confirming
the simultaneous occurrence of GS and PS in four distinctly nonidentical coupled time-delay systems with
different fractal dimensions.

In addition, we have also confirmed that there exist a similar type of synchronization transitions in
other permutations on the order of the systems between MG, PWL, TPWL and Ikeda systems in all
coupling configurations.

7. Transition from Partial to Global GS in Time-delay Systems of Different

Orders

Now, we will demonstrate the genericity of the transition from partial to global GS by revealing it in coupled
time-delay systems of different orders so as to prove that the reported phenomenon is not restricted to time-
delay equations with structural similarity alone. In particular, we will show the existence of a transition to
global GS via partial GS in such systems using the measures CC and CPR. Mutual coupling is introduced
in the x variable of higher order systems. We will demonstrate the above results in the following coupled
systems.

(1) In a system consisting of a mutually coupled Ikeda time-delay system (which is a scalar first
order time-delay system) and a Hopfield neural network [Hopfield, 1998; Meng & Wang, 2007;
Lakshmanan & Senthilkumar, 2010] (which is a second order time-delay system), and

(2) In a system of mutually coupled MG time-delay system (which is a scalar first order time-delay system)
and a plankton model [Abraham, 1998; Gakkhar & Singh, 2010] (which correspond to a third order
system with multiple delays),

A class of delayed chaotic neural networks [Hopfield, 1998;
Meng & Wang, 2007; Lakshmanan & Senthilkumar, 2010] can be represented as a set of coupled DDEs
as given by the equation

ẋ(t) = −Cx(t) +Af [x(t)] +Bf [x(t− τ)] , (23)

where x(t) = [x1(t), x2(t), · · · , xn(t)]
T ∈ Rn is the state vector, the activation function f [x(t)] =

(f1 [x1(t)] , f2 [x2(t)] , · · · , fn [xn(t)])
T denotes the manner in which the neurons respond to each other.

C is a positive diagonal matrix, A = (aij), i, j = 1, 2, · · · , n is the feedback matrix, B = (bij) represents the
delayed feedback matrix with a constant delay τ . The general class of delayed neural networks represented
by the above Eq. (23) unifies several well known neural networks such as the Hopfield neural networks and
cellular neural networks with delay.

The specific set of delayed neural networks (Eq. (23)) which corresponds to the Hopfield neural networks
is for the choice of the activation function

f [x(t)] = tanh [x(t)] , (24)

and for the value of the matrices

C =

[

1 0
0 1

]

, A =

[

2.0 −0.1
−5.0 3.0

]

, B =

[

−1.5 −0.1
−0.2 −2.5

]

.

Next, we will illustrate the existence of global GS via partial GS in a system of mutually coupled Ikeda
time-delay systems and the Hopfield neural network. The CC and CPR between the main and auxiliary
systems are depicted in Fig. 16. Low values of CC and CPR in the absence of coupling indicates the
asynchronous behavior of both the systems. Upon increasing the coupling strength from zero, the second
order system, that is the Hopfield neural network, reaches the common synchronization manifold first

(partial GS) at the threshold value of ε
(2)
c ≈ 0.05 as indicated by the unit value of the cross correlation
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Fig. 17. CC and CPR of the main and auxiliary systems of a coupled Mackey-Glass time-delay system and the plankton
model (25c).

coefficient CC2,2′ , while the Ikeda system remains in its transition state. The simultaneous existence of
phase synchronization (PS) together with GS is also confirmed by the unit value of CPR2,2′ at the same

ε
(2)
c . Further increase in the coupling strength results in the synchronization (both GS and PS) of the Ikeda

system to the common synchronization manifold for ε
(1)
c ≈ 1.32 as evidenced from the unit value of CC1,1′

and CPR1,1′ (Fig. 16) confirming the existence of global GS via partial GS in coupled systems of different
orders.

Next, we illustrate the transition from partial to global GS in mutually coupled MG time-delay system,
and a third order plankton model [Abraham, 1998; Gakkhar & Singh, 2010] with multiple delays. The
normalized system of equations of a zoo-plankton model is represented as

ẋ = ax[1− (x+ y)]− xy − l1xz, (25a)

ẏ =xy − b2y − l2yz, (25b)

ż = − b1z + l1x(t− τ1)z(t− τ3) + l2y(t− τ2)z(t− τ3)− n(x+ y)z, (25c)

where a = 15.0, b1 = 1.0, b2 = 0.2, l1 = 9.0, l2 = 13.5 and n = 2.0 are constants. Delays τ1, τ2 and
τ3 are in general different may also be different, but for simplicity we have considered identical delays,
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τ1 = τ2 = τ3 = 5.0, as studied in ref [Gakkhar & Singh, 2010]. Here x, y and z are the normalized quantities
of the density of the susceptible phytoplankton, infected phytoplankton and zooplankton (predator species),
respectively. Low values of the CC and CPR for ε = 0 between the main and auxiliary systems as shown
in Fig. 17 confirm that the systems evolve independently in the absence of coupling between them. As
the coupling strength is increased the plankton model synchronizes first to the common synchronization

manifold at ε
(1)
c ≈ 0.21 as denoted by CC1,1′ = 1.0 indicating partial GS (Fig. 17). PS has also occurred

simultaneously at the same threshold value of ε
(1)
c as indicated by the unit value of CPR1,1′ . Further

increase in ε leads to the existence of global GS by synchronizing the MG time-delay system to the

common synchronization manifold as both CC2,2′ and CPR2,2′ attain unity at ε
(2)
c ≈ 0.44.

Thus, we prove that the transition from partial to global GS phenomenon is not restricted to first
order structurally similar systems alone but it is also valid for systems with different orders.

8. Conclusion

In conclusion, we have pointed out the existence of a synchronization transition from partial to global GS
in distinctly nonidentical time-delay systems with different fractal dimensions in symmetrically coupled
(regular) networks with a linear array, and also in ring, global and star configurations using the auxiliary
system approach and the mutual false nearest neighbor method. We have shown that there exists a smooth
transformation function even for networks of structurally different time-delay systems with different fractal
dimensions, which maps them to a common GS manifold. We have also found that GS and PS occur
simultaneously in structurally different time-delay systems. We have calculated MTLEs to evaluate the
asymptotic stability of the CS manifold of each of the main and the corresponding auxiliary systems.
This in turn, ensures the stability of the GS manifold between the main systems. In addition, we have
also estimated the CC and the CPR to characterize the relation between GS and PS. Further, to prove
the genericity of our results, we have also demonstrated the synchronization transition in systems with
different orders such as coupled MG and the Hopfield neural network model and a system of coupled Ikeda
and plankton models. The analytical stability condition for partial and global GS is deduced using the
Krasovskii-Lyapuov theory. We wish to note that now we are working on the experimental realization
of the existence of partial and global GS in distinctly nonidentical time-delay systems using nonlinear
time-delayed electronic circuits.
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