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SPATIAL SIGN CORRELATION

ALEXANDER DÜRRE, DANIEL VOGEL, AND ROLAND FRIED

Abstract. A new robust correlation estimator based on the spatial sign covariance matrix
(SSCM) is proposed. We derive its asymptotic distribution and influence function at
elliptical distributions. Finite sample and robustness properties are studied and compared
to other robust correlation estimators by means of numerical simulations.

1. Introduction

The problem studied in this article is robust and high-dimensional correlation estimation. By
robust we mean insusceptible to outliers and erroneous observations, that is, we examine alter-
natives to the commonly used, but highly non-robust Pearson correlation. Over the last few
decades, many robust multivariate scatter estimators — and consequently robust correlation ma-
trix estimators — have been proposed, see Maronna et al. (2006) for a review. Much attention
has been paid to affine equivariant estimators. If we denote by Xn = (X1, ...,Xn)T the n × p
data matrix containing the p-dimensional observations X1, ...,Xn as rows, then the data set
Yn = XnAT + 1nb

T is obtained by applying the affine linear transformation x 7→ Ax+ b to each
data point. An affine equivariant scatter estimator Ŝn satisfies Ŝn(Yn) = AŜn(Xn)AT for any
b ∈ Rp and any full rank square matrix A, i.e. it behaves as the covariance matrix under linear
transformations of the data.

The second attribute high-dimensional means two things: being fast to compute, also in high-
dimensions, and being defined also for sparse, high-dimensional data, i.e. in the p > n situation.
Both properties basically prohibit robust, affine equivariant estimators: they are usually hard to
compute in high dimensions, and they are not defined in the p > n setting — or coincide with
a multiple of the sample covariance matrix (Tyler, 2010) and are thus not robust. In fact, both
requirements suggest the use of pairwise correlation estimators. In a pairwise correlation estimate
P̂n ∈ Rp×p each entry ρ̂i,j is computed only from the ith and the jth coordinate of the data,
implying that the computing time increases quadratically with p.

The price one usually has to pay for dropping affine equivariance and resorting to pairwise
correlation estimators is the loss of non-negative definiteness of the matrix estimate P̂n. For
example, many nonparametric correlation matrix estimators (see Section 4) are based on an
initial scatter matrix estimate which is non-negative definite, but not affine equivariant. The loss
of non-negative definiteness occurs when a component-wise transformation is applied to render
the entries consistent for the moment correlation. However, in applications where non-negative
definiteness is important, one can “orthogonalize” the matrix estimate as suggested by Maronna
and Zamar (2002), which involves an eigenvalue decomposition.

The new proposal is based on the spatial sign covariance matrix (SSCM). This is the covariance
matrix of the projections of the centered observations onto the p-dimensional unit sphere. This
scatter estimator is of frequent use in multivariate data analysis due to its robustness. Since every
observation is basically trimmed to length 1, the impact of any contamination is bounded. It is
known that within symmetric data models, the SSCM consistently estimates the eigenvectors of
the covariance matrix, but not the eigenvalues. In fact, the connection between the eigenvalues of
the population SSCM and the covariance matrix is an open problem. We solve this problem for
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2 A. DÜRRE, D. VOGEL, AND R. FRIED

the special case of two-dimensional elliptical distributions. This enables us to robustly estimate a
two-dimensional covariance matrix (up to scale) based on the SSCM and hence devise a correlation
estimator, which we call spatial sign correlation. We further derive the asymptotic distribution of
the SSCM and the spatial sign correlation and compute the influence function of the latter.

The main advantage of the new estimator is its simplicity. It is very fast to compute, it
requires neither an iterative algorithm nor any ranking or sorting of the data. It is furthermore
distribution-free within the elliptical model, it behaves equally well for very heavy-tailed and very
peaked distributions, which is true for hardly any other robust scatter estimator.∗

The paper has two parts: In part 1, consisting of Sections 2 – 3, we develop the spatial sign
correlation estimator and derive its asymptotics. Being aware that this estimator is one out of
many that were introduced for similar purposes, the second part, consisting of Sections 4 and 5,
gathers together analytic results about a variety of alternatives and compares them in an elaborate
simulation study to provide some guidance within the ever increasing number of robust correlation
estimates. All proofs are deferred to the appendix. We close this section by introducing some
recurrent terms and notation.

In order to study the properties of the new estimator analytically we will assume the data to
stem from the elliptical model. A continuous distribution F on Rp is said to be elliptical if it has
a Lebesgue-density f of the form

(1) f(x) = det(V )−
1
2 g
(
(x− µ)TV −1(x− µ)

)
for some µ ∈ Rp and symmetric, positive definite p × p matrix V . We call µ the location or
symmetry center and V the shape matrix, since it describes the shape of the elliptical contour lines
of the density. The class of all continuous elliptical distributions F on Rp having these parameters
is denoted by Ep(µ, V ). The shape matrix V is unique only up to scale, that is, Ep(µ, V ) =
Ep(µ, cV ) for any c > 0. For scale-free functions of V , such as correlations, which we consider here,
this ambiguity is irrelevant. A common view on the shape of an elliptical distribution is to treat
it as an equivalence class of positive definite random matrices being proportional to each other.
We adopt this notion here: in the results of this exposition, V can be any representative from
its equivalence class. For example, if second moments exist, one can always take the covariance
matrix — or any suitably scaled multiple of it. However, the results are more general, the existence
of second — or even first — moments is not required. Throughout the paper we let

(2) V = UΛUT

denote an eigenvalue decomposition of V , where U is an orthogonal matrix containing the eigen-
vectors of V as columns and Λ diag(λ1, ..., λp) is such that 0 < λp ≤ . . . ≤ λ1. We use || · || to
denote the L2 norm of a vector.

2. The spatial sign covariance matrix

We define the spatial sign covariance matrix of a multivariate distribution and derive its con-
nection to the shape matrix V in case of a two-dimensional elliptical distribution. For x ∈ Rp
define the spatial sign s(x) of x as s(x) = x/||x|| if x 6= 0 and s(x) = 0 otherwise. Let X be a
p-dimensional random vector (p ≥ 2) having distribution F . We call

µ(F ) = µ(X) = arg min
µ∈Rp

E (||X − µ|| − ||X||)

the spatial median and, following the terminology of Visuri et al. (2000),

S(F ) = S(X) = E
(
s(X − µ)s(X − µ)T

)
the spatial sign covariance matrix (SSCM) of F (or X). If there is no unique minimizing point
of E (||X − µ|| − ||X||), then µ(F ) is the barycenter of the minimizing set. This may only

∗For these statements to be true, the SSCM has to based on an appropriate location estimator.
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happen if F is concentrated on a line. For results on existence and uniqueness of the spatial
median see Haldane (1948), Kemperman (1987), Milasevic et al. (1987) or Koltchinskii and Dudley
(2000). If the first moments of F are finite, then the spatial median allows the more descriptive
characterization as arg minµ∈Rp E||X − µ||. The spatial median always exists.

Let Xn = (X1, . . . ,Xn)T be a data sample of size n, where the Xi, i = 1, ..., n, are i.i.d., each
with distribution F . Define

Ŝn(Xn; t) = ave
i=1,...,n

s(Xi − t)s(Xi − t)T

where t ∈ Rp. Choosing t = µ(F ), we call the estimator Ŝn(Xn;µ(F )) the empirical SSCM with
known location. However, the location is usually unknown, and t has to be replaced by a suitable
location estimator (T n)n∈N, and we refer to Ŝn(Xn;T n) as the empirical SSCM with unknown
location. The canonical location functional in this case is the (empirical) spatial median

µ̂n = µ̂n(Xn) = min
µ∈Rp

n∑
i=1

||Xi − µ||.

Under regularity conditions (the data points do not lie on a line and none of them coincides
with µ̂n, see Kemperman (1987), p. 228) the spatial signs w.r.t. the empirical spatial median
are centered, i.e. aveni=1 s(Xi − µ̂n) = 0. Hence, the empirical spatial sign covariance matrix

Ŝn(Xn; µ̂n) is indeed the covariance matrix of the spatial signs — if the latter are taken w.r.t.
the spatial median. Our first proposition draws a connection between the shape of an elliptical
distribution and the corresponding spatial sign covariance matrix.

Proposition 1. Let F ∈ Ep(µ, V ) and V = UΛUT denote an eigenvalue decomposition of V with
0 < λp ≤ . . . ≤ λ1. Then

(1) µ(F ) = µ and
(2) S(F ) = U∆UT , where ∆ = diag(δ1, ..., δp) is a diagonal matrix with 0 < δp ≤ . . . ≤ δ1.

(3) If p = 2, then δj =
√
λj/(
√
λ1 +

√
λ2), j = 1, 2.

The proof is given in the appendix. Part (2) of Proposition 1 states that the SSCM S(F )
and the shape matrix V have the same eigenvectors and the same order of the corresponding
eigenvalues. This has been known for some time, and the use of the SSCM has been proposed
to robustify such multivariate analyses that are based on this information only, most notably
principal component analysis, (Marden, 1999; Locantore et al., 1999; Croux et al., 2002; Gervini,
2008). Other such applications are direction-of-arrival estimation (Visuri et al., 2001), or testing
sphericity in the elliptical model (Sirkiä et al., 2009). Part (3) enables us to reconstruct the whole
shape matrix V from S(F ) in dimension p = 2. Thus the SSCM can be directly employed for
applications that rely on the shape information, but do not require any knowledge about the
overall scale, most notably correlations. This result seems to be quite recent. It appears in a
similar form in Croux et al. (2010) and has also been used by Vogel et al. (2008), but neither of
these articles provide a proof.

The next result concerns the asymptotic behavior of the empirical SSCM. It is formulated using
the vec operator, which stacks the columns of a matrix from left to right underneath each other,
and the Kronecker product ⊗ (e.g. Magnus and Neudecker, 1999, Sec. 2). Both are connected by
the identity vec(ABC) = (CT ⊗A) vecB.

Proposition 2. Let X,X1, . . . ,Xn be i.i.d. random vectors with distribution F satisfying E||X−
µ||−1 <∞ and (T n)n∈N a sequence of random variables converging almost surely to µ(F ). Then,
as n→∞, we have

(1) Ŝn(Xn;T n)
a.s.−→ S(F ), and
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(2) if furthermore
√
n||T n−µ|| converges in distribution, E

{
||X −µ||−3/2

}
<∞ and (X −µ)

L
=

−(X − µ), then Ŝn(Xn;T n) is asymptotically normal, i.e. there is a non-negative definite
p2 × p2 matrix WŜ such that

√
n vec

{
Ŝn(Xn;T n)− S(F )

} L−→ Np2 (0,WS) .

(3) If additionally F ∈ E2(µ, V ), then

WS =
−λ1λ2 + 1

2

√
λ1λ2(λ1 + λ2)

(λ1 − λ2)2
(U ⊗ U)W0(U ⊗ U)T

with

W0 =


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 .

Parts (1), (2) are proved in Dürre et al. (2014), where also alternative assumptions to guarantee
strong consistency and asymptotic normality are given, The mentioned regularity conditions are
rather mild, they are fulfilled for elliptical distributions with bounded density.

3. A spatial sign based correlation estimator

In the following let Xi = (Xi, Yi)
T , i = 1, . . . , n, be an i.i.d. sample from F ∈ E2(µ, V ).

Denoting the entries of V by vij , we want to estimate the parameter

ρ = v12/
√
v11v22.

We call ρ the generalized correlation coefficient of the elliptical distribution F , since it coincides
with the correlation coefficient if second moments are finite. In a slight abuse of notation, we will
refer to ρ simply as the correlation (coefficient) of F in the following. Propositions 1 and 2 from
the previous section give rise to an estimator of ρ constructed as follows: compute the SSCM
Ŝn = Ŝn(Xn; µ̂n), perform an eigenvalue decomposition Ŝn = Ûn∆̂nÛ

T
n with ∆̂n = diag(δ̂1, δ̂2)

and compute the matrix V̂n = ÛnΛ̂nÛ
T
n with Λ̂n = diag(λ̂1, λ̂2) and λ̂1 = δ̂1/δ̂2, λ̂2 = δ̂2/δ̂1.†

Finally compute the correlation coefficient from the matrix V̂n, i.e. let ρ̂n = v̂12/
√
v̂11v̂22. In

dimension two, the eigenvalue decomposition can be computed explicitly with justifiable effort,
and we obtain the following explicit expression for the thus defined estimator:

ρ̂n =
cŝ12b√

(ŝ2
12 + b2)2 + (ŝ12cb)2

,

where

(3) c =
2d− 1

d(1− d)
, d =

1

2
+

√
(ŝ11 −

1

2
)2 + ŝ2

12, b = d− ŝ11

and ŝij denote the entries of Ŝn. We call ρ̂n the spatial sign correlation coefficient. This must
not be confused with the correlation of the spatial signs of the observations. This would be
ρ̂SSCM = ŝ12/

√
ŝ11ŝ22. Also note that knowing ρ̂SSCM alone is not sufficient for computing ρ̂n.

Despite the rather lengthy definition of ρ̂n, its asymptotic variance has a surprisingly simple form.

Proposition 3. Let F ∈ E2(µ, V ) have a bounded density at µ. Then, as n→∞,

(1) ρ̂n
a.s.−→ ρ, and

†The overall scaling of V̂n is, of course, irrelevant for the correlation, and its eigenvalues λ̂1 and λ̂2 may as well

be chosen differently. Their ratio has to satisfy λ̂1/λ̂2 = (δ̂1/δ̂2)2.
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(2)
√
n(ρ̂n − ρ)

L−→ N

(
0, (1− ρ2)2 +

1

2

(
a+ a−1

)
(1− ρ2)3/2

)
, where

a =
√
v11/v22 is the root of the ratio of the diagonal elements of V .

Proposition 3 (2) gives the asymptotic variance ASV (ρ̂n) as a function of the true correlation
ρ and the ratio of the diagonal elements of the shape matrix V . The elliptical generator g,
cf. (1), does not enter, which may be phrased as “ρ̂n is asymptotically distribution-free within the
elliptical model”. It is furthermore consistent and asymptotically normal without any moment
condition.

For fixed ρ, the asymptotic variance ASV (ρ̂n) is minimal for equal marginal variances, but
can get arbitrarily large for heteroscedastic data. It is therefore advisable to apply this estimator
to standardized data, i.e. the components should be divided beforehand by a scale measure to
yield equally dispersed margins. Margin-wise standardization generally should be administered
with caution in multivariate data analysis, since it changes the shape, e.g., the direction of the
eigenvectors, and will alter the results of, e.g., a principal component analysis. The inefficiency of
the spatial sign covariance matrix at strongly “shaped”, i.e. non-spherical, distributions has led to
criticism regarding its use for robust principal component analysis, where a strong “shapedness”
is the working assumption, cf. e.g. Remark 5.1 in Bali et al. (2011). We define shapedness as
deviation from sphericity (and measure it for instance by the condition number of V ). There are
two sources that contribute to the shapedness: collinearity and heteroscedasticity. The formula
in Proposition 3 (2) nicely visualizes the individual influences of these two sources of shapedness
on the asymptotic variance of ρ̂n. Since we are interested in correlation — a function of the shape
that is invariant with respect to margin-wise scale changes —, we can avoid the inefficiency due
to the heteroscedasticity by margin-wise standardisation.

Technical conditions that ensure the asymptotic equivalence of such a two-step procedure to
the spatial sign correlation estimation at spherical distributions are yet to be established, but by
heuristic arguments we can work for all practical purposes with an asymptotic variance of

ASV (ρ̂n) = (1− ρ2)2 + (1− ρ2)3/2.

In light of robustness, we recommend to use a highly robust scale estimator for standardization,
such as the MAD or the Qn (see also next Section). Both have a breakdown point of 1/2, a
property which they share with the spatial sign covariance matrix (Croux et al., 2010). The
thus obtained two-stage correlation estimator is highly robust, but we refrain from considering
breakdown points of correlation estimators, see the discussion and the rejoinder of Davies and
Gather (2005).

In the next section we will compare several correlation estimators with respect to their efficiency
at the normal model. As a first glimpse in this direction, we recall the asymptotic variance of the
Pearson correlation ρ̂Pea at elliptical distributions

ASV (ρ̂Pea) =
(

1 +
κ

3

) (
1− ρ2

)2
,

where κ is the excess kurtosis of the components of F . The asymptotic relative efficiency of ρ̂n
with respect to ρ̂Pea,

ARE(ρ̂n, ρ̂Pea) =
ASV (ρ̂Pea)

ASV (ρ̂n)
=

1 + κ/3

1 + 1
2(a+ a−1)(1− ρ2)−1/2

,

is depicted in Figure 1.
At normality, the maximum 1/2 is attained for a = 1 and ρ = 0. If we fix a = 1,the asymptotic

relative efficiency declines with increasing |ρ|, even tending to 0 for |ρ| → 1. But it declines very
slowly, for |ρ| < 0.7 it stays above 0.4. Under heavy-tailed distributions, however, the spatial sign
correlation can be more efficient than the Pearson correlation. Specifically, ARE(ρ̂n, ρ̂Pea) ≥ 1 if
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Figure 1. The asymptotic relative efficiency of ρ̂ with respect to the empirical
correlation under normality as a function of ρ and a =

√
v11/v22.

κ ≥ (3/2)(a+a−1)/
√

1− ρ2. For instance, with the kurtosis of the tν distribution being 6/(ν−4),
the spatial sign correlation is more efficient at the bivariate spherical tν distribution for ν < 6.

In the remainder of this section, we examine the influence function of the spatial sign correlation.
The influence function is based on the notion that estimators are statistical functionals working on
distributions. The specific estimate computed from the data set Xn is then the functional applied
to the corresponding empirical distribution. We use Ŝ and ρ̂ to denote the statistical functionals
corresponding to the SSCM and the spatial sign correlation, respectively. The influence function
IF (x, ρ̂, F ) describes the effect of an infinitesimal small contamination at point x on the functional
ρ̂ if the latter is evaluated at distribution F . It is an important tool describing the robustness
properties of estimators. For a precise definition, interpretation and further details, see, e.g.,
Hampel et al. (1986) or Maronna et al. (2006).

Croux et al. (2010) give the influence function of the off-diagonal element of the SSCM for
p = 2. Calculation of the diagonal elements is straightforward, and we obtain for F ∈ E2(µ, V ):

IF (x, Ŝ, F ) = xxT /(xTx)− S(F ).

Applying the chain rule and using the derivatives calculated in the proof of Proposition 5 in the
appendix, we arrive at the influence function of the spatial sign correlation.

Proposition 4. Let F ∈ E2(µ, V ). Then IF (x, ρ̂, F ) =

−
{
(a2+1) ρ

√
1−ρ2+2 a ρ (1−ρ2)

}
(a2 x22+x21)−

{
(a4+6 a2+1) (ρ2−1)+2 a (a2+1)

√
1−ρ2 (ρ2−2)

}
x1 x2{

2 a2
√

1−ρ2+a (a2+1)
}

(x22+x21)
,

where x = (x1, x2)T and a and ρ are as in Proposition 3.

The influence function for a = 1 and ρ = 0 is illustrated in Figure 2 on the right. It has a
discontinuity at the origin and is bounded. Its extreme values ±2 are attained on the diagonals.
Furthermore, IF (x, ρ̂, F ) is bounded in x for any fixed values a and ρ, but it may get arbitrarily
large as a varies. A robustness index that is derived from the influence function is the gross-error
sensitivity (GES), defined as

GES(ρ̂, F ) = sup
x∈R2

|IF (x, ρ̂, F )| .



SPATIAL SIGN CORRELATION 7

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

ρ

G
E

S
SSCM
Quadrant
Kendall
Spearman

x
−4

−2
0

2
4

y

−4

−2

0

2

4
IF

−2

−1

0

1

2

Figure 2. GES for the spatial correlation compared to other popular nonpara-
metric correlation estimators under equal marginal variances (left) and influence
function of the spatial correlation for ρ = 0 and a = 1 (right).

For a = 1, we obtain

GES(ρ̂, F ) =

{
(ρ2−1)

(
−ρ4+8 ρ2+4

√
1−ρ2 (ρ2−2)−8

)}1/2
+|ρ|

(√
1−ρ2−ρ2+1

)
√

1−ρ2+1
.

which is depicted in Figure 2 (left). Croux and Dehon (2010) compute the gross-error sensitivities
of several nonparametric correlation measures at bivariate normal distributions. Figure 2 (left)
corresponds to their Figure 2, complemented by the GES curve of the spatial sign correlation.
The GES is small for any ρ, indicating a good robustness against small amounts of outliers. We
refrain from stating the GES for arbitrary a and ρ explicitly since the formula is rather lengthy.

4. Analytical comparison of robust correlation estimators

There are many proposals for robust correlation estimators in the literature. In the second
part of this exposition, consisting of Sections 4 and 5, we compare the spatial sign correlation
ρ̂n to a number of prominent alternatives, without claiming or attempting any completeness or
ranking. In Section 4, we gather the basic analytic results, particularly the asymptotic efficiencies
at the normal model, and in Section 5 we compare the finite-sample and robustness properties
numerically.

It is important to note that — in general — the estimators mentioned are known to be Fisher-
consistent for the correlation only under normality, which often — as in the case of the spatial sign
correlation — can be relaxed to ellipticity. To put it differently, each of the various correlation
estimators‡ θ̂n estimates some parameter θ of the bivariate population distribution, which may
serve as a measure of monotone dependence, but does in general not coincide with the moment
correlation ρ. The exact functional connection between θ and ρ is usually hard to assess for
arbitrary distributions, but is known for important subclasses, such as the normal model. If no
such function is mentioned in the examples below, it is the identity.

Let the data be denoted byXi = (Xi, Yi)
T , i = 1, . . . , n, independent and normally distributed.

Relative efficiencies reported below are with respect to the sample correlation, which is denoted
by ρ̂Pea. The estimators we will consider can roughly be divided into three groups: We call

‡In this sense, “correlation” is understood as monotone dependence.
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the first group nonparametric estimators since they depend on signs and ranks. Besides the
spatial sign correlation, these are the Gaussian rank correlation, Spearman’s ρ, Kendall’s τ , and
the quadrant correlation. The second group are the Gnanadesikan-Kettenring-type estimators,
where we consider the τ -scale and the Qn as scale estimators. We label the third group affine
equivariant estimators, i.e. estimators that are derived from an affine equivariant two-dimensional
scatter estimator. Here we consider Tyler’s M-estimator, raw and reweighted MCD, the Stahel-
Donoho-estimator and the S-estimator with Tukey’s biweight-function. The estimators in detail:

4.1. Nonparametric estimators. The Gaussian rank correlation is defined as the sample cor-
relation of the normal scores of the data, i.e.

ρ̂GRK =
1

cn

n∑
i=1

Φ−1

(
R(Xi)

n+ 1

)
Φ−1

(
R(Yi)

n+ 1

)
,

where cn =
∑n

i=1 Φ−1
(

i
n+1

)2
, R(Xi) is the rank of Xi among X1, . . . , Xn and Φ−1 is the quantile

function of the standard normal distribution. The influence function of the Gaussian rank cor-
relation is unbounded, but in finite samples it is much more robust than the Pearson correlation
(Boudt et al., 2012). Since the Gaussian rank correlation corresponds to the Pearson correlation of
transformed data, the pairwise estimation of multidimensional correlation matrices leads always
to a non-negative definite estimate.

Another rank based estimator is Spearman’s ρ, which is the sample correlation of the ranks
R(X1), . . ., R(Xn) and R(Y1), . . . , R(Yn). To obtain a consistent estimator for ρ, one has to apply
the transformation ρ̂Sp.c = 2 sin (πρ̂Sp/6), which goes back to Pearson (1907). Another popular
nonparametric estimator is Kendall’s τ , which is defined as

ρ̂Ken =
2

n(n− 1)

∑
i>j

s ((Xi −Xj)(Yi − Yj)) ,

where s(·) is the sign function defined at the beginning of Section 2, here applied to a univariate
argument. It also requires a consistency transformation, which is valid under ellipticity (e.g.
Möttönen et al., 1999): ρ̂Ken.c = sin (πρ̂Ken/2). A highly robust, non-parametric procedure based
on signs is the quadrant correlation, which can be expressed as

ρ̂Q =
1

n

n∑
i=1

s ((Xi −med(X))(Yi −med(Y ))) ,

where med(X) denotes the median of X1, . . . , Xn. The same transformation ρ̂Q.c = sin (πρ̂Q/2)
renders this estimator consistent for ρ under elliptical distributions. All three nonparametric
estimators ρ̂Sp.c, ρ̂Ken.c, ρ̂Q.c have a bounded influence function and are therefore called B-robust.
Their influence functions, asymptotic variances and gross-error sensitivities can be found in Croux
and Dehon (2010).

4.2. GK estimators. Gnanadesikan and Kettenring (1972) introduced an estimation principle
based on robust variance estimation,

ρ̂ =
σ̂2(X/α+ Y/β)− σ̂2(X/α− Y/β)

σ̂2(X/α+ Y/β) + σ̂2(X/α− Y/β)
,

where σ̂ is can be any robust scale measure and α = σ̂(X), β = σ̂(Y ). Such an estimator can
be seen to be Fisher-consistent for ρ, regardless of the choice of the scale measure σ̂, if X + Y ,
X − Y as well as X and Y have the same distribution up to location and scale, which is fulfilled
for elliptical distributions. According to Ma and Genton (2001), the correlation estimator has
the same asymptotic efficiency as the underlying variance estimator. There is also a relationship
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between the influence functions, which guarantees that the B-robustness translates from the vari-
ance to the correlation estimator, see Genton and Ma (1999). In the recent literature, there are
two proposals for the variance estimation. Maronna and Zamar (2002) favor the so-called τ -scale:

σ̂τ =
σ2

0

n

n∑
i=1

dc2

(
Xi − µ̂(X)

σ0

)
, where µ̂(X) =

∑n
i=1wiXi∑n
i=1wi

,

wi = Wc1{(Xi −med(X))/σ0}, σ0 = med { |Xi −medX| : i = 1, . . . , n}, dc(x) = min(x2, c2)

and Wc(x) =
(
1− (x/c)2

)2
1{|x|≤c}. They use c1 = 4.5 and c2 = 3 to get an efficiency of approx-

imately 0.8 under normality distribution. Ma and Genton (2001) use the Qn, which is defined
as

Qn(X) = d · {|xi − xj | : i < j}(k),

where k =
(

[n/2]+1
2

)
and d is a consistency factor equaling 1/(

√
2Φ−1(5/8)) for the normal distri-

bution. This estimator has an efficiency of 0.82, see Rousseeuw and Croux (1993). The influence
function of the resulting covariance estimator is bounded and can also be found in Ma and Genton
(2001).

4.3. Affine equivariant estimators. One can estimate the correlation by means of any affine
equivariant, bivariate scatter estimator V̂n using the relation ρ̂ = v̂1,2/

√
v̂1,1v̂2,2. Taskinen et al.

(2006) derive the influence function of the correlation estimator from the influence function of V̂n
under elliptical distributions. Furthermore, the asymptotic variance of ρ̂ is of the form (1− ρ2)2 ·
ASV (v̂1,2), where ASV (v̂1,2) is the asymptotic variance of v̂1,2 under the corresponding spherical
distribution. We consider four examples of robust affine equivariant scatter estimators.

Tyler (1987a) proposed an M-estimator for the shape matrix V , being a suitably scaled solution
of

2

n

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)T

(Xi − µ̂n)T V̂ −1(Xi − µ̂n)
= V̂n,

where µ̂n is a suitable multivariate location estimate. In the simulations in Section 5 we take
the spatial median. The Tyler estimator can be regarded as an affine equivariant version of the
SSCM and is also distribution-free within the elliptical model. The corresponding correlation
estimate in two dimensions has an efficiency of 0.5 (e.g. Taskinen et al., 2006). A highly robust,
affine equivariant scatter estimator is the minimum covariance determinant estimator (MCD)
proposed by Rousseeuw (1985). For a given trimming constant α, it is defined as the sample
covariance matrix of the subset of the observations that yields the smallest determinant of the
estimated matrix among all subsets of size b(1−α) ·nc. Choosing α = 0.5 results in an asymptotic
breakdown point of 0.5. Since the asymptotic efficiency, especially in small dimensions, is rather
low, the raw MCD is usually followed by a reweighting step. We will call this two-step estimated
the weighted MCD. For both, the raw and the weighted MCD, influence functions, consistency
factors and asymptotic efficiencies can be found in Croux and Haesbroeck (1999).

Stahel (1981) and Donoho (1982) proposed another covariance estimator with an asymptotic
breakdown point of 0.5. It is defined as

V̂n =

(
n∑
i=1

wi

)−1 n∑
i=1

wi(Xi − µ̂n)(Xi − µ̂n)T where µ̂n =

(
n∑
i=1

wi

)−1 n∑
i=1

wiXi,

wi = min{1, (c/ri)2} and c is often chosen as the 0.95-quantile of the χ2
2-distribution. The value

ri = max
a:|a|=1

aTXi −med(aTXn)

MAD(aTXn)
,
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ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5
Pearson 1 GK-Qn 0.823
Spatial sign 0.5 0.464 GK-τ 0.8
Gaussian rank 1 Tyler 0.5
Spearman 0.912 0.867 rMCD 0.033
Kendall 0.912 0.892 wMCD 0.401
Quadrant 0.405 0.342 S 0.377

Table 1. Asymptotic efficiency of correlation estimators for p = 2 under normality

is a measure of the outlyingness of Xi among all observations. Any other high-breakdown point
location and scale estimators can be used instead of the median and median absolute deviation
(MAD, Hampel, 1974). The influence function, asymptotic distribution and gross error sensitivity
of the Stahel-Donoho estimator can be found in Gervini (2002), but an explicit value of its
asymptotic efficiency does not seem to be available in the literature.

Davies (1987) proposed a multivariate generalization of S-estimators, being defined as

(µ̂n, V̂n) = arg min
µ,V

det(V̂n) subject to
n

ave
i=1

w(d̂i) = b,

where d̂i = {(Xi − µ̂n)T V̂ −1
n (Xi − µ̂n)}1/2 and w is a suitable, smooth and bounded, weight

function, usually the Tukey–biweight:

wc(y) = min

(
y2

2
− y4

2c2
+

y6

6c4
,
c2

6

)
.

Letting b = E{wc(‖V −1/2(X − µ)‖)} yields Fisher-consistency at the elliptical population dis-

tribution F , and if c is chosen such that rc2/6 = E{wc(‖V −1/2(X − µ)‖)}, the S-estimator
achieves an asymptotic breakdown point of 0 < r ≤ 1/2. We consider the common standard
choices r = 1/2 and consistency for Σ at the normal model. Asymptotics can be found in Davies
(1987), the influence function was calculated by Lopuhaä (1989), and efficiencies under normal
distribution were calculated for instance in Croux and Haesbroeck (1999).

Table 1 lists the asymptotic relative efficiencies of the mentioned correlation estimators with
respect to the Pearson correlation under normality. Specific tuning constants, parameters, weight
functions, etc., are chosen as described above. The efficiency of the nonparametric estimators is
declining with |ρ|, but the loss is rather small for moderate values. As we can see, the spatial
correlation can well compete with highly robust estimators in terms of efficiency.

5. Numerical comparison

We compared the correlation estimators in four different situations: under normality, under
ellipticity, in outlier scenarios and at non-elliptical distributions. We used the statistical software
R, including the packages ICSNP (Tyler’s M-estimator), MNM (elliptical power exponential dis-
tribution), mvtnorm (multivariate normal and elliptical t-distributions), pcaPP (spatial median),
rrcov (Stahel–Donoho and S-estimator) and robustbase (τ -scale, MCD and Qn). In all scenarios,
the estimators were transformed to be Fisher-consistent for the normal distribution. For some
estimators, consistency-transformations for other distributions are known as well, but it is unreal-
istic in practice to know the kind of distribution in advance. Furthermore, the marginal variances
are always chosen equal.

5.1. Results under normality. First we examine bias and variance under normality. We choose
ρ = 0.5, let the sample size n vary from 5 to 100, and generate 100,000 samples for each sample size.
In Figure 3 (left), we see that all correlation estimators are biased towards zero in small samples.
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Figure 3. Simulated finite sample bias (left) and n·variance (right) under nor-
mality, ρ = 0.5 and different sample sizes n.

Next to the Pearson correlation, Kendall’s τ and Spearman’s ρ (the adequately transformed
estimates) are least biased. The bias of the raw MCD still remains heavy even for n = 100. The
spatial sign correlation behaves very well in terms of finite-sample variance. On the right-hand
side of Figure 3, the variance times n (the “n-stabilized variance”) is plotted against n, which is,
contrary to most other estimators, nearly a horizontal line. This indicates that asymptotic tests
and confidence intervals based on the spatial sign correlation provide good approximations also
in small samples.

5.2. Results under elliptical distributions. Furthermore, the behavior under different ellip-
tical tails is investigated. We consider two subclasses of elliptical distributions that generate
varying tails: the tν-family and the power exponential family (e.g. Bilodeau and Brenner, 1999,
pp. 208, 209). The results for the tν distribution are summarized in Table 5.2, where the mean
squared error (MSE) of the various correlation estimators based on 100,000 samples are given for
ρ = 0 and ρ = 0.5 and different degrees of freedom ν. Keep in mind that formally the correlation
does not exist for one and two degrees of freedom, and we estimate the corresponding parameter
ρ of the shape matrix instead, see the remark at the beginning of Section 3. The MSE of the
spatial sign correlation remains constant with respect to ν, which applies only to the quadrant
correlation and Tyler’s M-estimator among the other methods. For one degree of freedom and
ρ = 0.5, the spatial sign correlation, together with Kendall’s τ and Tyler’s M-estimator, is most
efficient. For one degree of freedom and ρ = 0, Spearman’s ρ yields the smallest MSE by far.
But this is due to its (asymptotic) bias towards zero. Contrary to Kendall’s τ , the consistency
transformation applied to Spearman’s ρ under normality is not valid under ellipticity in general.

The MSEs, again based on 100,000 repetitions, for the power exponential distribution are
displayed in Figure 4. The sample size is n = 100, the true correlation ρ = 0.5, and the power
parameter α ranges from 0.02 to 2 in 56 (non-equidistant) steps. Letting α = 1 corresponds to
the normal distribution and α = 0.5 yields the elliptical Laplace distribution. With decreasing
α, the distribution gets heavier tailed and more peaked in the origin, but all moments exist for
any α > 0 and the density remains bounded. As before, the MSE of the spatial correlation does
not depend on the “tailedness parameter” α, which is in line with the asymptotic result. Only
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ρ 0 0.5
ν 1 2 5 10 1 2 5 10

Pearson 0.356 0.112 0.021 0.013 0.283 0.077 0.012 0.007
Spatial sign 0.020 0.020 0.019 0.020 0.012 0.012 0.012 0.012
Quadrant 0.024 0.024 0.024 0.017 0.017 0.016 0.016 0.016
Kendall 0.019 0.016 0.013 0.012 0.012 0.010 0.008 0.007
Spearman 0.016 0.014 0.012 0.012 0.015 0.011 0.008 0.007
Gaussian rank 0.021 0.017 0.013 0.012 0.019 0.013 0.008 0.007
GK-Qn 0.021 0.017 0.015 0.014 0.012 0.010 0.009 0.008
GK-τ 0.024 0.019 0.015 0.014 0.014 0.011 0.009 0.008
Tyler 0.020 0.020 0.020 0.020 0.012 0.012 0.012 0.012
rMCD 0.076 0.099 0.132 0.149 0.047 0.062 0.085 0.098
wMCD 0.037 0.035 0.034 0.032 0.022 0.021 0.020 0.019
S 0.033 0.030 0.029 0.029 0.019 0.017 0.017 0.017
Stahel-Donoho 0.031 0.028 0.026 0.025 0.018 0.016 0.015 0.015

Table 2. MSE under tν distributions with different degrees of freedom and n = 100.
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Figure 4. MSE of correlation estimators under the power exponential distribution
with different α, ρ = 0.5 and n = 100.

for very small α, we observe a slight incline. The power exponential distribution with a small
α is particularly challenging for robust scatter estimators, since it possesses heavy tails and a
probability mass concentration at the origin. Robust estimators downweight or reject outlying
observations, which are in this case no contaminations, but carry — in contrast to the bulk of the
data in the center — the main information about the shape. In fact, the MSE of the raw MCD
is above the displayed region in Figure 4. The spatial sign covariance matrix can cope well with
such peaked distributions. For α < 0.1, we find it, together with Tyler’s estimator, to have the
smallest MSE. However, it is crucial to use an appropriate location estimator that also works well
with peaks at the center, see e.g. the discussion in Section 3.2 of Dürre et al. (2014). Altogether
Kendall’s τ appears to perform best over the whole range of α.

5.3. Results under contamination. To assess the robustness properties, we consider two sce-
narios: a single outlier of varying size, and an increasing amount of outliers stemming from a
contamination distribution. In the first situation, we start from a bivariate normal sample with
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Figure 5. Bias of correlation estimators under normality with ρ = 0.5, n = 100
and one additive outlier of size h in the x-direction.

ρ = 0.5 and n = 100 and shift the first observation to the right by a distance h ranging from 0 to
5. This yields a high leverage point, suggesting a smaller correlation. We measure the influence
of this one outlier in the x-direction by the difference of the estimate before and after the manip-
ulation. The result is a sensitivity curve along the x-direction (divided by the factor n = 100),
plotted in Figure 5. The influence of the additive outlier is very small for the spatial sign corre-
lation and also for most other robust estimators. An exception is the Gaussian rank correlation,
which is known to have an unbounded influence function. Several highly robust estimators (in
particular, the S-estimator and the MCD) completely disregard outliers that are sufficiently far
away from the bulk of the data, and their sensitivity curves tend back to 0 as h further increases.

In the second setting, we start as usual with normally distributed data, ρ = 0.5, marginal
variances 1 and n = 100. Then we replace, one after another, the “good” observations by outliers,
which stem from a normal distribution with marginal variances 4 and correlation ρ = −0.5. In
Figure 6, the bias of the estimators (average of 50,000 repetitions) is plotted against the contam-
ination fraction. Here the picture is somewhat reversed to the efficiency results under normality:
the rather efficient rank-based estimators like Spearman’s ρ and Kendall’s τ are substantially
biased, and the rather inefficient and highly robust estimators (MCD, S, Stahel-Donoho) perform
better. As before, the spatial sign correlation takes a place in the middle.

5.4. Results under non-ellipticity. The robust correlation estimators are designed to estimate
Pearson’s moment correlation at the normal model, and the questions remains, what happens in
data models that exhibit none of the basic geometric characteristics of the normal distribution,
such as symmetry or unimodality. Is the estimate at least somewhere near the actual moment
correlation of the population distribution? An in-depth answer, alone for spatial sign correlation,
is beyond the scope of the paper, but we want to get a rough impression in a simulated example.
We consider a unimodal, but heavily skewed distribution. Let X = αZ1 +Z2 and Y = Z1 +αZ2,
where α is a scalar parameter and Z1 and Z2 are two independent, exponentially distributed
random variables (with parameter λ = 1). By letting α vary between 0 and 1, one can generate
any (positive) correlation ρ between X and Y . The explicit formula is

α = (1−
√

1− ρ2)/ρ
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Figure 6. Bias of correlation estimators under normality with ρ = 0.5, n = 100
and with a different amount of outliers with correlation ρ = −0.5.
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Figure 7. Bias of correlation estimators at a bivariate exponential distribution
for n = 100 and different ρ.

In Figure 7, the bias of the estimators (based 50000 repetitions) is plotted against the correlation
ρ. The sample size is n = 100. It is not surprising that most estimators, particularly the
nonparametric ones including the spatial sign correlation, are substantially biased. Besides the
sample correlation, we find the Gnanadesikan-Kettenring-estimator based on the Qn (but not on
the τ -scale) and the S-estimator to be nearly unbiased.

Appendix A. Proofs

Proof of Proposition 1. The proofs of parts (1) and (2) are fairly straightforward employing the
definitions of µ(X) and S(X). The key is the orthogonal equivariance of the spatial median and
the orthogonal invariance of the spatial sign. A proof of a more general version of part (2) can
also be found in Visuri (2001). It remains to show part (3). We only consider the non-trivial
case λ1 6= λ2. Since X ∼ F ∈ Ep(µ, V ), there exists a spherical random variable Y such that
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X = UΛ
1
2Y + µ, with U and Λ as in (2). We thus have

S(X) = E
{

(X − µ)(X − µ)T

(X − µ)T (X − µ)

}
= U E

{
Λ1/2Y Y TΛ1/2

Y TΛY

}
UT .

It remains to evaluate the diagonal elements δ1 and δ2 of the expectation on the right-hand side.
(Since spherical distributions have symmetrically distributed margins, the off-diagonal elements

are zero.) The spatial sign is distribution-free within the elliptical model, i.e. s(X) = s(X̃) in

distribution for any two elliptical random vectors X and X̃ with the same shape matrix V . The
distribution of s(X) for elliptical X is also known as the angular central Gaussian distribution, cf.
Tyler (1987b). Hence we can choose any spherical distribution for Y , e.g. the uniform distribution
on the unit circle with density

f(y) =
1

π
1[0,1](y

Ty),(4)

which yields with y = (y1, y2)

δ1 =
1

π

∫ 1

0

∫ √1−y21

−
√

1−y21

λ1y
2
1

λ1y2
1 + λ2y2

2

dy2dy1.

Substituting spherical coordinates y1 = r cos(α), y2 = r sin(α), we obtain

δ1 =
1

π

∫ 1

0

∫ 2π

0

λ1r
3 cos(α)2

λ1r2 cos(α)2 + λ2r2 sin(α)2
dαdr.

Using the identities cos(α) = (eiα + e−iα)/2 and sin(α) = (eiα − eiα)/(2i), we further substitute
z = eiα and get

δ1 =
1

π

∫ 1

0
r

∮
Γ

λ1(z2 + 1)2

iz((λ1 − λ2)z4 + 2(λ1 + λ2)z2 + (λ1 − λ2))
dz dr,(5)

where Γ denotes the unit circle on the complex plane, and
∮

Γ the (closed curve) line integral
along Γ. We apply the residue theorem to solve the inner line integral (e.g. Ahlfors, 1966, p. 149).
The integrand is meromorphic and has no pole on the boundary of the unit circle. The residue
theorem thus yields

δ1 =
1

π

∫ 1

0
2πir

∑
a∈P

Res(φ, a)dr,

where φ is the integrand of equation (5), P its set of poles within the unit circle, and Res(φ, a)
the residue of φ in a. The integrand φ has three poles inside the unit circle

(6) z1 = 0, z2/3 = ±
√
λ1 −

√
λ2√

λ1 − λ2

with residues

Res(φ, 0) =
−iλ1

(λ1 − λ2)
, Res(φ, z2/3) =

i
√
λ1λ2

2(λ1 − λ2)
.

Hence we obtain

δ1 =
1

π

∫ 1

0
2πr

√
λ1√

λ1 +
√
λ2
dr =

√
λ1√

λ1 +
√
λ2
.

The expression for δ2 is obtained by exchanging λ1 and λ2. The proof is complete. �
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Proof of Proposition 2. Parts (1) and (2) are proved in Dürre et al. (2014). In particular, Theorem
3 of Dürre et al. (2014) identifiesWS , under the conditions of part (2), as the asymptotic covariance
matrix of the SSCM with known location, i.e.,

(7) WS = Cov
(
vec
{
s(X − µ)s(X − µ)T

})
.

For proving part (3) it remains to evaluate (7) under the additional assumptionX ∼ F ∈ E2(µ, V ).

As in the proof of Proposition 1, we use the representationX = UΛ1/2Y +µ, where Y = (Y1, Y2)T

is a spherical random vector. Again, we only consider the non-trivial case λ1 6= λ2 and obtain

(8) WS = (U ⊗ U) Cov

{
vec

(
Λ1/2Y Y TΛ1/2

Y TΛY

)}
(U ⊗ U)T

The inner matrix on the right-hand side is

E


1

(Y T ΛY )2


λ21Y

4
1 0 0 λ1Y

2
1 λ2Y

2
2

0 λ1Y
2
1 λ2Y

2
2 λ1Y

2
1 λ2Y

2
2 0

0 λ1Y
2
1 λ2Y

2
2 λ1Y

2
1 λ2Y

2
2 0

λ1Y
2
1 λ2Y

2
2 0 0 λ22Y

4
2




(9) −


δ21 0 0 δ1δ2
0 0 0 0
0 0 0 0
δ1δ2 0 0 δ22


It remains to solve the three integrals

I1 = E
{

λ21Y
4
1

(λ1Y 2
1 +λ2Y 2

2 )2

}
, I2 = E

{
λ22Y

4
2

(λ1Y 2
1 +λ2Y 2

2 )2

}
, I3 = E

{
λ1Y

2
1 λ2Y

2
2

(λ1Y 2
1 +λ2Y 2

2 )2

}
,

where I1 and I2 are of the same type: I2 is obtained from I1 by simply exchanging λ1 and λ2.
We start with I1. By a fully analogous chain of arguments and manipulations as in the proof of
Proposition 1, we arrive at

I1 =
1

π

∫ 1

0
r

∮
Γ

λ2
1(z2 + 1)4

iz((λ1 − λ2)z4 + 2(λ1 + λ2)z2 + (λ1 − λ2))2
dz dr.

and apply again the residue theorem to solve the inner line integral. We call the integrand φ1 and
observe that it has the same singularities as the integrand φ in the proof of Proposition 1, cf. (6).
However, the poles z2 and z3 are of order two here, resulting in the residues

Res(φ1, 0) =
−iλ2

1

(λ1 − λ2)2
, Res(φ2, z2/3) =

i
√
λ1λ2(3λ1 − λ2)

4(λ1 − λ2)2
.

Hence we obtain

I1 =
1

π

∫ 1

0
2πr

λ2
1 − 1

2

√
λ1λ2(3λ1 − λ2)

(λ1 − λ2)2
dr =

λ2
1 − 1

2

√
λ1λ2(3λ1 − λ2)

(λ1 − λ2)2
.

It remains to solve I3, which we transform, again, by the same chain of arguments as in the proof
of Proposition 1, to

I3 = − 1

π

∫ 1

0
r

∮
Γ

λ1λ2(z4 − 1)2

iz((λ1 − λ2)z4 + 2(λ1 + λ2)z2 + (λ1 − λ2))2
dz dr.

We call the integrand φ3. Its poles are also given by (6) with z2 and z3 being of order two,
resulting in the residues

Res(φ3, 0) =
−iλ1λ2

(λ1 − λ2)2
, Res(φ3, z2/3) =

i
√
λ1λ2(λ1 + λ2)

4(λ1 − λ2)2
.
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We finally arrive at

I3 = − 1

π

∫ 1

0
2πr

λ1λ2 − 1
2

√
λ1λ2(λ1 + λ2)

(λ1 − λ2)2
=
−λ1λ2 + 1

2

√
λ1λ2(λ1 + λ2)

(λ1 − λ2)2
.

Plugging the obtained expressions for I1, I2 and I3 into the matrix (9) and observing (8) yields
the expression for WS given in Proposition 2 (3). The proof is complete. �

Towards the proof of Propostion 3, we consider as an intermediate step the SSCM-based shape
estimator V̂n defined at the beginning of Section 3. Precisely, we give the asymptotic distribution
of the estimator

V̂0,n =

(
v̂0,11 v̂0,12

v̂0,12 v̂0,22

)
=

1√
v̂11v̂22

V̂n.

We have remarked at the end of Section 1 that, for analyzing the scale-invariant properties of the
shape of an elliptical distribution, fixing the overall scale of the shape matrix V is not necessary,
and we view the shape as an equivalence class of positive definite matrices being proportional to
each other. For explicit computations, however, it is at some point necessary to fix the scale, that
is, picking one specific representative from the equivalence class. Various ways of standardizing
the shape can be found in the literature. Paindaveine (2008) argues to choose det(V ) = 1, which

corresponds to our choice of V̂n in Section 3. However, for our purposes, it is most convenient
to standardize V such that the product of its diagonal elements is 1, which corresponds to V̂0,n

described above. Accordingly, we denote by V0 the representative of the equivalence class with
this property (reciprocal diagonal elements) and parametrize it as

(10) V0 =

(
a ρ
ρ a−1

)
,

where the parameters a and ρ have the same meaning as in Section 3, that is, the ratio of the
diagonal elements of V and the correlation, respectively. Lengthy but straightforward calculus
yields

(11) v̂0,12 =
cŝ12b√

(ŝ2
12 + b2)2 + (ŝ12cb)2

,

(12) v̂0,11 =
2s(ŝ12)

√
−ρ(4ρŝ2

12 + 4
√

1− s̃2
12ŝ12 − s̃12) + 2s̃1,2 − 4

√
1− s̃2

12ŝ12

4ŝ12b

where, as before, ŝij , i, j = 1, 2, denote the elements of the SSCM Ŝ(Xn;µn), and b, c and d are
defined in (3). The following proposition summarizes the asymptotic behavior of the estimator

V̂0,n.

Proposition 5. Under the assumptions of Proposition 3, we have for n→∞ that

(1) V̂0,n
a.s.−→ Vρ and

(2)
√
n
{

(v̂0,11, v̂0,12)T − (a, ρ)T
} L−→ N2 (0,WV0), where WV0 = GWSG

T

with

G =

(
(a2 + 1)

√
1− ρ2 + 2a(1− ρ2)

)
√

1− ρ2 (4a2ρ2 + (a2 − 1)2)

(
g1,1 g1,2 0 0
g2,1 g2,2 0 0

)
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and

g1,1 = (a2 − 1)2
√

1− ρ2 + 2 a (a2 + 1) ρ2,

g1,2 = (a− 1)(a+ 1) ρ
{

2 a
√

1− ρ2 − a2 − 1
}
,

g2,1 =
1

a

{
(a2 + 1)

√
1− ρ2 − 2a(1− ρ2)

}
,

g2,2 = 2(a2 + 1)ρ2
√

1− ρ2 + a−1(a2 − 1)2(1− ρ2).

Proof of Proposition 5. Part (1) is a consequence of the continuous mapping theorem, part (2)
follows with the delta method. Note that V0 is specified by the two elements v̂0,11 and v̂0,12,

and, likewise, Ŝn = Ŝn(Xn;µn) by the two elements ŝ11 and ŝ12. Let H be the function that
maps (ŝ11, ŝ12) to (v̂0,11, v̂0,12) and (s11, s12) to (a, ρ). It is given explicitly by the formulas (11)
and (12), from which we can compute its derivative. However, due to the complex structure
of H, it is a cumbersome task to compute its derivative. It is much easier to compute the
derivative of its inverse and apply the inverse function theorem. With {(x, y) | 0 < x, |y| < x} and
{(x, y) | 0 < x < 1, |y| < x} being its domain and image, respectively, the function H is invertible
and continuously differentiable. Let J denote its inverse. The function J maps (a, ρ) to (s11, s12)
and is described in Proposition 1. In the following, we will compute its derivate, for which we
require an explicit form of J . The eigenvalue decomposition of V0 is given by

λ1/2 = (2a)−1
(
a2 + 1±√q

)
and

U =


2 a |ρ|{

(
√
q−a2+1)

2
+ 4a2ρ2

}1/2

2 a |ρ|{
(
√
q+a2−1)

2
+ 4a2ρ2

}1/2

s(ρ) (
√
q−a2+1){

(
√
q−a2+1)

2
+ 4a2ρ2

}1/2 − s(ρ) (
√
q+a2−1){

(
√
q+a2−1)

2
+ 4a2ρ2

}1/2

 ,

where q = 4a2ρ2 + (a2 − 1)2. By Proposition 1 (1) and (2) we find

s11 =

√
k{4a2ρ2 +

√
q(a2 − 1) + (a2 − 1)2}+

√
m{4a2ρ2 +

√
q(1− a2) + (a2 − 1)2)}

2q(
√
m+

√
k)

and s12 = (2q)−1aρ(
√
k −
√
m)2, where k = a2 + 1 +

√
q and m = a2 + 1−√q. The derivative of

J is

DJ(a, ρ) =

 2a(a2+1)ρ2
√

1−ρ2+(a2−1)(1−ρ2)

q((a2+1)
√

1−ρ2+2a(1−ρ2))
− (a−1)a(a+1)ρ(2a

√
1−ρ2−a2−1)

q((a2+1)
√

1−ρ2+2a(1−ρ2))

− (a−1)(a+1)ρ((a2+1)
√

1−ρ2−2a(1−ρ2))

q((a2+1)
√

1−ρ2+2a(1−ρ2))

a((a−1)2
√

1−ρ2+2a(a2+1)ρ2)

q((a2+1)
√

1−ρ2+2a(1−ρ2))

 .

The determinant of this matrix is

detDJ(a, ρ) = a
√

1− ρ2
{(
a2 + 1

) √
1− ρ2 + 2 a

(
1− ρ2

)}−2
.

By virtue of the inverse function theorem, we have DH(s11, s12) = (DJ(a, ρ))−1. Hence we obtain
DH(s11, s12) by inverting the 2 × 2 matrix DJ(a, ρ). It can be seen to be (except for the zero
columns) the matrix G in Proposition 5. The proof is complete. �

Proof of Proposition 3. Proposition 3 is an immediate corollary of Proposition 5, noting that
ρ̂n = v̂0,12. The asymptotic variance of ρ̂n is the lower diagonal element ofWV0 given in Proposition
5. �
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S. Sirkiä, S. Taskinen, H. Oja, and D. E. Tyler. Tests and estimates of shape based on spatial signs and
ranks. Journal of Nonparametric Statistics, 21(2):155–176, 2009.

W. Stahel. Robust estimation: Infinitesimal optimality and covariance matrix estimation. PhD thesis,
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