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Abstract

This paper discusses the concept of an IQM (Informal
Qualitative Model) which is seen as a bridge between
rigorous, and often intractable, theories on the one hand,
and experimental data on the other, We argue that the
selection of variables to be explored using quantitative law
discovery should be made using background knowledge.
However, domain theories are often intractable, and to
make progress it is therefore necessary to add assumptions;
i.e. one is forced to take particular and often simplifying,
perspectives on the domain. IQMs essentially capture these
ideas. This paper demonstrates how a set of IQMs for a
domain (colligative properties of solutions) can be
generated from a base IQM and a set of operators.

Introduction

Early work in the physical sciences involved the
investigation of quantitative relationships between
variables (such as Newton's and Kepler's laws), and also
qualitative relationships, such as objects of type A react
chemically with objects of type B to produce objects of
types C and D. In many domains, the scientists had to
infer both structural and quantitative models, before a full
understanding of a phenomenon could be achieved.

Much of Chemistry is concerned with the following
questions:

* What substances exist in nature (elements, atoms, ...),
and in what structures are they to be found
(molecules, polymers, hydrates, we) ?

* What are the properties of these substances, and
structures ?

* What are the mechanisms for combining/breaking
apart such substances, structures and sub-structures ?

Previous work in computational scientific discovery has
addressed how each of these types of chemical knowledge
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can be used to elucidate the others. For example, the
STAHL and DALTON systems (Zytkow & Simon, 1986;
Langley et al., 1987) use the concept of chemical reaction
to determine the components of a substance (STAHL), and
its molecular composition (DALTON). Related systems
are REVOLVER (Rose & Langley, 1986, 1988; Rose,
1989), BR3 (Kocabas, 1991) and GELL-MANN (Fischer
& Zytkow, 1990, 1992). These systems all use a different
mechanism, the use of collisions to produce sub-atomic
particles, to establish quark models of the fundamental
particles in physics.

Unlike the previous systems, which used only very
general heuristics, REVOLVER uses domain specific
knowledge in evaluating the models that it generates,
GELL-MANN uses an additivity principle (in which
properties of an object must be the sum of the
contributions of the structures from which it is formed)
and a combination and conservation principle (in which
the same fundamental structures must appear on either
side of a reaction) to generate and verify models. BR3 is
unique in proposing new quantum properties, together
with a general conservation of properties principle, to
account for observed particle reactions.

Discovery in a Space of Structural Models

Each of the systems just described assumes that a single
mechanism is operating for combining objects, structures
or substructures or breaking them apart. In STAHL and
DAILTON, the mechanism was chemical reaction, in the
other systems the mechanism involved the use of high
energy collisions to produce sub-atomic particles. Our
own earlier work has focused on using a collection of
different mechanisms to hypothesise models of structure,
and on how these models can be used to explain the
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Figure 1 IQMs for Solution Chemistry

properties of a physical system; such as the freezing point
of an aqueous salt solution, the solubility of an organic
compound, or the chemical shift of an atom in a 13C NMR
spectrum.

Informal Qualitative Models

The types of structural models we are concerned with
have been termed Informal Qualitative Models, or IQMs
(Sleeman et al., 1989), They are informal and qualitative
in the sense that they cannot be directly verified by
observation. For example, they cannot be verified by the
presence or absence of particular reactions. A critique of
the BACON family of programs (Langley et al., 1987) led
us to articulate the concept of IQMs. Besides being
concerned about noise-handling capabilities in BACON,
we were exercised by the fact that such quantitative law
discovery systems needed to be given the dependent and
independent variables, and their associated sets of values.
Sleeman et al. (1989) argued that one of the most
challenging tasks for a scientist was to decide which
variables to explore, and then to design appropriate
experiments to gather the data (which could be passed to a
quantitative law discovery program for analysis), We were
also aware that in most scientific domains some
background theory exists, which is generally used to
inform the choice of experimental variables and the likely
form of the relationships between them. Additionally, we
were also aware that, in many areas of science, the theory
is either intractable for all but trivial cases (as in Quantum
Mechanics) or too abstract to have any real predictive

power (as is seen in the early history of solution
chemistry). In order to produce useful instantiations of
such theories it is necessary to introduce a series of
plausible assumptions. Informal Qualitative Models are
one source of such assumptions. Given a series of IQMs,
we argued that it would be possible to use these to
interpret existing data, or alternatively to design
experiments to distinguish between the IQMs. Once the
experimental data is available, it is analysed from the
perspective of each of the IQMs which specify the
relationships/instantiations for variables in the model; then
a law discovery mechanism can be used to infer numerical
relationships. This process is repeated for each of the
IQM:s and the one which produces the set of (quantitative)
equations which is deemed to be the most plausible/
acceptable is said to be the appropriate IQM (Gordon et
al., 1994), For example, a careful analysis of the history of
early solution chemistry research shows that progress in
the understanding of this domain came about by the
proposal of a set of increasingly elaborate models.
Interpreting the same experiments from the perspective of
each of these models led to the formulation of a set of
different quantitative laws. Applying a different model
could result in a quantitative law which was preferred
because it was more nearly linear, or resulted in fewer
exceptions or anomalies (Gordon, 1992, 1993, in
preparation).

Our earlier work on IQMs (Sleeman et al. 1989; Stacey,
1992; Gordon, 1992, 1993) suffered largely from the ad
hoc nature of the models, which were simply considered to
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exist in a scientific domain a priori, and be available for
use by a scientist, with little consideration of their origin,
or the obvious relationships amongst them. Figure 1, for
example, which is adapted from Sleeman et al. (1989),
shows four examples of IQMs which can apply to the
domain of solution chemistry.

In Figure 1, the No Inferaction model represents the
case where particles of solute and solvent do not interact at
all in a solution. Physical Mixing represents solutions in
which particles of solute and solvent are uniformly
physically distributed throughout the solution, but neither
of them are changed chemically in any way. The third
model represents an Association between solute and
solvent particles. Particles of solute are associated with
particles of the solvent in a fixed ratio of numbers of

molecules. An example would be a solution consisting of
hydrated salt particles dissolved in water. The figure
illustrates the case in which two molecules of water are
associated with each molecule of salt. In the final model,
Dissociation, both solute particles and some of the solvent
particles are dissociated into their constituent ions
(represented by the charge signs on the particles in the
figure). Similar sets of models have been elaborated in
other domains, such as !3C Nuclear Magnetic Resonance,
the solubility of organic compounds, and celestial
mechanics.

An important advance on this work, considers IQMs far
more systematically (Gordon et al., 1994). In this
approach, the IQMs in a domain are generated from a
“root” model, the simplest model possible in a domain, by



the application of a set of model generation operators. A
search space of models can thus be generated (Newell &
Simon, 1972). Figure 2 shows a partial search space for
the solution chemistry domain, specifically for aqueous
solutions of common salt.

In Figure 2, the root model for the IQM search space is
the Physical Mixing Model already seen in Figure 1, in
which the solute and solvent are simply physically mixed
with one another in the resulting solution, with neither of
them chemically changed in any way. Subsequent models
are generated from this original model by the application
of a set of operators. One such operator, combine-
nonionic, takes five arguments:

combine-nonionic(model, objectl, object2,
ratio, degree)

These arguments are an existing model, two objects
which are to be combined in the resulting model, a ratio,
which represents the number of instances of object2 which
are to be associated with each instance of objectl in the
resulting solution, and a degree (between O and 1)
indicating the extent of application of the operator. For
example, operator application 5 in Figure 2, would be
instantiated as follows to generate model C :

combine-nonionic(root, NaCl, H,O, 2, 1)

That is, the operator is applied to the model root (the
simplest in the domain); it combines a molecule of
common salt with two molecules of water; and it applies
to all salt molecules in solution. Essentially, we are saying
that in the model of solutions generated by this operator,
all salt molecules exist in solution associated with two
molecules of water. This Single Association model of
solutions is due historically to Riidorff.

The other labelled models in Figure 2 are as follows:
Model A indicates that all molecules of solvent are
associated with another solvent molecule. This model was
first proposed historically by Raoult. Model B proposes
that molecules of the solute are associated with one other
solute molecule in solution, this model is also due to
Raoult. Model E, the Multiple Associations model, due
historically to De Coppet, proposes that salts can exist in
solution in two different states of hydration
simultaneously. A second hydrate is shown, with salt and
water molecules associated in the ratio 1:4. Model D, the
basis of the current model of solutions, is the lonic
Dissociation model. This model proposes that, in solution,
solute and solvent are dissociated into their constituent
ions, and is due to Arrhenius. Model F is in a sense a
hybrid of two of the models we have seen so far; it was
proposed to account for some of the anomalies which

remained unexplained even by Arrhenius’ model, and
suggests that ions in solution can themselves be associated
with water molecules.

Further details of the history of solution chemistry, and
the operators used to generate each of the models in Figure
2 are to be found in Gordon et al. (1994) and Gordon (in
preparation). Additionally, Gordon (1993) demonstrates
how HUME, a model-driven discovery system, applies the
single association model to the problem of law discovery
in solution chemistry. The goal in this case is to discover
numerical laws that can describe the behaviour of the
freezing points of aqueous salt solutions. The application
of the Single Association model to this problem can lead to
the discovery of more satisfactory laws than is possible by
applying the simpler Physical Mixing model.

Although we have now established a more systematic
approach to Informal Qualitative Models, by showing how
a search space such as that of Figure 2 can be generated
from a single, root model for the domain, several questions
remain. Most importantly, of course, is the question of the
source of this most primitive model, and of the model-
generating operators applied to it. These are the challenges
for the next phase of our work.
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