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1. Introduction

The one dimensional Discrete Non Linear Schrödinger (DNLS) equation [1, 2]

iżn = −2|zn|2zn − γ(zn+1 + zn−1) (1)

with 1 ≤ n ≤ N (and suitable boundary conditions), is a prototype model of wave
propagation in nonlinear lattices [3] and provides a reasonably accurate description
of several physical setups, ranging from trapped cold gases [4, 5, 6], to optical
waveguides [7, 8] and magnetic systems [9, 10, 11]. One of the peculiarities of
its dynamics is the existence of a region in the parameter space, where localized
excitations, (breathers [12]) spontaneously emerge. If the energy density is large
enough, a typical configuration can be decomposed into a background and a certain
number of breathers. The background collects most of the mass (norm) and is
characterized by a Poissonian distribution of the local amplitude. The breathers,
characterized by a fast rotation, host a finite fraction of the energy. This phase is
referred to as a negative-temperature regime, because the injection of energy reduces
the entropy, as expected for any energy spectrum which is bounded from above, once
all levels are equally populated [13].

In the negative temperature region, direct simulations of the DNLS show that,
after some transient, the dynamics is essentially frozen [14]. This is in contrast
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with the expectation that the density of breathers should decrease in time through
a sort of entropic coarsening, where the expected final state is made up of a single
breather which absorbs all the excess energy, sitting on top of an infinite-temperature
background [15, 16, 17, 18].

In order to understand this discrepancy, several approaches can be adopted,
ranging from focused numerical simulations to approximations of the exact DNLS
model. Our working hypothesis is to explore the implications of the existence of two
conserved quantities: the energy

H =
N
∑

n=1

[

|zn|4 + γ(z∗nzn+1 + znz
∗
n+1)

]

(2)

and the mass

A =
∑

n

|zn|2 . (3)

Here below, instead of deriving suitable hydrodynamic equations, we prefer to study
simple microscopic stochastic models, as they offer better chances of performing
analytical calculations. In a previous publication [19] we have already introduced and
studied two such models. The first one was introduced by replacing the deterministic
coupling present in the DNLS with a local Microcanonical Monte Carlo (MMC) move,
which does not break the two general conservation laws (see Fig. 1(a)). Remarkably,
the phase diagram of this model, defined through the mass density a and the energy
density u = H/N , contains a region where breathers are characterized by a slow
dynamics. This region is identified by the condition u > a2/2 and coincides with the
negative-temperature phase of DNLS for γ ≪ 1.

In the second model, a partial exclusion process (PEP), the space is divided
into disjoint channels where particles diffuse according to the exclusion constraint,
separated by a set of preselected breather sites which can freely emit and absorb
particles (see Fig. 1(b)). The PEP model too exhibits a slow dynamics very similar
to that of the MMC model, if the overall density of particles c is larger than 1/2 [19].

In both models, above the corresponding critical condition, a slow dynamics
manifests itself as a sort of coarsening, which has, however, no equivalent in the
DNLS, where the dynamics essentially freezes. An important, conceptual difference
between the DNLS equation and the two stochastic models is the absence of a phase
dynamics in the latter ones. In the original context, the local variable is indeed
zn :=

√
ane

iφn , while only an is for instance present in the MMC. From the point of
view of nonlinear dynamics this is quite awkward, since the phase is quite sensitive
to coupling, to the extent that often the opposite approximation is made: amplitude
dynamics is neglected [20]. The approach is, however, justifiable in our context when γ
is small: in this limit, neither of the two conserved quantites depends on the phases, so
that the physics is contained in the distribution of the amplitudes. Phases enter only
in the coupling mechanism, which, in the MMC, has been designed just to capture
entropic effects in the simplest possible way. As a result, one can claim that the
disagreement between the coarsening dynamics (exhibited by MMC and PEP) and
the evolution of breathers in the DNLS can be traced back to the way breather-
background interaction is accounted for. More specifically, in the original DNLS,
breathers of increasing amplitude rotate faster and faster (the frequency ω of a massive
breather is equal to 2|zn|2 = 2an). Therefore, the effective coupling, being determined
by the average of γ(zn+1 + zn−1), becomes increasingly weak upon increasing an. An
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Figure 1. (a): The MMC model. A typical amplitude profile an displays a
certain number of high-amplitude breathers superposed to a background. Left
and right insets show in dashed red lines the available states respectively for
a background triplet of sites (turquoise bars marked with black dots) and a
triplet containing a breather (yellow bars marked with black squares). The legal
configurations are obtained as intersection between a plane (main triangle) and
a sphere (not shown) that account for local conservation of mass and energy,
respectively. Due to the further constraint on the positivity of the amplitudes an,
the allowed states may lie on three disconnected arcs, see the right inset. This
happens when one of the three amplitudes is significantly larger than the others.
(b): The PEP model. The amplitude profile in panel (a) is reproduced in terms
of the integer amplitude cn. White and grey squares highlight respectively empty
(cn = 0) and occupied (cn > 0) sites.

explicit perturbative analysis of the DNLS is a subtle object that is currently under
investigation. Here, we focus on simple stochastic models, where we have a full control
of the evolution rule.

The weakening of the interaction induced by an increasingly fast rotation is
here simulated by postulating that the coupling strength depends on the breather
amplitude. More precisely, we introduce the probability α ∈ (0, 1] for a move involving
the breather to actually occur. After investigating the case of constant α (in order to
test the correct scaling) we consider α = h−β , where h is the breather height. One of
the major results of this paper concerns the corresponding coarsening exponent 1/ζ,
defined through the expression L(t) ∼ t1/ζ , giving the time evolution of the average
distance L between neighbouring breathers. We find

ζ =

{

3 β ≤ 1
2 + β β > 1

. (4)

Altogether, in section 2, we analyse the relaxation of a single breather for fixed
small α in the PEP model, finding that the process is initially ballistic, and becomes
diffusive at later times. We repeat the study, assuming that α depends on the breather
height: a similar scenario is found. In the following section 3, we focus on the
interactions between neighbouring breathers, showing that the process is eventually
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diffusive. We also connect the value of the diffusion coefficient with the coarsening
exponent. In section 4, we analyse some, more natural, coupling schemes in the MMC,
finding one which leads to a logarithmically slow process, that would be closer to the
scenario actually observed in the DNLS. Finally, in section 5, some conclusions are
drawn and the open problems briefly summarized.

2. Relaxation of a single breather

In this section we study the PEP model defined on a lattice of N sites with periodic
boundary conditions, see Fig. 1(b). The variable cn identifies the number of particles
in the site n, which can be of background or breather type. In the former case, the
particles diffuse as in a standard exclusion process, i.e. cn can be at most equal to 1.
The breathers are “reservoirs” (cn > 1) which exchange particles with neighbouring
(background) sites. If the breather content reduces to just a single particle, cn = 1,
it becomes a background site for ever. The evolution rule is simple: we randomly
choose an ordered pair of neighbouring sites (i, j), j = i ± 1, and make the move
(ci, cj) → (ci − 1, cj + 1) if and only if ci > 0 and cj 6= 1. This means that we move
a particle if it exists and it enters either an empty background (cj = 0), or a breather
site (cj > 1). If the move involves a breather (i.e., either ci > 1 or cj > 1), it is
accepted with probability α; if it does not, it is always accepted.

At variance with both MMC and the original DNLS, in this model there is
only one conserved quantity (the number of particles), but accompanied by an
additional constraint in the background, due to the exclusion rule. There is another
difference between PEP and MMC/DNLS models: in the former, breather do not
arise spontaneously. In fact, according to above rules a breather can be destroyed
but it cannot be created. Finally, it is instructive to compare the critical density
c = 1/2 of the PEP model with the infinite-temperature line u = a2/2 of the MMC.
For T = ∞, the MMC is characterized by a Poissonian distribution of masses, i.e.
〈a2〉 − 〈a〉2 = 〈a〉2. In the PEP model, where a is a binary variable with average c,
the above condition writes c− c2 = c2, whence c = 1/2.

In Fig. 2 we report the average evolution of a single breather of initial height
h(0) < N/2 sitting on an empty background with periodic boundary conditions. The
condition on h(0) implies that the breather is eventually absorbed by the background,
because the infinite-temperature regime corresponds to an occupation density equal
to 1/2. In fact, we have chosen h(0) = 100, much smaller than N = 104, to reduce
boundary effects during the breather relaxation. The results show the existence of
two regimes separated by a crossover time tc ∼ 1/α2. For short times the average
height of the breather decreases ballistically, 〈∆h(t)〉 ≡ 〈h(0) − h(t)〉 ≃ αt, while for
large times it decreases diffusionally, 〈∆h(t)〉 ≃

√
t. At even longer times 〈∆h(t)〉

saturates because of the finite height of the breather, which runs out of particles. The
different behavior at short/long times can be qualitatively understood as follows. At
early times (especially if α is vanishingly small) released particles freely diffuse in a
practically empty background with no mutual interaction and a vanishing probability
to be reabsorbed. At long times, emitted particles have a much higher probability to
return to the breather.

This argument can be made more rigorous under the approximation of continuous
time and space variables. We proceed into two steps, by first deriving a set of mean-
field differential equations for the probability pn(t) that the site n is occupied at time



5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

α2
 t

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

α 
<∆

h>

α = 0.16
α = 0.08
α = 0.04
α = 0.02
α = 0.01
α = 0.005
α = 0.0025

Figure 2. Evolution of the average height variation 〈h(0)−h(t)〉 of the breather
during the relaxation process in rescaled units. Averages have been performed
over 2000 different initial conditions. The dotted-dashed blue curve represents
the analytical prediction for the ballistic growth, Eq. (12), and the dashed purple
curve is the analytic prediction for the diffusive growth, see Eq. (13).

t (the breather being located in the site n = 0),

ṗn ≡ ∆pn
∆t

=
1

2
[pn−1(1 − pn) + pn+1(1 − pn)− pn(1− pn−1)− pn(1− pn+1)] =

=
1

2
(pn+1 + pn−1 − 2pn) n > 1 (5)

and

ṗ1 ≡ ∆p1
∆t

=
1

2
[α(1 − p1)− αp1 + p2(1− p1)− p1(1− p2)]

=
1

2
[α(1 − 2p1) + (p2 − p1)] , (6)

where ∆t = 1 corresponds to the implementation of N random moves (N is the
lattice size). The evolution equation for p1 can be made formally equivalent to the
bulk dynamics (5) upon introducing a p0 such that

α(1 − 2p1) + (p2 − p1) = (p0 + p2)− 2p1 . (7)

As a next step, we introduce the continuous variable x = n− 1 and the corresponding
probability density ρ(x, t) = pn − 1/2, so that the stationary solution is ρ(x) = 0 .
Under the approximation of a weak dependence of ρ on the spatial variable x (which
becomes increasingly correct at long times), the bulk dynamics is described by a
standard diffusive equation

∂tρ(x, t) = D∂xxρ(x, t) , (8)
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where D = 1/2. Moreover, one can assume‡ p0 = ρ(0) + 1/2− ρx(0), so that Eq. (7)
transforms into the boundary condition

ρx(0) = 2αρ(0) ≡ rρ(0). (9)

Therefore, we recover the well known result that the exclusion process is purely
diffusive [21] and find that the interaction with the breather can be modelled by a
Robin (semi-reflecting) boundary condition in x = 0+, gauged by the variable r. For
α → ∞, the Robin condition reduces to a standard absorbing boundary condition,
ρ(0) = 0, while for α → 0 , it corresponds to a reflecting boundary, ρx(0) = 0. The
case α = 1, studied in Ref. [19], corresponds to an intermediate setup, characterized
by a finite interaction time-scale, because for α = 1 attachment occurs on the time
scale of diffusion.

We now want to determine the average height reduction 〈∆h(t)〉 of a breather due
to the particles that have been emitted but not yet reabsorbed. We need to know the
probability F (t)dt that a particle is being reabsorbed in the time interval (t, t + dt).
This quantity can be evaluated exactly using the continuum model and assuming that
a particle is released in x = x0 at t = 0 and it is thereby let free to diffuse in [0,∞].
Note that the value of x0 is not crucial for the continuum model as long as it is chosen
to be close to the origin. The analytical expression for F (t) valid for all t is fairly
complicated and it is given in Appendix A. Here we limit to give its limiting expression
for short and long times,

F (t) ≃
{

4α
√

D/(πt) x2
0 ≪ t ≪ α−2

1/(2α
√
πDt3) t ≫ α−2

. (10)

The height reduction 〈∆h(t)〉 of the breather is thereby obtained by integrating
over all particles that have been emitted and not yet absorbed at time t. However,
we must be careful because the evaluation of the number of emitted particles (either
reabsorbed or not) is not trivial, since the emission of a particle from the breather
is possible only if the neighbouring site which should receive it is empty. Since the
initial condition corresponds to an empty background, at short times the probability
(1 − p1) that the neighboring sites are empty is practically equal to 1. On the other
hand, at large times, after many emissions of particles, the region around the breather
is almost at equilibrium, corresponding to p1 = 1/2. In general, one can write

〈∆h(t)〉 = α

∫ t

0

dt′(1− p1(t
′))

∫ ∞

t′
dt′′F (t′′). (11)

Using the limiting expressions for F (t) (provided in Eq. (10)) and for p1(t) (discussed
here above), we find the following two regimes,

〈∆h(t)〉 ≃ αt x2
0 ≪ t ≪ α−2 (12)

〈∆h(t)〉 ≃
√

2t

π
t ≫ α−2 , (13)

where we have used D = 1/2. The details of the derivation of Eqs. (12) and (13) are
given in Appendix B. These limiting behaviors are plotted in Fig. 2 and show a very
good agreement with numerical simulations.

So far we have considered a constant coupling strength α. We now turn to a more
physical case where α varies with the breather height

α(h) = h−β

‡ Let us remind that ρ(0) + 1

2
corresponds, in the discrete lattice, to p1.
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and β is a real and positive parameter. The dependence of α on h is such that
the higher a breather is, the lower is its coupling with the background. This also
implies that the effective coupling is implicitly time-dependent. The data obtained for
different β-values are reported in Fig. 3, using the same scaling ansatz as before, with
the only difference that now, α is referred to the initial amplitude (i.e. α̃ = α(h(0))).
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Figure 3. Breather relaxation dynamics for different choices of the coupling
exponent β. Simulations refer to a setup with N = 10000 lattice sites and a
breather with initial height h(0) = 80. The PEP channel is initially empty.
Data are averaged over 1000 realizations. The dotted-dashed and dashed curves
represent the analytical predictions as in Fig. 2, with α replaced by α̃.

3. Breather interactions

Here we are mostly interested in determining the exponent ζ which controls the way
the density dB of breathers decays in time (dB ≈ t−1/ζ). In order to do so, it is
first necessary to understand how breathers interact with each other. After some
transient, a set of breathers is present, which sit on a background characterized by
the occupation density ρ = 1/2. Let the origin of the time variable be set at such
a stage, when the average distance between neighbouring breathers is L, while their
average height is h = kL, with k > 0 (this ensures that the surplus of energy contained
in the breathers is an extensive quantity). In these conditions the background is “at
equilibrium” at T = ∞ and, on average, the breathers do neither absorb nor release
particles. However, the particles stochastically emitted can occasionally diffuse and be
absorbed by a neighbouring breather. This mechanism couples breathers, which can
exchange particles through the background, therefore inducing a diffusion of breathers’
height. Let us focus on a couple of breathers with initial height h(0) = kL. The square
displacement σ2

σ2 ≡ 〈(h(t) − h(0))2〉 (14)
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is expected to grow as σ2 = DBt, where DB(L) is the diffusion constant of the
exchange process. By definition, one of the two breathers is completely absorbed after
a time τ , when σ2(τ) ≃ h2(0). Therefore the absorption time τ scales with L as
τ(L) ≃ h2(0)/DB(L). In order to determine the coarsening exponent it is necessary
to invert the relation dB ≈ τ−1/ζ , once set dB = 1/L and h2(0) ≃ L2. Accordingly,

L ≃
(

L2

DB

)1/ζ

. (15)

As a result, the coarsening exponent is fully determined by the scaling of DB with L.
With reference to the two-breather setup, DB can be expressed as the product

of the rate γ to release a particle tout court by the probability Pc that the particle is
absorbed by the neighboring breather (instead of being absorbed back by the emitter).
An analytical calculation of Pc is reported in Appendix C for a simple geometry
consisting of only two breathers placed at the boundaries of a PEP channel with
fixed boundary conditions. For this setup,

γ =
α

2
, Pc(L, α) =

1

2(1 + Lα)
(16)

and therefore

DB(L, α) =
α

4(1 + Lα)
. (17)

When α scales with the breather height, i.e. when α = h̄−β = (kL)−β , the above
equation provides the relevant scaling of DB with the system size L. In particular, we
find

DB =











S(k, β, L)

L
β ≤ 1

S(k, β, L)

Lβ
β > 1

, (18)

where S(k, β, L) is a prefactor weakly dependent on L for large L. Explicitly,

S(k, β, L) =















k−βL1−β

4 (1 + k−βL1−β)
β ≤ 1

k−β

4 (1 + k−βL1−β)
β > 1

(19)

Altogether, from Eq. (16) we finally obtain ζ = 3 for β ≤ 1 and ζ = (2+β) for β > 1.
In Fig. 4 we show the growth of σ2(t) as obtained by directly simulating the

evolution of a PEP model where two breathers are initially superposed to a background
in equilibrium at infinite temperature (i.e., with a density 1/2). Horizontal and vertical
axes are rescaled so as to collapse data corresponding to different system sizes on a
single curve. In all cases, the growth of σ2 is asymptotically linear: σ2(t) ∼ t/L for
β = 0 and β = 1, while σ2(t) ∼ t/L2 for β = 2, in agreement with the prediction
in Eq. (18). A detailed check of the prefactor S(k, β, L) extracted from numerical
simulations, is presented in Fig. 5, where it is compared with the analytical formula,
Eq. (19). An excellent agreement is found.

It is interesting to notice that the asymptotic linear growth of σ2, which confirms
the eventual diffusive behavior of the breather amplitude, may be preceeded by a
sub-diffusive behavior, where σ ≃ t1/4 (see the green dotted curve in Fig. 4). This
behaviour can be understood by invoking a somehow unexpected relationship with
surface roughening phenomena. Consider a finite PEP extending from site 0, where it
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Figure 4. Evolution of the amplitude fluctuations σ2 of two breathers sitting
on an infinite temperature background for different coupling exponents β. Black,
red, and blue full lines (indistinguishable) correspond to N = 64, 128, and 256,
respectively. Data are obtained by averaging over a set of 1000 independent
trajectories. The initial condition consists of two breathers of equal amplitude
h(0) = N = L at the boundaries of the chain. Dotted-dashed (green) and dashed
(purple) lines correspond to a square root and linear increase of σ2, respectively.

is in contact with a breather, to site L where fixed boundary conditions are imposed.
Let ci(t) be a variable denoting whether a particle is present or not on site i at time
t and introduce

Cj(t) =

L
∑

i≥j

ci(t) .

The variable Cj(t) counts the number of particles present in the system on the right
of the site j. It can be written as Cj(t) = (L − j)/2 + sj(t), where sj(t) can be
interpreted as a rough interface of vanishing average height. Therefore the fluctuations
of s0(t) (and thereby of C0(t)), represent the fluctuations of the breather height as
well as the fluctuations of the rough surface. In the contexts analysed in this paper
the bulk dynamics is fully linear, so that it is appropriate to invoke an analogy with
the Edwards-Wilkinson model, whose fluctuations are precisely charactrized by the
exponent 1/4 [22] seen in Fig. 4 for β = 0.

This “early time” behavior appears because in between the emission of a particle
from a breather and the next emission, the system may not have the time to reach
local equilibrium when β is small. β = 1 is the limiting value for the observation of
the initial slow growth. In this critical case, the anomaly reduces to just a different
multiplicative coefficient in front of the linear term, see Fig. 4(b).

We conclude this Section with the remark that above derivation of τ(L) applies to
any α(L) dependence so long as it represents a coupling which weakens upon increasing
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Figure 5. The diffusion prefactor S(k, β, L = 32) (open symbols) computed
from a fit of the asymptotic growth of σ2(t) for different values of β and k in a
chain of N = 32 sites. Dashed lines are obtained from the analytical prediction in
Eq. (19). Simulations are performed by superposing two breathers with amplitude
h(0) = kL at the two boundaries of a PEP chain at infinite temperature and with
fixed boundary conditions. The breather interaction probability is α = h(0)−β .
For each choice of k and β , the mean square height displacement σ2 is computed
by averaging over 1000 independent trajectories. The coefficient S(k, β, L = 32)
is therefore extracted by performing a linear fit of σ2 in the asymptotic region
where σ2 ∼ t.

the breather height. This includes an exponential dependence, in which case the time
required for the death of a breather grows exponentially with its size.

4. The MMC model

Here, we discuss the coarsening process in the MMC setup. As briefly anticipated
in the introduction, the evolution rule is a typical microcanonical Monte Carlo move
restricted to neighbouring particles, so as to maintain the locality of the interactions
of the DNLS equation. In practice, a triplet of neighbouring sites, (n − 1, n, n + 1),
is randomly chosen and the variables (an−1, an, an+1) updated so as to conserve mass
and energy.

The positivity of an implies that when a high-mass (breather) site is involved
(see Fig. 1(a)), the accessible phase space reduces, to the point that, if a finite
mass were concentrated in a single site, the two neighbouring ones being perfectly
empty, no redistribution would be possible at all. In the absence of the condition for
the mass to be positive, the rule would be equivalent to a stochastic scheme which
preserves kinetic energy and linear momentum, of the type used to “ergodize” chains
of oscillators [23, 24, 25, 26], where no such exotic phenomena are observed.

The same analysis carried out in the previous sections for the PEP, could be
repeated for the MMC, by introducing a suitable height-dependent coupling. We
have verified that this leads to the same scenario and, therefore, we do not see
a compelling reason to show the corresponding results. We rather propose some
considerations which make the weakening assumption less ad hoc than introducing
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a priori a dependence of the probability α on the breather height.
We start by quickly reminding that in the MMC model [19] we choose a random

triplet of neighboring sites and update their amplitudes under the constraint of
constant mass, an−1 + an + an+1 = ā, and constant energy, a2n−1 + a2n + a2n+1 = ū.
These two conditions correspond to the intersection of a sphere with a plane in the
three dimensional phase space, an−1, an, an+1. Since an represent a mass it must be
positive. This implies that the intersection is a full circle if the initial amplitudes are
comparable, while it is made up of three, disconnected arcs if one of the sites has an
initial amplitude significantly larger than the others (see Fig. 1(a)). In practice, this
occurs when one of the three sites is occupied by a breather.

A first consequence of the results of the previous section is that different
microscopic rules for the evolution of the system may produce the same coarsening
exponent 1/ζ. More specifically, we remind that in Ref. [19] the MMC rule was
implemented by restricting the random selection to the fully positive triplets, i.e.
choosing points which lie inside the allowed arcs (this could be the entire circle).
Here we consider a possible variation of the above dynamics that amounts to always
selecting a point along the full circle and accepting the move only if the positivity
condition is satisfied for the three amplitudes. Compared to the former recipe, which
corresponds to α = 1, i.e. β = 0, the latter algorithm avoids the identification of the
arc extrema as functions of the mass and energy of the triplet. On the other hand,
the dynamics is slowed down whenever the algorithm generates a triplet with negative
amplitudes. Therefore one expects that this change or rule affects the probability α
to effectively perturb a breather.

We now show that the slowing down corresponds to α ∼ L−1/2, i.e. β = 1/2.
Consider a triplet that contains one breather site with amplitude b and two background
sites with amplitude xb and yb, with x, y ≪ 1 and let λ denote the angular length
of each arc§. Then, the probability Pa that a randomly chosen move is acceptable is
given by the ratio 3λ/2π, where the denominator is the amplitude of the set of moves
that conserve mass and energy and the numerator accounts for the amplitude of the
physical interval (i.e. the set of moves that satisfy also positivity). Since to leading
order λ =

√
3(x+y) [19], λ scales as 1/b when the background amplitude is kept fixed

and then also Pa ∼ 1/b. Moreover, considering that the quantity diffusing during the
MMC dynamics is the energy u = b2 [19], Pg ∼ u−1/2, so that α ∼ L−1/2. According
to the discussion of previous Section, the difference between the two β exponents,
β = 0 and β = 1/2, is not sufficient to induce a different coarsening law, which is
again characterized by the exponent ζ = 1/3 (data not shown).

Finally, we discuss a modification of the model which naturally leads to an
exponentially slow dynamics, without the need to introduce explicitly an exponential
decrease of α with L. In practice, we introduce a threshold Γ for the maximal arc
length to be considered. In other words, whenever the arc length λ is smaller than Γ,
no action is taken: the triplet configuration is left unchanged.

Once again, let us analyse the implications of the algorithm when the chosen
triplet contains one breather and two background sites with amplitude b, xb, yb
respectively. So long as both x and y are small the dynamics is blocked, since
λ =

√
3(x + y) < Γ. One may naively conclude that sufficiently high breathers are

completely decoupled from the background. This is not true, because the background

§ By symmetry reasons the three arcs have the same length λ. When λ equals 2π/3, they merge into
the entire circle.
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Figure 6. (a): Average energy reduction 〈∆u(t)〉 ≡ 〈u(0)−u(t)〉 of one breather
in a modified MMC model with interaction threshold Γ = π/8 for different initial
energies u(0). At t = 0 the breather is superposed to an MMC chain in equilibrium
at temperature T = 10 with mass density a = 1 and L = 2048. The initial
equilibrium distribution of the background is sampled by applying a Metropolis
thermostat at T = 10 to each site of the chain for a transient tth = 5 · 105.
〈∆u(t)〉 is computed by averaging over 40 independent trajectories (up to the
threshold θ = 300). (b): Relaxation time (open circles) tθ to reach the threshold
as a function of the initial breather energy u(0). The dashed line refers to an
exponential fit tθ ∼ exp(u(0)/E) with E = 430.

fluctuations can eventually lead to sufficiently large x or y values, so that the
probability of such move is related to the probability of generating sufficiently large
amplitudes in the neighbouring sites. The canonical equilibrium distribution of the
background amplitudes an reads

P (an) =
1

Z
exp[−β(a2n − µan)], (20)

where β = 1/T and µ are the inverse temperature and the chemical potential of the
system, while Z =

∫∞
0 exp[−β(a2n−µan)] dan is the partition function. The probability

to have a mass fluctuation comparable to the breather height b (the square root of
the energy) is exponentially small in b and depends on the values of β and µ. In fact,
a direct simulation of the modified MMC model with Γ = π/8 (see Fig. 6(a)), shows
that breathers well above the interaction threshold evolve according to an effective
coupling exponentially small in the breather energy.

With reference to the parameters of Fig. 6, β = 0.1 and µ = −6.46 ‖. In the
range of chosen breather energies (u(0) > 1000), the term in µ in P (an) can be

‖ The chemical potential µ has been determined by solving the equation a =
∫

∞

0
P (x)x dx with

β = 0.1 and a = 1.
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neglected, so that the probability of the fluctuation is controlled by the local energy
a2n. This is confirmed in Fig. 6(b), where the relaxation time tθ necessary to release
an amount of energy θ from the breather to the background is shown to depend
exponentially on the initial breather energy u(0). Altogether, the above analysis
shows that an exponentially small coupling between breathers and background may
arise as a consequence of background fluctuations when energy diffusion is blocked by
additional constraints. In this regime, the analysis of the previous section predicts a
logarithmic coarsening of the breathers.

5. Conclusions

We have investigated the relaxation processes of simple stochastic models, in the
perspective of better understanding the dynamics of breathers in the DNLS equation.
Our models, the continous MMC and the discrete PEP one, are characterized by a
negative temperature region where breathers exchange matter, leading to a decrease of
their density. This coarsening process follows a power-law and it is more or less slow,
depending in a non trivial way on the strength of the breather-background interaction.
In fact, our results and general considerations on the DNLS equation support the idea
that the extremely slow dynamics observed in DNLS (an almost frozen dynamics) is
due to the weakening of the interaction with breathers of increasing height. However,
a power law weakening of the breather-background coupling maintains a power-law
coarsening. For this reason, the results of section 4 are particularly instructive. There,
we have studed a variant of MMC characterized by a frozen dynamics below some
threshold and our results indicate that the invoked effective strength may be the
outcome of a highly intermittent process. This perspective can plausibly apply to the
DNLS, where a resonant interaction of a breather with a neigbouring site could be the
motivation for an occasional, localized, strong transfer of energy.

Appendix A. Diffusion with a single semi-reflecting boundary

We want to solve the diffusion equation,

∂p

∂t
= D

∂2p

∂x2
, (A.1)

in the semi-infinite line x ≥ 0, with a semi-reflecting boundary in x = 0,

∂p

∂x

∣

∣

∣

∣

x=0

= rp(x = 0, t), (A.2)

and with initial condition p(x, t = 0) = δ(x − x0). We remind that within the PEP
model, we have r = 2α, see Eq. (9).

We define q(x, t) = p′(x, t) − rp(x, t), where the prime indicates the derivative
with respect to x, which still satisfies the diffusion equation (A.1), but with the easier
boundary condition, q(0, t) = 0. The price to be paid is in the initial condition,
q(x, 0) = δ′(x − x0) − rδ(x − x0). The details of the calculation can be found in
Ref. [27] and here we limit to write the solution

q(x, t) = − 1
√

4π(Dt)3

[

(x + x0)e
− (x+x0)2

4Dt + (x− x0)e
− (x−x0)2

4Dt

]

− r√
4πDt

[

e−
(x−x0)2

4Dt − e−
(x+x0)2

4Dt

]

(A.3)
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and

p(x, t) = −
∫ ∞

x

q(s, t)e−r(s−x)ds. (A.4)

What we need is the probability F (t) that the particle is absorbed in x = 0 during
the time interval (t, t+ dt), which is given by

F (t) = Dp′(0, t) = Drp(0, t) = −Dr

∫ ∞

0

q(x, t)e−rxdx. (A.5)

Therefore, using (A.3) we obtain

F (t) = Dr

∫ ∞

0

dxe−rx

{

1
√

4π(Dt)3

[

(x+ x0)e
− (x+x0)2

4Dt + (x− x0)e
− (x−x0)2

4Dt

]

+
r√

4πDt

[

e−
(x−x0)2

4Dt − e−
(x+x0)2

4Dt

]}

. (A.6)

We now formally evaluate the previous integral, which may be written in terms
of the error function, erf(x) = 2√

π

∫ x

0 e−s2ds. Then, we evaluate the limiting behaviors

of F (t), at short and long times. We need to calculate the following integrals,

I1(x0) =

∫ ∞

0

dxe−rxe−
(x+x0)2

4Dt (A.7)

= erx0
√
πDt er

2Dt

[

1− erf

(

r
√
Dt+

x0

2
√
Dt

)]

(A.8)

= erx0
√
πDt J1(x0, r, t) (A.9)

where

J1(x0, r, t) ≡ er
2Dt

[

1− erf

(

r
√
Dt+

x0

2
√
Dt

)]

(A.10)

and

I2(x0) =

∫ ∞

0

dxe−rx(x + x0)e
− (x+x0)2

4Dt (A.11)

= − erx0
√
πDt

∂

∂r
J1(x0, r, t), (A.12)

so that

F (t) = − r

2t

[

erx0∂rJ1(x0, r, t) + e−rx0∂rJ1(−x0, r, t)
]

(A.13)

+
Dr2

2

[

erx0J1(x0, r, t)− e−rx0J1(−x0, r, t)
]

. (A.14)

• Limit x2
0 ≪ Dt ≪ r−2

Using the limit erf(x) ≃ 2√
π
x for x ≪ 1, we can write

J1(x0, r, t) ≃ 1− 2√
π

(

r
√
Dt+

x0

2
√
Dt

)

(A.15)

∂rJ1(x0, r, t) ≃ − 2√
π

√
Dt (A.16)

and

F (t) ≃ 2√
π

√
D

r√
t
. (A.17)
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• Limit t ≫ r−2

Using the limit erf(x) ≃ 1− e−x
2

√
πx

for x ≫ 1, we can write

J1(x0, r, t) ≃ 1

r
√
πDt

(A.18)

∂rJ1(x0, r, t) ≃ − 1

r2
√
πDt

(A.19)

and

F (t) ≃ 1

r
√
πD

t−3/2. (A.20)

Using r = 2α, from (A.17) and (A.20), we find Eqs. (10).

Appendix B. Relaxation of a breather on an empty background

• Limit x2
0 ≪ t ≪ α−2

Recalling that
∫ ∞

0

dtF (t) = 1 , (B.1)

we rewrite Eq. (11) as

〈∆h(t)〉 = α

∫ t

0

dt′(1− p1(t
′))

[

1−
∫ t′

0

dt′′F (t′′)

]

. (B.2)

Now, since at short times
∫ t′

0

dt′′F (t′′) ≪ D1/2 ≃ 1 (B.3)

and p1 ≪ 1, we obtain to the leading order

〈∆h(t)〉 = αt. (B.4)

• Limit t ≫ α−2

Let us introduce an intermediate timescale t0 such that α−2 ≪ t0 ≤ t. Therefore,
Eq. (11) is rewritten as

〈∆h(t)〉 = α

[

∫ t0

0

dt′(1 − p1(t
′))

∫ t′

0

dt′′F (t′′) +

∫ t

t0

dt′(1− p1(t
′))

∫ t′

0

dt′′F (t′′)

]

. (B.5)

In the regime t ≫ α−2, F (t) can be approximated as in Eq. (10) and p1(t) ≃ 1/2.
Consequently, one can compute explicitly the second addend in the square brackets,
that gives

∫ t

t0

dt′(1− p1(t
′))

∫ t′

0

dt′′F (t′′) =
1

2

∫ t

t0

dt′
∫ t′

0

dt′′
1

2α
√
πDt′′3

=
1

α

√

t

πD
. (B.6)

Therefore, for t ≥ t0

〈∆h(t)〉 = K(t0) +

√

t

πD
, (B.7)

where K(t0) is a constant. Finally, for D = 1/2, we obtain Eq. (13).
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Appendix C. Random walk with two semi-reflecting boundaries

We have two breathers in i = 0, L and a random walk in between, moving according
to the following rules: if the particle is in i 6= 1, L− 1, it hops to i± 1 with probability
1/2; if i = 1 (i = L − 1), it hops to i = 2 (i = L − 2) with probability q and to i = 0
(i = L), therefore being absorbed, with probability 1 − q. We define the probability
P (L) that a particle released in i = 1 attaches to the breather in i = L.

It is also useful to define a model where the left boundary condition is the same
as before, but the right boundary condition is symmetric, i.e. the particle hops from
i = L−1 to i = L−2, L with probability 1/2. For this model we define the probability
p(L) that a particle released in i = 1 reaches the site i = L before reaching the site
i = 0. With these notations, we can write

P (L) = p

(

L

2

)

1

2
, (C.1)

because a particle arrived in L/2 has the same probability to attach to the left or
to the right breather. We now want to determine p(L), summing up all the possible
trajectories to go from i = 1 to i = L, without being absorbed in i = 0, according
to the number n of passages in i = 1 (with n ≥ 1). If a trajectory is characterized
by a given n, it means that the particle has hopped from 1 to 2 (which happens with
probability q) and (n−1) times it has come back to 1 before attaining L (which occurs
with probability (1 − a), with a = 1/L), and one time has attained L before coming
back to 1 (which occurs with probability a). Summing up all terms, we have

p(L) =
∑

n≥1

qn(1 − a)n−1a (C.2)

=
a

1− a

∑

n

qn(1− a)n (C.3)

=
aq

(1− q) + qa
, (C.4)

with a = 1/L. So, we get

P (L) = p

(

L

2

)

1

2
(C.5)

=
q

2q + L(1− q)
(C.6)

=
1

2 + L(q−1 − 1)
. (C.7)

Let us now define q in the most general way. If a particle is in i = 1, it has a
probability 1/4 to move to the right and a probability α/2 to move to the left,¶ so

q =
1
4

1
4 + α

2

=
1

1 + 2α
, (C.8)

and

P (L) =
1

2

1

1 + Lα
. (C.9)

¶ Each probability is the product of 1/2 (the probability to choose right or left) with the probability
to actually make the move.
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