TY - UNPB
T1 - Impulse control of chaos in the flexible shaft rotating-lifting system of the mono-silicon crystal puller
AU - Zhou, Zi-Xuan
AU - Grebogi, Celso
AU - Ren, Hai-Peng
PY - 2020/3/11
Y1 - 2020/3/11
N2 - Chaos is shown to occur in the flexible shaft rotating-lifting (FSRL) system of the mono-silicon crystal puller. Chaos is, however, harmful for the quality of mono-silicon crystal production. Therefore, it should be suppressed. Many chaos control methods have been proposed theoretically and some have even been used in applications. For a practical plant displaying harmful chaos, engineers from a specified area usually face with the challenge to identifying chaos and to suppressing it by using a proper method. However, despite of the existing methods, chaos control method selection in the FSRL system is not a trivial task. For example, for the OGY method, if one cannot find a practical adjustable parameter, then the OGY method cannot be applied. An impulsive control method is being proposed which is efficiently able to suppress chaos in the FSRL system. The selection of the control parameters is obtained by using the Melnikov method. Simulation results show the correctness of our theoretical analysis and the effectiveness of the proposed chaos control method.
AB - Chaos is shown to occur in the flexible shaft rotating-lifting (FSRL) system of the mono-silicon crystal puller. Chaos is, however, harmful for the quality of mono-silicon crystal production. Therefore, it should be suppressed. Many chaos control methods have been proposed theoretically and some have even been used in applications. For a practical plant displaying harmful chaos, engineers from a specified area usually face with the challenge to identifying chaos and to suppressing it by using a proper method. However, despite of the existing methods, chaos control method selection in the FSRL system is not a trivial task. For example, for the OGY method, if one cannot find a practical adjustable parameter, then the OGY method cannot be applied. An impulsive control method is being proposed which is efficiently able to suppress chaos in the FSRL system. The selection of the control parameters is obtained by using the Melnikov method. Simulation results show the correctness of our theoretical analysis and the effectiveness of the proposed chaos control method.
KW - Chaotic Dynamics
M3 - Working paper
BT - Impulse control of chaos in the flexible shaft rotating-lifting system of the mono-silicon crystal puller
PB - ArXiv
ER -