No photo of Geoffrey Robinson

Geoffrey Robinson

Professor

    • MESTON BUILDING, MESTON WALK, OLD ABERDEEN

    • 239 Citations
    20002012
    If you made any changes in Pure these will be visible here soon.

    Fingerprint Dive into the research topics where Geoffrey Robinson is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

    • 6 Similar Profiles
    Finite Group Mathematics
    Odd Mathematics
    Irreducible Character Mathematics
    Amalgam Mathematics
    P-adic Groups Mathematics
    Valuation Ring Mathematics
    Simple Module Mathematics
    Finite P-group Mathematics

    Research Output 2000 2012

    • 239 Citations
    • 27 Article
    8 Citations (Scopus)

    On simple endotrivial modules

    Robinson, G., 1 Apr 2012, In : Bulletin of the London Mathematical Society. 43, 4, p. 712-716 5 p.

    Research output: Contribution to journalArticle

    Simple Module
    Monomial
    Algebraically closed
    Finite Group
    Subgroup

    Bounding the size of permutation groups and complex linear groups of odd order

    Robinson, G. R., 1 Jun 2011, In : Journal of Algebra. 335, 1, p. 163-170 8 p.

    Research output: Contribution to journalArticle

    Linear Group
    Permutation group
    Odd
    Divisor
    2 Citations (Scopus)

    Endotrivial irreducible lattices

    Robinson, G. R., 1 Jun 2011, In : Journal of Algebra. 335, 1, p. 319-327 9 p.

    Research output: Contribution to journalArticle

    Valuation Ring
    Faithful
    Finite Group
    Module
    1 Citation (Scopus)

    Generalized characters whose values on non-identity element are roots of unity

    Robinson, G. R., 1 May 2011, In : Journal of Algebra. 333, 1, p. 458-464 7 p.

    Research output: Contribution to journalArticle

    Roots of Unity
    Subgroup
    Finite Group
    Classify
    Character

    Reduction (mod q) of fusion system amalgams

    Robinson, G. R., 1 Feb 2011, In : Transactions of the American Mathematical Society. 363, 2, p. 1023-1040 18 p.

    Research output: Contribution to journalArticle

    Amalgam
    Finite P-group
    Infinite Groups
    Homomorphic
    Representation Theory