Abstract
An in silico computational technique for predicting peptide sequences that can be cyclized by cyanobactin macrocyclases, e.g., PatGmac, is reported. We demonstrate that the propensity for PatGmac-mediated cyclization correlates strongly with the free energy of the so-called pre-cyclization conformation (PCC), which is a fold where the cyclizing sequence C and N termini are in close proximity. This conclusion is driven by comparison of the predictions of boxed molecular dynamics (BXD) with experimental data, which have achieved an accuracy of 84%. A true blind test rather than training of the model is reported here as the in silico tool was developed before any experimental data was given, and no parameters of computations were adjusted to fit the data. The success of the blind test provides fundamental understanding of the molecular mechanism of cyclization by cyanobactin macrocyclases, suggesting that formation of PCC is the rate-determining step. PCC formation might also play a part in other processes of cyclic peptides production and on the practical side the suggested tool might become useful for finding cyclizable peptide sequences in general.
Original language | English |
---|---|
Pages (from-to) | 2310-2315 |
Number of pages | 6 |
Journal | The Journal of Physical Chemistry Letters |
Volume | 8 |
Issue number | 10 |
Early online date | 5 May 2017 |
DOIs | |
Publication status | Published - 18 May 2017 |
Fingerprint Dive into the research topics of 'A Blind Test of Computational Technique for Predicting the Likelihood of Peptide Sequences to Cyclize'. Together they form a unique fingerprint.
Profiles
-
Wael E Houssen
- School of Medicine, Medical Sciences & Nutrition, Medical Sciences - Senior Research Fellow
- Institute of Medical Sciences
- Chemistry (Research Theme)
Person: Academic Related - Research