Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem

Lyssette Elena Muñoz-Villers, Josie Geris, Susana Alvarado-Barrientos, Friso Holwerda, Todd E Dawson

Research output: Contribution to journalArticle

Abstract

Abstract. On a global scale, coffee has become one of the most sensitive commercial crops that will be affected by climate change. The majority of Arabica coffee (Coffea arabica) grows in traditionally shaded agroforestry systems and accounts for ∼ 70 % of the coffee production worldwide. Nevertheless, the interaction between plant and soil water sources in these coffee plantations remains poorly understood. To investigate the functional response of dominant shade trees species and coffee (C. arabica var. typica) plants to different soil water availability conditions, we conducted a study during a normal and more pronounced dry season (2014 and 2017, respectively) and the 2017 wet season in a traditional agroecosystem in central Veracruz, Mexico. For the different periods, we specifically investigated the variations in water sources and root water uptake via MIXSIAR mixing models using δ18O and δ2H stable isotopes of rainfall, plant xylem and soil water, along with micrometeorological and soil moisture measurements. To further increase our mechanistic understanding about root activity, the distribution of belowground biomass and soil macronutrients were also examined and considered in the model. Results showed that, over the course of the two dry seasons investigated, all shade tree species (Lonchocarpus guatemalensis, Inga vera and Trema micrantha) relied on water sources from deeper soil layers (˃ 15 to 120 cm depth; 86 %), while the use of much shallower water sources (

Original languageEnglish
Pages (from-to)1649–1668
JournalHydrology and Earth System Sciences
Volume24
DOIs
Publication statusPublished - 7 Apr 2020

    Fingerprint

Cite this