Crystal structures of four indole derivatives with a phenyl substituent at the 2-position and a carbonyl group at the 3-position: the C(6) N-H⋯O chain remains the same, but the weak reinforcing inter-actions are different

Research output: Contribution to journalArticle

3 Citations (Scopus)
10 Downloads (Pure)

Abstract

We describe the crystal structures of four indole derivatives with a phenyl ring at the 2-position and different carbonyl-linked substituents at the 3-position, namely 1-(2-phenyl-1H-indol-3-yl)ethanone, C16H13NO, (I), 2-cyclo-hexyl-1-(2-phenyl-1H-indol-3-yl)ethanone, C22H23NO, (II), 3,3-dimethyl-1-(2-phenyl-1H-indol-3-yl)butan-1-one, C20H21NO, (III), and 3-benzoyl-2-phenyl-1H-indole, C21H15NO, (IV). In each case, the carbonyl-group O atom lies close to the indole-ring plane and points towards the benzene ring. The dihedral angles between the indole ring system and 2-phenyl ring for these structures are clustered in a narrow range around 65°. The dominant inter-molecular inter-action in each case is an N-H⋯O hydrogen bond, which generates a C(6) chain, although each structure possesses a different crystal symmetry. The C(6) chains are consolidated by different (C-H⋯O, C-H⋯π and π-π stacking) weak inter-actions, with little consistency between the structures.

Original languageEnglish
Pages (from-to)363-369
Number of pages7
JournalActa Crystallographica Section E: Crystallographic Communications
Volume72
Issue number3
DOIs
Publication statusPublished - 1 Mar 2016

Keywords

  • crystal structure
  • indole
  • N—H⋯O hydrogen bond
  • C(6) chain
  • weak inter­actions

Fingerprint Dive into the research topics of 'Crystal structures of four indole derivatives with a phenyl substituent at the 2-position and a carbonyl group at the 3-position: the C(6) N-H⋯O chain remains the same, but the weak reinforcing inter-actions are different'. Together they form a unique fingerprint.

  • Cite this